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Fractional order (or, shortly, fractional) derivatives are used in viscoelasticity since the late 1980's, and they grow more and more popular nowadays. However, their efficient numerical calculation is nontrivial, because, unlike integer-order derivatives, they require evaluation of history integrals in every time step. Several authors tried to overcome this difficulty, either by simplifying these integrals or by avoiding them. In this paper, the Adomian decomposition method is applied on a fractionally damped mechanical oscillator for a sine excitation, and the analytical solution of the problem is found. Also, a series expansion is derived which proves very efficient for calculations of transients of fractional vibration systems. Numerical examples are included.

Introduction

It is common to date fractional calculus back to Leibniz, and several textbooks are available on the subject (e.g. [START_REF] Podlubny | Fractional differential equations[END_REF]). Several authors have been examining the possibility of using fractional derivatives in material modelling in the last two-three decades [START_REF] Bagley | A theoretical basis for the application of fractional calculus to viscoelasticity[END_REF][START_REF] Bagley | On the fractional calculus model of viscoelastic behavior[END_REF], and the field is of a growing interest
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nowadays [START_REF] Alvelid | Modelling of constrained thin rubber layer with emphasis on damping[END_REF][START_REF] Ramrakhyani | Modeling of elastomeric materials using nonlinear fractional derivative and continuously yielding friction elements[END_REF][START_REF] Freed | Fractional calculus in biomechanics: A 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad[END_REF][START_REF] Heymans | Fractional calculus description of non-linear viscoelastic behaviour of polymers[END_REF][START_REF] Hernandez-Santiago | Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model[END_REF][START_REF] Schmidt | Finite element formulation of viscoelastic constitutive equations using fractional time derivatives[END_REF]. Finite element formulations are also in development [START_REF] Schmidt | Finite element formulation of viscoelastic constitutive equations using fractional time derivatives[END_REF][START_REF] Cortés | Homogenised finite element for transient dynamic analysis of unconstrained layer damping beams involving fractional derivative models[END_REF][START_REF] Enelund | Time domain modeling of damping using anelastic displacement fields and fractional calculus[END_REF].

However, the wide spread of these models is obstructed among others by the difficulty concerning their efficient numerical calculation. This comes from the fact that they need the evaluation of a time-history integral. There are several solution methods available in the literature.

The analytical solution is theoretically known [START_REF] Podlubny | Fractional differential equations[END_REF]. However, it requires the computation of a convolution of the two-parameter Mittag-Leffler function, which is numerically challenging. Therefore, other calculation methods are sought and used.

The most commonly used method is based on the well-known Grünwald-Letnikov definition of fractional derivatives, used e.g. by Schmidt and Gaul [START_REF] Schmidt | Finite element formulation of viscoelastic constitutive equations using fractional time derivatives[END_REF]. These authors proceeded to reduce the volume of the time history integral [START_REF] Schmidt | On the numerical evaluation of fractional derivatives in multi-degree-of-freedom systems[END_REF], achieving an almost two-magnitude gain in calculation time on an example.

Suarez and Shokooh [START_REF] Suarez | An eigenvector expansion method for the solution of motion containing fractional derivatives[END_REF] solved a vibration equation with fractional damping of order 1/2 analytically, taking advantage of the derivative order.

Therefore, their solution is restricted to cases where the order of damping is one half. Still, the presented numerical results are widely used as reference solutions. Moreover, Suarez and Shokooh presented a solution for the initial value problem of the vibration system, which is uncommon in the literature.

Yuan and Agrawal [START_REF] Yuan | A numerical scheme for dynamic systems containing fractional derivatives[END_REF] have rewritten the definition of a fractional derivative, and turned a fractional differential equation to a system of linear differential equations. However, Schmidt and Gaul [START_REF] Schmidt | On a critique of a numerical scheme for the calculation of fractionally damped dynamical systems[END_REF] have shown that in some cases, this method loses the advantages of fractional calculus over integer-order calculus. Later, this has also been checked by the present author [START_REF] Pálfalvi | Methods for solving a semi-differential vibration equation[END_REF] for the field of interest of this paper.

The Adomian decomposition method (ADM) has been introduced by George Adomian in the late 1980's. Essentially, it approximates the solution of a non-linear differential equation with a series of functions. The method
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is getting into use for the solution of fractional differential equations [START_REF] Wang | Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method[END_REF][START_REF] Daftardar-Gejji | Adomian decomposition: a tool for solving a system of fractional differential equations[END_REF][START_REF] Ray | Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian decomposition method[END_REF][START_REF] Daftardar-Gejji | Solving a multi-order fractional differential equation using Adomian decomposition[END_REF][START_REF] Daftardar-Gejji | Solving multi-term linear and nonlinear diffusion-wave equations of fractional order by Adomian decomposition method[END_REF][START_REF] Shawagfeh | Analytical approximate solutions for nonlinear fractional differential equations[END_REF][START_REF] Momani | A numerical scheme for the solution of multi-order fractional differential equations[END_REF].

For a special case, Saha Ray, Poddar and Bera [START_REF] Ray | Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian decomposition method[END_REF] have proven that the Adomian solution converges to the analytical solution. Recently, Hu, Luo and Lu [START_REF] Hu | Analytical solution of the linear fractional differential equation by Adomian decomposition method[END_REF] have shown that this is true for any linear fractional differential equation. It will be shown in the present paper that this series expansion is very efficient in many cases.

There are some further methods (e.g. the variational iteration method [START_REF] Momani | Numerical approach to differential equations of fractional order[END_REF][START_REF] Momani | Numerical comparison of methods for solving linear differential equations of fractional order[END_REF], the method of Atanackovic and Stankovic [START_REF] Atanackovic | An expansion formula for fractional derivatives and its application[END_REF][START_REF] Atanackovic | On a numerical scheme for solving differential equations of fractional order[END_REF] and the method of Singh and Chatterjee [START_REF] Singh | Galerkin projections and finite elements for fractional order derivatives[END_REF]) that will not be treated in this paper. Also, the Adomian decomposition method has been improved by some authors [START_REF] Jafari | Revised Adomian decomposition method for solving a system of nonlinear equations[END_REF][START_REF] Jafari | Revised Adomian decomposition method for solving systems of ordinary and fractional differential equations[END_REF][START_REF] Ray | Application of modified decomposition method for the analytical solution of space fractional diffusion equation[END_REF]. However, the convergence to the analytical solution has only been proven for the original method.

The present paper aims to provide a computationally efficient solution method for the fractionally damped vibration equation using the Adomian decomposition method and Taylor series. The obtained solution will be compared to analytical solutions, either known previously or developed here in a series form. To show the connection with classical methods, solutions using the Grünwald-Letnikov definition will also be calculated.

In this paper, Section 2 presents the fractionally damped vibration equation, also giving a brief introduction to fractional derivatives. It also describes the Adomian decomposition method which will be used afterwards.

In Section 3, some solutions existing in the literature are shown. Next, in Section 4, new solutions are presented: in Section 4.1, the proposed method is developed, while in Section 4.2, an analytical solution is calculated for reference. Finally, Section 5 shows the numerical examples, and Section 6 concludes the paper.
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Preliminaries

This section gives the equation to be solved, including a basic introduction to fractional derivatives. The Adomian decomposition method, which is extensively used in this paper, is also presented.

The equation to be solved

The differential equation to be solved is the vibration equation with fractional damping, with one degree of freedom:

D 2 x(t) + c m D α x(t) + k m x(t) = f (t) , (1) 
where D = d dt is the differential operator. Another common form of Equation (1) is 

D 2 x(t) + 2ηω 2-α n D α x(t) + ω 2 n x(t) = f (t) , (2) 

Fractional integrals

Fractional integrals and derivatives are deduced from the generalisation of the integer-order operations. It is usual to define the integral operator

D -q as a D -q t x(t) = 1 Γ(q) t a (t -τ ) q-1 x(τ ) dτ , ( 3 ) 
where q > 0 and Γ(x) is the Gamma function

Γ(x) = ∞ 0 e -z z x-1 dz. ( 4 ) 
For a continuous x(t),

D -p D -q x(t) = D -(p+q) x(t) , (5) 
as given in [START_REF] Podlubny | Fractional differential equations[END_REF] (if both p and q are non-negative).
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The fractional integral of a polynomial will be needed later so it is given below:

D -q t ν = Γ(ν + 1) Γ(ν + 1 + q) t q+ν , ( 6 ) 
With the fractional integral operator, fractional derivatives are easily introduced.

Fractional derivatives

For a real α > 0, D α is defined by the Riemann-Liouville definition [START_REF] Podlubny | Fractional differential equations[END_REF],

using the above fractional integral operator:

a D α t x(t) = d dt n a D -(n-α) t = 1 Γ(n -α) d dt n t a (t -τ ) n-1-α x(τ ) dτ . ( 7 
)
Another choice is the Caputo definition

C a D α t x(t) = 1 Γ(n -α) t a (t -τ ) n-1-α d dτ n x(τ ) dτ . (8) 
In both cases, (n -1) < α < n.

Actually, the two definitions only differ in the consideration of conditions at the start of the interval:

a D α t x(t) = C a D α t x(t) + 1 Γ (n -α) n-1 k=0 Γ(n -α) Γ(k -α + 1) (t -a) k-α x (k) (a) . (9) 
In the applications, D practically always means 0 D t , and most authors use the Riemann-Liouville, or the mathematically equivalent Grünwald-Letnikov definition (see [START_REF] Podlubny | Fractional differential equations[END_REF] for precise conditions of equivalence). Also, since the Riemann-Liouville definition has a singularity for non-zero initial conditions, the initial conditions are often considered zero. For a physical interpretation of this singularity, see [START_REF] Heymans | Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives[END_REF].

The composition (5) can be extended to an integral and a derivative:

D -p D q x(t) = D q D -p x(t) = D q-p x(t) , (10) 
with p, q ≥ 0 and a continuous x(t). (However, the composition of two fractional order derivatives is not straightforward.)
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The decomposition method has been elaborated by George Adomian in the late 1980s, originally for non-linear differential equations. However, as mentioned in the introduction, it has also been used by several authors for fractional differential equations [START_REF] Wang | Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method[END_REF][START_REF] Daftardar-Gejji | Adomian decomposition: a tool for solving a system of fractional differential equations[END_REF][START_REF] Ray | Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian decomposition method[END_REF][START_REF] Daftardar-Gejji | Solving a multi-order fractional differential equation using Adomian decomposition[END_REF][START_REF] Daftardar-Gejji | Solving multi-term linear and nonlinear diffusion-wave equations of fractional order by Adomian decomposition method[END_REF][START_REF] Shawagfeh | Analytical approximate solutions for nonlinear fractional differential equations[END_REF][START_REF] Momani | A numerical scheme for the solution of multi-order fractional differential equations[END_REF]. As it will be also used in this paper, it is presented in the followings.

The method has been described very clearly in [START_REF] Chen | An algorithm for Adomian decomposition method[END_REF]. The non-linear differential equation is written as:

Lx(t) + Rx(t) + Nx(t) = f (t) , ( 11 
)
where L is a linear operator which can be inverted easily, R is the remaining linear part and N is a non-linear operator. The function x(t) is derived as a series expansion:

x(t) = x 0 (t) + x 1 (t) + x 2 (t) + . . . , (12) 
using

x 0 (t) = L -1 Lx(t) -x(t) + L -1 f (t) (13) 
and

x n+1 (t) = -L -1 Rx n (t) -L -1 A n (t) (14) 
with

A n (t) = 1 n! d n dλ n N ∞ i=0 λ i x i (t) λ=0 . ( 15 
)
It has been proven recently by Hu, Luo and Lu [START_REF] Hu | Analytical solution of the linear fractional differential equation by Adomian decomposition method[END_REF] that for any linear fractional differential equation, the solution given by the decomposition method converges to the analytical solution. Thus, Adomian decomposition is an adequate tool for solving such equations. In the followings, it will be shown that it can be very efficient, too.
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Known solutions

This section presents solutions for the fractionally damped vibration equation (Section 2.1) which are well-established in the literature, and will be used here as reference solutions.

3.1. Analytical solution for α = 1/2

Suarez and Shokooh [START_REF] Suarez | An eigenvector expansion method for the solution of motion containing fractional derivatives[END_REF] calculate the analytical solution of Equation ( 2)

for the special case α = 1/2, both for a free vibration and a step function excitation. For the former, they obtain

x IC (t) = 4 j=1 Ψ 4j R j 1 √ πt + 4 j=1 Ψ 4j R j λ j g j (t) , (16) 
where

g j (t) = e λ 2 j t 1 + erf λ j √ t (17) 
and λ j and Ψ j are the solution of the eigenproblem

AΨ j = λ j BΨ j (18) 
with

A = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 -ω 2 n ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ and B = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 2ηω 3/2 n ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
, and Ψ 4j is the 4th coordinate of the jth eigenvector. In the above,

erf(x) = 2 √ π x 0 e -t 2 dt
is the error function, and R j comes from the initial conditions, by

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ R 1 R 2 R 3 R 4 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ = Ψ 1 Ψ 2 Ψ 3 Ψ 4 -1 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ v 0 0 x 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . ( 19 
)
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The response to a step function force (using the Heaviside function H(t))

f (t) = f 0 H(t) ,
where X 0 and V 0 are considered zero, is

x H (t) = f 0 4 j=1 Ψ 2 4j λ j (g j (t) -1) . ( 20 
)
For an arbitrary function f (t) and arbitrary initial conditions, the proposal of Suarez and Shokooh is to consider the initial conditions according to the above. As for the force, they suggest discretising the function and handling it as a series of step loads, one in each time step. However, with this method, the time history integral of the fractional derivative is replaced by a sum of displacement responses to step loads, which seems actually slower to calculate.

Grünwald-Letnikov formulation

It is common in the literature, especially in applications, to use the Grünwald-Letnikov definition of a fractional derivative [START_REF] Podlubny | Fractional differential equations[END_REF]:

D α f (t) = lim N →∞ ⎡ ⎣ t N -α N -1 j=0 Γ(j -α) Γ(-α) Γ(j + 1) f t -j t N ⎤ ⎦ . (21) 
This, along with any time stepping scheme, allows to find a numerical solution for Equation [START_REF] Podlubny | Fractional differential equations[END_REF]. For simplicity, an explicit scheme has been used for time stepping in this paper:

v i+1 = v i + a i h (22) 
and

x i+1 = x i + v i h + a i h 2 2 , ( 23 
)
where

a i = f i - k m x i - c m h -α Γ(-α) i-1 j=0 Γ(j -α) Γ(j + 1) x i-j-1 , (24) 
h being the time step size and f i being the force per unit mass at t = ih.
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In this section, new solutions will be presented: first, an accurate and efficient series expansion, which is proposed for use; second, an analytical solution using the Adomian decomposition method as reference solution.

Proposed method: Taylor-Adomian series

The main goal of this paper is to propose a method for efficient calculation of the numerical solution of Equation ( 1) with non-zero initial conditions. In the followings, this method will be presented.

Description

In the proposed calculation method, Adomian decomposition is used, separately for initial conditions (starting displacement and velocity) and for the excitation. This can be done, as the differential operator defined in Section 2.3 is linear. The excitation is written in terms of Taylor series, and the resulting method will be referred to as Taylor-Adomian series.

For our equation, a possible choice is

L = D 2 , R = c m D α + k m and N = 0.
In this case, conforming to Equations ( 13) and ( 14),

x 0 (t) = D -2 D 2 x(t) -x(t) + D -2 f (t) (25) 
and

x n+1 (t) = - k m D -2 x n (t) - c m D α-2 x n (t) , (26) 
the latter leading to

x n (t) = (-1) n m n n j=0 n j c n-j k j D -((2-α)n+αj) x 0 (t) (27) 
using the composition property [START_REF] Cortés | Homogenised finite element for transient dynamic analysis of unconstrained layer damping beams involving fractional derivative models[END_REF] of an integral and a derivative operator.
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In Equation [START_REF] Momani | Numerical approach to differential equations of fractional order[END_REF], the first term describes the contribution of initial conditions:

x IC 0 (t) = D -2 D 2 x(t) -x(t) = X 0 + V 0 t, (28) 
where X 0 and V 0 are the initial position and velocity, respectively. With Equations ( 27) and ( 6), one can write

x IC n (t) = (-1) n m n t (2-α)n n j=0 n j c n-j k j t jα X 0 Γ(2n + 1 -(n -j) α) + V 0 t Γ(2n + 2 -(n -j) α) . ( 29 
)
This result has also been obtained by Baclic and Atanackovic [START_REF] Baclic | Stability and creep of a fractional derivative order viscoelastic rod[END_REF] using Laplace transformation.

The second term of Equation [START_REF] Momani | Numerical approach to differential equations of fractional order[END_REF] gives the response of the system to the excitation:

x f 0 (t) = D -2 f (t) . ( 30 
)
Suppose an excitation of the form of the Taylor series

f (t) = ∞ i=0 T i t i , (31) 
T i s being the coefficients of the polynomial. This, together with Equations ( 30) and ( 6), leads to

x f 0,i (t) = T i Γ(i + 1) Γ(i + 3) t i+2 (32) 
and

x f n,i (t) = T i (-1) n m n Γ(i + 1) t i+(2-α)n+2 n j=0 n j c n-j k j Γ(i + 3 + 2n -(n -j) α) t jα , (33) 
x f n,i (t) being the nth term of the Adomian series of the response to the ith term of the Taylor series of the excitation. The total response is

x f (t) = ∞ n=0 ∞ i=0 x f n,i (t) . (34) 
Thus, the solution of Equation ( 1) has been given.

A c c e p t e d m a n u s c r i p t

Technical considerations

The implementation of the method raises several questions. First, this is a double series expansion, which means that both the number of terms in the Taylor series and the number of terms in the Adomian series have to be defined. Moreover, Equations ( 29) and [START_REF] Heymans | Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives[END_REF] show that terms t jα become large for a relatively small t, which means a need for computing the difference of large numbers. Thus, the evaluation of x(t) requires a computational precision better than usual.

In the calculation code prepared for this paper, the number of terms is increased dynamically throughout the calculation, based on error estimations from the next n inc terms of the series: if the sum of the next n inc terms is larger than a small limit ('error goal'), then the number of terms is increased by n inc , and the error estimation will be based on the following n inc terms. This is applied separately for both series.

Another point is the required computational effort. The first two terms of the sum in Equation ( 29) give

x IC (t) = X 0 +V 0 t- c m X 0 Γ(3 -α) t 2-α - k m X 0 Γ(3) t 2 - c m V 0 Γ(4 -α) t 3-α - k m V 0 Γ(4) t 3 ±. . . (35) 
This shows that the exponent of t in the series expansion is either an integer or a real number, the latter being computationally expensive. However, if α is restricted to be rational, as α = p q with p and q both integers, the right-hand side of Equation ( 35) becomes a polynomial for t 1/q :

x IC (t) = X 0 + V 0 t 1/q q - c m X 0 Γ(3 -α) t 1/q 2q-p - k m X 0 Γ(3) t 1/q 2q - c m V 0 Γ(4 -α) t 1/q 3q-p - k m V 0 Γ(4) t 1/q 3q ± . . . (36) 
This can be computed efficiently.
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Examples

Step function excitation. For an excitation with the Heaviside function H(t)

of the form

f (t) = f 0 H(t) ,
solved by Suarez and Shokooh [START_REF] Suarez | An eigenvector expansion method for the solution of motion containing fractional derivatives[END_REF] for α = 1/2, only T 0 is non-zero of the

T i s, resulting in x f n (t) = f 0 (-1) n m n t (2-α)n+2 n j=0 n j c n-j k j Γ(3 + 2n -(n -j) α) t jα . ( 37 
)
This has also been obtained by Saha Ray, Poddar and Bera [START_REF] Ray | Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian decomposition method[END_REF] for α = 1/2 using Adomian decomposition (with a slightly different selection for L, R, and N).

Sine excitation. For a sine excitation of the form

f (t) = f 0 sin(ω e t) ,
the Taylor coefficients are

T i = ⎧ ⎪ ⎨ ⎪ ⎩ 0 i f i is even (-1) (i-1)/2 f 0 ω i e i! if i is odd . Using i = 2h + 1 gives T h = (-1) h ω 2h+1 e (2h + 1)! ,
which, inserted into Equation ( 33), leads to

x f n,h (t) = f 0 (-1) n+h m n ω 2h+1 e t (2-α)n+3+2h n j=0 n j c n-j k j Γ(4 + 2 (n + h) -(n -j) α) t jα , ( 38 
)
also using the property

Γ(n + 1) = n!
of the Gamma function.
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Equation [START_REF] Atanackovic | An expansion formula for fractional derivatives and its application[END_REF] gives the nth term of the Adomian series of x(t) if the original differential equation is Equation [START_REF] Podlubny | Fractional differential equations[END_REF]. For a sine excitation

f (t) = f 0 sin(ω e t) ,
this yields to

x n (t) = (-1) n m n n j=0 n j c n-j k j D -((2-α)n+αj) D -2 f 0 sin(ω e t) .
Using the definition (3) of the integral operator, one obtains

x 0 (t) = t 0 (t -τ ) sin(ω e τ ) dτ = 1 ω 2 e
(ω e tsin(ω e t)) .

(39)

This leads to

x n (t) = (-1) n m n f 0 ω 2 e n j=0 n j c n-j k j 1 Γ(q) t 0 (t -τ ) q-1 (ω e τ -sin(ω e τ )) dτ , (40) 
where

q = (2 -α) n + αj.
This results in

x n (t) = (-1) n m n f 0 ω 2 e n j=0 n j c n-j k j 1 Γ(q + 2) √ t ω 1/2-q e s 3/2+q,1/2 (ω e t) , (41) 
for n > 0, where s μ,ν (t) is the Lommel-function [START_REF] Weisstein | From MathWorld -A Wolfram Web Resource[END_REF] 

s μ,ν (t) = 1 F 2 1; 1 2 (μ -ν + 3) , 1 2 (μ + ν + 3) ; - 1 4 t 2 t μ+1 (μ + 1) 2 -ν 2 with 1 F 2 (a 1 ; b 1 , b 2 ; t) being the hypergeometric function 1 F 2 (a 1 ; b 1 , b 2 ; t) = ∞ k=0 (a 1 ) k (b 1 ) k (b 2 ) k t k k! , where (a) k is the Pochhammer symbol (a) k = Γ(a + k) Γ(a) .
This can be calculated numerically by any computer algebra system.

To the author's knowledge, this solution has not been calculated in the literature before.
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Numerical examples

So far, existing (Section 3) and new (Section 4) methods for the solution of the fractionally damped vibration equation have been presented. In this section, they will be tested and compared for some parameter sets.

Software

First, some details are given on software used for the calculations.

The code for the Taylor-Adomian series is written in C. The computational precision is assured by the GNU Multiple precision library [START_REF]GNU multiple precision arithmetic library[END_REF] and one of its derivatives, MPFR [START_REF] Fousse | MPFR: A multiple-precision binary floating-point library with correct rounding[END_REF].

The Grünwald-Letnikov formulation is also implemented in C, but it uses the conventional double-precision arithmetics.

The analytical solution of Suarez and Shokooh (described in Section 3.1) has been calculated using the Maple computer algebra system.

Also, for the analytical solution described in Section 4.2, the Maple computer algebra system has been used with Equations ( 12), ( 29) and (41). Precision was higher than double precision, usually 50 or 75 decimal digits have been set. The run-time increase of the number of Adomian terms, described for the Taylor-Adomian method, has also been used here, with an error goal of 10 -25 for ten terms.

Problems and results

In the followings, numerical examples and their results will be presented and compared. For the latter purpose, let us introduce an absolute error indicator ε as

ε = 1 N N i=1 x num i -x ref i .
Six problems have been analysed, two using a unit step force and four with a harmonic excitation. Table 1 resumes the parameters of the different examples. They lead to steady-state amplitudes between 0.012 and 0.021.
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The treated time interval is from 0 to 5 seconds. With the Taylor-Adomian method, 10 000 values of x(t) have been calculated for each problem. The floating-point precision was adjusted by hand as the required error level needed it; it was either 128 or 192 bits for all calculations on this time interval.

5.2.1. Derivative of order 1/2, step function excitation (problems 1u and 2u)

Here, the reference solution is from Suarez and Shokooh (Section 3.1), and the same numerical parameters have been used as in [START_REF] Suarez | An eigenvector expansion method for the solution of motion containing fractional derivatives[END_REF] to reproduce the same results (Figure 1). Here, and in the followings, only the reference solutions are plotted; other solutions are very near when not practically identical to them.

Figure 2 shows the error indicator ε and the elapsed CPU time for the two problems. It is immediate to see that, for the same computational effort, the Taylor-Adomian method offers a much greater precision. (However, an engineering precision is assured by any of the methods.)

The difference of the calculation times for the Taylor-Adomian method comes from the difference of numerical conditions (mostly, the dissipation factor η), which require different numbers of terms in the Adomian series.

As one would expect, the calculation times of the method based on the Grünwald-Letnikov formulation were not affected by the numerical parameters.

5.2.2. Derivative of order 1/2, harmonic excitation (problems 1 and 2)

Here, the reference solution is the solution by Adomian decomposition (Section 4.2). Results are shown in Figure 3.

Error indicators and CPU times are shown in Figure 4. Observations are the same as above: for a calculation time of the 10-second order, the Taylor-Adomian method is much more precise than the scheme with the Results are shown in Figure 5, while Figure 6 shows the values of the error indicator and CPU times. It is immediate to see the same as before:

the Taylor-Adomian method is clearly much more precise while keeping the calculation time low.

Simulating a longer time interval

As seen above, the terms of Equations ( 29) and ( 33) become very large as t increases. It is easy to see that a major limitation of the Taylor-Adomian method will be this property: beyond a certain interval length, a huge number of terms are required, which increases the calculation time horrendously.

To check the extents of this phenomenon, calculations have been run

with the Taylor-Adomian method up to the end of the transient, but at least to t = 25, with 200 calculated points per time unit. The error goal was 10 -10 . Figure 7 shows elapsed CPU time versus simulated time. The points are at the end of the transient period, which is considered to be the end of the last period of excitation for which the error indicator 1 N N i=1

x ix steady i is above 1% of the steady-state amplitude.

It is immediate to see that problems 1 and 3, i.e. the highly damped equations settle very fast, and their CPU time for a very high precision is in the order of some or some 10 seconds. Even problem 2 settles within a CPU time of less than 10 minutes on an average 64-bit system. Contrarily, the

A c c e p t e d m a n u s c r i p t

transient of problem 4 required somewhat more than 6 hours to calculate on the same computer. This shows that the presented Taylor-Adomian method may be very efficient for the accurate solution of the fractionally damped vibration equation, especially when damping is not very weak.

Conclusion

In this paper, the main goal was to present a method to solve the fractionally damped, inhomogeneous 1-DOF vibration equation with initial conditions. The Taylor-Adomian method has been proposed and tested on stepfunction excited and harmonically excited cases. It has proven very efficient in calculating the solution for a reasonably long time interval, practically with an arbitrarily low error. This makes the method immediately usable in providing quick reference results for other methods. The engineering application may be limited, however, due to the necessity of high-precision arithmetics and the fast increase of calculation time as the simulated time interval gets longer.

Moreover, the analytical solution of the same equation (with a harmonic excitation) has been calculated by the Adomian decomposition method.

This solution served as a reference for the Taylor-Adomian method. 
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 523 Derivative of order 1/5, harmonic excitation (problems 3 and 4)To leave derivatives of order 1/2, another value has been chosen for α. The reference solution for these problems is the solution by Adomian decomposition (Section 4.2).

A c c e p t e d m a n u s c r i p t A c c e p t e d m a n u s c r i p t A c c e p t e d m a n u s c r i p tFigure 1 :

 1 Figure 1: Solution curves for problems 1u and 2u.

Figure 2 :

 2 Figure 2: Comparison of methods for problems 1u and 2u (α = 1/2, step function excitation).
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 3 Figure 3: Solution of problems 1 and 2.
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 4 Figure 4: Comparison of methods for problems 1 and 2 (α = 1/2, harmonic excitation).
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 5 Figure 5: Solution of problems 3 and 4.
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 6 Figure 6: Comparison of methods for problems 3 and 4 (α = 1/5, harmonic excitation).
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 72317273747576777 Figure 7: Calculation times for longer time intervals.
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