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By means of coincidence degree theory and Mawhin's continuation theorem, a theoretical proof is given for the existence of oscillatory solutions of the simplified dynamical system which governs the motion around the center of mass in a longitudinal flight with constant forward velocity of a rigid aircraft, when the automatic flight control system is decoupled.

Introduction

Interest in oscillation susceptibility of aircrafts has been generated by the crashes of high-performance fighter airplanes such as YF-22A and B-2, due to oscillations that were not predicted during the aircraft development process [START_REF] Mehra | Bifurcation and limit cycle analysis of nonlinear pilot induced oscillations[END_REF].

Flight quality criteria for oscillation prediction are based on linear analysis and quasi-linear extensions [START_REF]Unified pilot induced oscillation theory[END_REF]. However, these criteria cannot, in general, predict the presence or the absence of oscillations, because of the large variety of nonlinear phenomena that have been identified as factors contributing to oscillations and which are neglected in the linear approach. Sources of these factors include pilot behavioral transitions, actuator rate limiting [START_REF] Kish | A limit flight test investigation of pilot induced oscillation due to rate limiting[END_REF][START_REF] Klyde | Pilot induced oscillation analysis and prediction with actuator rate limiting[END_REF][START_REF] Mehra | Global stability and control analysis of aircraft at high angles of attack[END_REF] and changes in aircraft dynamics caused by transitions in operating conditions [START_REF] Ionita | Delay induced oscillations[END_REF],

gain scheduling and mode switching [START_REF] Shama | Guaranteed properties of gain schedule control for linear parameter varying plants[END_REF]. The analysis of non-linear oscillations
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involves the computation of nonlinear phenomena including Hopf bifurcation that lead sometimes to large changes in the stability of the pilot-vehicle-system [START_REF] Mehra | Bifurcation and limit cycle analysis of nonlinear pilot induced oscillations[END_REF].

More recently, theoretical bifurcation studies have been undertaken for longitudinal flight dynamics, using the elevator deflection and mass of the vehicle as bifurcation parameters [START_REF] Liaw | Analysis of longitudinal flight dynamics: A bifurcationtheoretic approach[END_REF][START_REF] Liaw | Two-parameter bifurcation analysis of longitudinal flight dynamics[END_REF][START_REF] Pereira | On nonlinear dynamics and an optimal control design to a longitudinal flight[END_REF]. The occurrence of saddle-node and Hopf bifurcations has been pointed out in the case of the F-8 aircraft, and it has been emphasized that these bifurcations may result in jump behavior and pitch oscillations of flight dynamics. Moreover, system controllability with respect to the variation of the elevator deflection angle has been discussed in [START_REF] Pereira | On nonlinear dynamics and an optimal control design to a longitudinal flight[END_REF][START_REF] Liaw | Control design for longitudinal flight dynamics[END_REF].

However, these bifurcation studies can only explain locally the appearance of oscillatory behavior (associated with supercritical Hopf bifurcations), and they do not represent a tool for understanding the global nature of longitudinal flight dynamics. More precisely, a supercritical Hopf bifurcation that occurs at the critical value δ e of the elevator deflection, can only explain the appearance of asymptotically stable limit cycles for values of δ e close to the critical value δ e , i.e. for δ e in a neighborhood of the form (δ eε, δ e ) or (δ e , δ e + ε).

Nevertheless, Hopf bifurcations are not the only type of bifurcation phenomena leading to oscillatory behavior. In [START_REF] Balint | Oscillation susceptibility analysis along the path of longitudinal flight equilibriums[END_REF][START_REF] Kaslik | Numerical analysis of the oscillation susceptibility along the path of longitudinal flight equilibria of a reentry vehicle[END_REF], it has been shown that in a longitudinal flight with constant forward velocity, equilibria exist for the AD-MIRE aircraft and the ALFLEX reentry vehicle only if the elevator deflection δ e belongs to a closed and bounded interval J. When the elevator deflection is at the boundary of the interval J, a countable infinity of saddle-node bifurcation points is present. When the elevator deflection exceeds these critical values and is outside the interval J, numerical simulations show that the angle of attack and pitch rate oscillate with the same period, while the pitch angle increases or decreases infinitely. Hence, the orbit of the system is spiraling.

In this paper, by means of coincidence degree theory and Mawhin's continuation theorem, a theoretical proof is given for the existence of oscillatory solutions of the simplified dynamical system which governs the motion around the center of gravity in a longitudinal flight with constant forward velocity of a rigid outside the interval which corresponds to the existence of equilibria.

Preliminary results

The simplified system of differential equations which governs the motion around the center of gravity in a longitudinal flight with constant forward velocity of a rigid aircraft (assuming that the angle of attack α is small), when the automatic flight control system is decoupled, is given by:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ α = a 11 (α -α 0 ) + q + g V (cos θ -cos θ 0 ) + b 1 (δ e -δ e0 ) q = a 21 (α -α 0 ) + a 22 q + b 2 (δ e -δ e0 ) θ = q (1)
In this system, the state parameters are: angle of attack α, pitch rate q and Euler pitch angle θ. The control parameter is the elevator angle δ e . V is the forward velocity of the vehicle, considered constant, and g is the gravitational acceleration. The constants α 0 , θ 0 and δ e0 represent the trim angle of attack, trim pitch angle and trim elevator angle, respectively. The appendix contains the formulas for all the parameters appearing in system [START_REF] Mehra | Bifurcation and limit cycle analysis of nonlinear pilot induced oscillations[END_REF] and their numerical values corresponding to the ALFLEX reentry vehicle [START_REF] Goto | Bifurcation analysis for the control of a reentry vehicle[END_REF][START_REF] Goto | Bifurcation analysis for the inertial coupling problem of a reentry vehicle[END_REF][START_REF] Goto | Problems of analysis methods for studying nonlinear flight dynamics[END_REF].

A detailed description of how to derive system (1) from the general system of differential equations [START_REF] Etkin | Dynamics of Flight: Stability and Control[END_REF][START_REF] Cook | Flight Dynamics Principles[END_REF] which describes the motion around the center of gravity of a rigid aircraft, with respect to an xyz body-axis system, where xz is the plane of symmetry, has been presented in [START_REF] Balint | Oscillation susceptibility analysis along the path of longitudinal flight equilibriums[END_REF].

The following notations will be used throughout the paper:

τ = -a 11 -a 22 δ = a 11 a 22 -a 21 γ = (a 21 b 1 -a 11 b 2 )(δ e -δ e0 ) -a 21 g V cos θ 0 ε = -a 21 g V
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The following assumption is taken into consideration:

(A) τ > 0 , δ > 0 , τ 2 > 4δ
One can easily verify that this assumption is fulfilled in the case of the numerical data presented in the appendix.

The following proposition addresses the existence of equilibrium states for system [START_REF] Mehra | Bifurcation and limit cycle analysis of nonlinear pilot induced oscillations[END_REF].

Proposition 1. Consider Λ = ga21 V (a11b2-a21b1
) and let J be the closed interval

J = ⎧ ⎨ ⎩ [δ e0 -Λ(1 + cos θ 0 ), δ e0 + Λ(1 -cos θ 0 )] , if Λ > 0 [δ e0 + Λ(1 -cos θ 0 ), δ e0 -Λ(1 + cos θ 0 )] , if Λ < 0 a.
If δ e / ∈ J then, for system (1), there are no equilibria corresponding to δ e .

b. If δ e ∈ J then, for system (1), there exists a countable infinity of equilibria corresponding to δ e , namely, for any n ∈ Z:

α ± n = α 0 - b 2 a 21 (δ e -δ e0 ) , q ± n = 0 , θ ± n = 2nπ ± arccos cos θ 0 + 1 Λ (δ e -δ e0 ) T
When δ e ∈ ∂J, then the equilibria corresponding to δ e are saddle-node bifurcation points.

Proof. The equilibrium states of system (1) are the solutions of the following algebraic system:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ a 11 (α -α 0 ) + q + g V (cos θ -cos θ 0 ) + b 1 (δ e -δ e0 ) = 0 a 21 (α -α 0 ) + a 22 q + b 2 (δ e -δ e0 ) = 0 q = 0
Hence, (α, q, θ) T is an equilibrium state of system (1) if and only if q = 0 and α and θ satisfy:

⎧ ⎨ ⎩ a 11 (α -α 0 ) + g V (cos θ -cos θ 0 ) + b 1 (δ e -δ e0 ) = 0 a 21 (α -α 0 ) + b 2 (δ e -δ e0 ) = 0
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From the second equation we obtain that α = α 0 -b2 a21 (δ eδ e0 ), and by eliminating α from the first equation, we have In the followings, we will investigate the case when the control parameter δ e is at the boundary of the interval J. If (α, q, θ) T is an equilibrium state corresponding to δ e = δ e0 -Λ(1 + cos θ 0 ), then there exists n ∈ Z such that θ = (2n+1)π. On the other hand, if (α, q, θ) T is an equilibrium state corresponding

cos θ = cos θ 0 + 1 Λ (δ e -δ e0 ) As cos θ ∈ [-1, 1],
to δ e = δ e0 + Λ(1cos θ 0 ), then there exists n ∈ Z such that θ = 2nπ. The jacobian matrix of system (1) at all these equilibrium states is

⎛ ⎜ ⎜ ⎜ ⎝ a 11 1 0 a 21 a 22 0 0 1 0 ⎞ ⎟ ⎟ ⎟ ⎠
Hence, it is clear that the jacobian matrix has one zero eigenvalue, and the other two eigenvalues are the roots of the equation λ 2 + τλ + δ = 0. Therefore, it is easy to see that the equilibria corresponding to δ e ∈ ∂J are saddle-node bifurcation points.

Lemma 1. If (α(t), q(t), θ(t)) T is a solution of system (1), then θ(t) is the solution of the following third order differential equation:

...

θ (t) + τ θ(t) + δ θ(t) = γ -ε cos θ(t) ( 2 ) 
Viceversa, if θ(t) is a solution of (2) then (α(t), q(t), θ(t)) T , where

α(t) = α 0 + 1 a 21 [ θ(t) -a 22 θ(t) -b 2 (δ e -δ e0 )] and q(t) = θ(t),
is a solution of system [START_REF] Mehra | Bifurcation and limit cycle analysis of nonlinear pilot induced oscillations[END_REF].

A c c e p t e d m a n u s c r i p t

Proof. If (α(t), q(t), θ(t)) T is a solution of system (1), taking into account that θ(t) = q(t), from the second equation of (1) we obtain:

θ(t) = a 21 (α(t) -α 0 ) + a 22 θ(t) + b 2 (δ e -δ e0 )
From here, we can express α with respect to θ as follows:

α(t) = α 0 + 1 a 21 θ(t) -a 22 θ -b 2 (δ e -δ e0 )
From here, computing α(t) and replacing α(t) and α(t) in the first equation of ( 1) and making all the necessary simplifications, leads us to equation ( 2).

Viceversa, if θ(t) is a solution of ( 2), it can be verified by straightforward computations that (α(t), q(t), θ(t)) T , where

α(t) = α 0 + 1 a 21 [ θ(t) -a 22 θ(t) -b 2 (δ e -δ e0 )] and q(t) = θ(t),
is a solution of system (1).

Remark 1. Proposition 1 translates into the following necessary and sufficient condition for the existence of equilibrium states for both (1) and ( 2):

|γ| ≤ |ε|

At γ = ±ε, saddle-node bifurcations occur.

Definition 1. We say that θ(t) is a monotonic oscillatory solution of equation (2) if the derivative θ(t) is a strictly positive or strictly negative periodic function.

In this paper, we will show that if γ > |ε| then equation ( 2) has at least one increasing oscillatory solution. In a similar way, we will show that if γ < -|ε| then equation ( 2) has at least one decreasing oscillatory solution. However, before proceeding to the proof of the main results, we will give some useful preliminary lemmas.

Lemma 2. (a) If there exists an increasing oscillatory solution θ(t) of ( 2), such that T > 0 is the period of θ(t), then there exists n ∈ N such that θ(t + T ) =
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θ(t) + 2nπ and there exists a 2nπ-periodic solution x(s) of the equation Proof. (a) Assume that there exists an increasing oscillatory solution θ(t) of ( 2), such that θ(t) is T -periodic. From (2) we deduce that cos(θ(t + T )) = cos(θ(t)), and hence, there exists n ∈ N such that θ(t + T ) = θ(t) + 2nπ.

x (s) = 2x (s) 2 -τx (s)e x(s) + δe 2x(s) -(γ -ε cos s)e 3x(s) (3) 
The function θ : R → R is a strictly increasing bijection. The inverse function ψ = θ -1 is also strictly increasing and therefore, we can define x(s) = ln ψ(s).

As θ(t+T ) = θ(t)+2nπ, making t = ψ(s) in this equation, and then applying

ψ, we obtain ψ(s + 2nπ) = ψ(s) + T . Hence, x(s) is 2nπ-periodic. Moreover,
we can easily see that

2nπ 0 e x(s) ds = ψ(2nπ) -ψ(0) = T .
By successive differentiation, taking into account that θ(ψ(s)) = s, we obtain:

θ(ψ(s)) = 1 ψ(s) = e -x(s) θ(ψ(s)) = - 1 ψ(s) x (s)e -x(s) = -x (s)e -2x(s) ... θ (ψ(s)) = - 1 ψ(s) [x (s) -2x (s) 2 ]e -2x(s) = [2x (s) 2 -x (s)]e -3x(s)
Making t = ψ(s) in (2) and using the equations from above, we finally obtain that x(s) is a solution of (3).

(b) Suppose that equation ( 3) has a 2nπ-periodic solution x(s). Consider θ 0 ∈ R. It can be easily seen that the function ψ : R → R defined by

ψ(s) = s θ 0 e x(u) du
is strictly increasing and bijective. Consider the inverse function θ = ψ -1 : R → R which is also strictly increasing. One has

θ(t) = 1 ψ(θ(t)) = e -x(θ(t)) > 0 A c c e p t e d m a n u s c r i p t θ(t) = -θ(t)x (θ(t))e -x(θ(t)) = -x (θ(t))e -2x(θ(t))
...

θ (t) = -θ(t)x (θ(t))e -2x(θ(t)) + 2 θ(t)x (θ(t)) 2 e -2x(θ(t)) = [2x (θ(t)) 2 -x (θ(t))]e -3x(θ(t))
Hence ...

θ (t) + τ θ(t) + δ θ(t) = e -3x(θ(t)) [2x (θ(t)) 2 -x (θ(t)) -τx (θ(t))e x(θ(t)) + δe 2x(θ(t)) ] = = γ -ε cos θ(t)
so θ(t) is a solution of (2). Moreover, as x(s) is 2nπ-periodic, it follows that

ψ(s + 2nπ) = s+2nπ θ 0 e x(u) du = θ 0 +2nπ θ 0 e x(u) du + s+2nπ θ 0 +2nπ e x(u) du = = 2nπ 0 e x(u) du + s θ 0 e x(u) du = ψ(s) + T where T = 2nπ 0 e x(u) du. Making s = θ(t) in the equality ψ(s+2nπ) = ψ(s)+T ,
we get ψ(θ(t) + 2nπ) = t + T and applying θ to this equality, we obtain:

θ(t + T ) = θ(t) + 2nπ
Therefore, we obtain that θ is a strictly positive T -periodic function and hence, θ(t) is an increasing oscillatory solution of (2).

Therefore, in order to prove that equation ( 2) has an increasing oscillatory solution, it is sufficient to prove that there exists a 2nπ-periodic solution of equation (3).

Remark 2. Denoting x 1 = x and x 2 = τe -xx e -2x , equation ( 3) is replaced by the system:

⎧ ⎨ ⎩ x 1 (s) = τe x1(s) -x 2 (s)e 2x1(s) x 2 (s) = (γ -ε cos s)e x1(s) -δ (4) 
Hence, in order to show that equation ( 2) has an increasing oscillatory solution, it is sufficient to study the existence of a 2nπ-periodic solution for the system (4).
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Lemma 3. (a) If there exists a decreasing oscillatory solution θ(t) of ( 2), such that T > 0 is the period of θ(t), then there exists n ∈ N such that θ(t + T ) = θ(t) -2nπ and there exists a 2nπ-periodic solution x(s) of the equation Proof. (a) Assume that there exists a decreasing oscillatory solution θ(t) of ( 2), such that θ(t) is T -periodic. From (2) we deduce that cos(θ(t + T )) = cos(θ(t)), and hence, there exists n ∈ N such that θ(t

x (s) = 2x (s) 2 + τx x(s)e x(s) + δe 2x(s) + (γ -ε cos s)e 3x(s) (5 
+ T ) = θ(t) -2nπ.
The function θ : R → R is a strictly decreasing bijection. The inverse function ψ = θ -1 is also strictly decreasing and therefore, we can define x(s) = ln(-ψ(s)).

As θ(t+T ) = θ(t)-2nπ, making t = ψ(s) in this equation, and then applying ψ, we obtain ψ(s -2nπ) = ψ(s) + T . Hence, x(s) is 2nπ-periodic. Moreover, we can easily see that 

θ(ψ(s)) = 1 ψ(s) = -e -x(s) θ(ψ(s)) = 1 ψ(s) x (s)e -x(s) = -x (s)e -2x(s) ... θ (ψ(s)) = - 1 ψ(s) [x (s) -2x (s) 2 ]e -2x(s) = [x (s) -2x (s) 2 ]e -3x(s)
Making t = ψ(s) in (2) and using the equations from above, we finally obtain that x(s) is a solution of (5). = -e -x(θ(t)) < 0 θ(t) = θ(t)x (θ(t))e -x(θ(t)) = -x (θ(t))e -2x(θ(t))

...

θ (t) = -θ(t)x (θ(t))e -2x(θ(t)) + 2 θ(t)x (θ(t)) 2 e -2x(θ(t)) = [x (θ(t)) -2x (θ(t)) 2 ]e -3x(θ(t))
Hence ...

θ (t) + τ θ(t) + δ θ(t) = e -3x(θ(t)) [x (θ(t)) -2x (θ(t)) 2 -τx (θ(t))e x(θ(t)) -δe 2x(θ(t)) ] = = γ -ε cos θ(t)
so θ(t) is a solution of (2). Moreover, as x(s) is 2nπ-periodic, it follows that 

-ψ(s + 2nπ) =
θ(t + T ) = θ(t) -2nπ
Therefore, we obtain that θ is a negative T -periodic function and hence, θ(t) is a decreasing oscillatory solution of (2).

Therefore, in order to prove that equation (2) has a decreasing oscillatory solution, it is sufficient to prove that there exists a 2nπ-periodic solution of equation ( 5).

Remark 3. Denoting x 1 = x and x 2 = τe -x + x e -2x , equation ( 5) is replaced by the system:

⎧ ⎨ ⎩ x 1 (s) = -τe x1(s) + x 2 (s)e 2x1(s) x 2 (s) = (γ -ε cos s)e x1(s) + δ (6) 
Hence, in order to show the existence of a decreasing oscillatory solution of equation [START_REF]Unified pilot induced oscillation theory[END_REF], it is sufficient to study the existence of a 2nπ-periodic solution for the system (6)
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We introduce the following notations:

[f ] M = max s∈[0,2nπ] f (s), [f ] L = min s∈[0,2nπ] f (s),
where f is a continuous 2nπ-periodic function. The following result holds:

Lemma 4. If f is a smooth 2nπ-periodic function then [f ] M ≤ [f ] L + 1 2 2nπ 0 | ḟ (s)|ds
Proof. As f is a smooth 2nπ-periodic function, there exists ζ ∈ [0, 2nπ] and

η ∈ [ζ, ζ + 2nπ] such that [f ] L = f (ζ) and [f ] M = f (η).
On one hand, we have:

f (η) = f (ζ) + η ζ ḟ(s)ds ≤ f (ζ) + η ζ | ḟ (s)|ds
On the other hand:

f (η) = f (ζ + 2nπ) + η ζ+2nπ ḟ(s)ds ≤ f (ζ) + ζ+2nπ η | ḟ (s)|ds
Adding up the above inequalities, we obtain:

2f (η) ≤ 2f (ζ) + ζ+2nπ ζ | ḟ (s)|ds = 2f (ζ) + 2nπ 0 | ḟ(s)|ds which leads to [f ] M ≤ [f ] L + 1 2 2nπ 0 | ḟ (s)|ds.
The existence of 2nπ-periodic solutions of systems ( 4) and ( 6) is obtained via Mawhin's continuation theorem [START_REF] Mawhin | Equivalence theorems for nonlinear operator equations and coincidence degree theory[END_REF][START_REF] Gaines | Coincidence Degree and Nonlinear Differential Equations[END_REF], which is presented below.

Mawhin's continuation theorem

Let X, Y be two infinite dimensional Banach spaces. A linear mapping 

L : DomL ⊂ X → Y is

Existence of monotonic oscillatory solutions of (2)

4.1. Existence of an increasing oscillatory solution of (2) when γ > |ε| Theorem 6. If assumption (A) holds and γ > |ε|, then system (4) has at least one 2nπ-periodic solution. 

Proof. Consider X = Y = {x = (x 1 , x 2 ) T ∈ C(R, R 2 ) : x(s) = x(s + 2nπ)} and the norm x = max s∈[0,2nπ] |x 1 (s)| + max s∈[0,2nπ]
X = Y = KerL ⊕ KerP = ImL ⊕ ImQ Considering K P Q = L -1 P (I -Q) we obtain that K P Q y = s 0 y(u)du - 1 2nπ s 0 2nπ 0 y(v)dvdu
Using the fact that N takes bounded sets into bounded sets, we deduce that N is L-compact on Ω for any open bounded set Ω ⊂ X.

In the followings, we will prove that assumption (a) from Theorem 5 holds. Indeed, assume that x(s) = (x 1 (s), x 2 (s)) T ∈ DomL is a solution of the operator equation Lx = λN x for a certain λ ∈ (0, 1). Therefore, x(s) = (x 1 (s), x 2 (s)) T is a smooth 2nπ-periodic function satisfying

⎧ ⎨ ⎩ x 1 (s) = λ[τe x1(s) -x 2 (s)e 2x1(s) ] x 2 (s) = λ[(γ -ε cos s)e x1(s) -δ] (7) 
As x 1 and x 2 are continuous 2nπ-periodic functions, there exist

ζ i , η i ∈ [0, 2nπ] such that [x i ] L = x i (ζ i ) and [x i ] M = x i (η i ) for i ∈ {1, 2}
Integrating the second equation of system [START_REF] Shama | Guaranteed properties of gain schedule control for linear parameter varying plants[END_REF] on the interval [0, 2nπ] we obtain 
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Using (8), we obtain

[x 1 ] L ≤ ln δ γ ≤ [x 1 ] M (9) 
From ( 8) we also obtain 9) it results that

(γ -|ε|)
[x 2 ] L ≤ τγ δ ≤ [x 2 ] M (11) 
Using ( 8) we get As τ > 0, δ > 0 and τ 2 > 4δ it results that the equation z 2τz + δ = 0 has two positive real roots 0 < z 1 < z 2 .

We have shown that y(ζ 1 ) = 0. Assume that there exists ξ > ζ 1 such that

y(ξ) = z 1 and y(s) < z 1 for any s ∈ [ζ 1 , ξ). As ẏ(ξ) = -λ(γ -ε cos ξ)e 2x1(ξ) < 0
it follows that y is strictly decreasing in a neighborhood of ξ, which is absurd, because y(s) < z 1 = y(ξ) for any s ∈ [ζ 1 , ξ).

Hence, we have shown that y(s) < z 1 for any s ∈ R. It results that x 2 (s)e x1(s) > τz 1 = z 2 > 0 and therefore, x 2 (s) > 0 for any s ∈ R.
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Integrating the first equation of system [START_REF] Shama | Guaranteed properties of gain schedule control for linear parameter varying plants[END_REF] on the interval [0, 2nπ] we obtain Using ( 9) and ( 10), it follows that

[x 1 ] M ≤ [x 1 ] L + 1 2 2nπ 0 |x 1 (s)|ds < [x 1 ] L + τ 2nπ 0 e x1(s) ds ≤ ln δ γ + 2nπδτ γ -|ε| (13) 
and

[x 1 ] L ≥ [x 1 ] M - 1 2 2nπ 0 |x 1 (s)|ds > [x 1 ] M -τ 2nπ 0 e x1(s) ds ≥ ln δ γ - 2nπδτ γ -|ε| (14) 
More, as x 2 (s) > z 2 e -x1(s) for any s ∈ [0, 2nπ] it follows that

[x 2 ] L > z 2 e -[x1]M = z 2 γ δ e -2nπδτ γ-|ε| (15) 
We have obtained, based on inequalities ( 12)-( 15) that, if x(s) ∈ DomL is a solution of the operator equation Lx = λN x then, for any s ∈ R we have

ln δ γ - 2nπδτ γ -|ε| < x 1 (s) < ln δ γ + 2nπδτ γ -|ε| and z 2 γ δ e -2nπδτ γ-|ε| < x 2 (s) < τγ δ + 2nπδ
Therefore, considering the intervals

I 1 = ln δ γ - 2nπδτ γ -|ε| , ln δ γ + 2nπδτ γ -|ε| I 2 = z 2 γ δ e -2nπδτ γ-|ε| , τγ δ + 2nπδ
considering the open bounded set In order to check assumption (b) of Theorem 5, we observe that the equation

Ω = {x = (x 1 , x 2 ) T ∈ X : x 1 (s) ∈ I
QN x = 0 is equivalent to ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 2nπ 0 [τe x1(s) -x 2 (s)e 2x1(s) ]ds = 0 2nπ 0 (γ -ε cos s)e x1(s) ds = 2nπδ
The only solution of this system belonging to

KerL = R 2 is x = (x 1 , x 2 ) T = ln δ γ , τγ δ T ∈ Ω.
As for assumption (c) of Theorem 5, taking into account that ImQ = KerL = R 2 , we can chose the isomorphism J = Id. Considering the func-

tion ϕ : R 2 → R 2 defined by ϕ = QN | KerL , we obtain that ϕ(x 1 , x 2 ) = ⎡ ⎣ τe x1 -x 2 e 2x1 γe x1 -δ ⎤ ⎦ As ϕ(x) = 0 if and only if x = (x 1 , x 2 ) T = ln δ γ , τ γ δ T ∈ Ω, we evaluate det[J ϕ (x 1 , x 2 )] = γe 3x 1 = δ 3 γ 2 > 0
Hence the Brouwer degree is

deg B (JQN, Ω ∩ KerL, 0) = sign(det[J ϕ (x 1 , x 2 )]) = 1
In conclusion, there exists at least one 2nπ-periodic solution of system (4).

Therefore, the conclusion of this section can be summarized in the following Proposition:

Proposition 2.
If assumption (A) holds and γ > |ε|, then equation ( 2) has at least one solution θ(t) such that its derivative θ(t) is a positive periodic function (i.e. θ(t) is an increasing oscillatory solution). 

A c c e p t e d m a n u s c r i p t

Proof. Consider the same Banach spaces endowed with the same norm as in the proof of Theorem 6.

Define the linear mapping L :

DomL = X ∩ C 1 (R, R 2 ) → Y by Lx = x = (x 1 , x 2 ) T .
Consider the nonlinear mapping N : X → Y defined by

N x = ⎡ ⎣ -τe x1 + x 2 e 2x1 (γ -ε cos s)e x1 + δ ⎤ ⎦
In the same way as in the proof of Theorem 6, it follows that L is a Fredholm operator of index zero and N is L-compact on Ω, for any open bounded set Ω ⊂ X.

In the followings, we will prove that assumption (a) from Theorem 5 holds.

Indeed, assume that x(s) = (x 1 (s), x 2 (s)) T ∈ DomL is a solution of the operator equation Lx = λN x for a certain λ ∈ (0, 1). Therefore,

x(s) = (x 1 (s), x 2 (s)) T is a smooth 2nπ-periodic function satisfying ⎧ ⎨ ⎩ x 1 (s) = λ[-τe x1(s) + x 2 (s)e 2x1(s) ] x 2 (s) = λ[(γ -ε cos s)e x1(s) + δ] (16) 
As x 1 and x 2 are continuous 2nπ-periodic functions, there exist

ζ i , η i ∈ [0, 2nπ] such that [x i ] L = x i (ζ i ) and [x i ] M = x i (η i ) for i ∈ {1, 2}
Integrating the second equation of system [START_REF] Goto | Problems of analysis methods for studying nonlinear flight dynamics[END_REF] on the interval [0, 2nπ] we obtain

2nπ 0 (γ -ε cos s)e x1(s) ds = -2nπδ (17) 
Taking into account that γ < -|ε|, we can see that γε cos s < γ + |ε| < 0 and

e [x1]M 2nπ 0 (γ-ε cos s)ds ≤ 2nπ 0 (γ-ε cos s)e x1(s) ds ≤ e [x1]L 2nπ 0 (γ-ε cos s)ds
Using [START_REF] Etkin | Dynamics of Flight: Stability and Control[END_REF], we obtain

[x 1 ] L ≤ ln δ |γ| ≤ [x 1 ] M (18) 
From [START_REF] Etkin | Dynamics of Flight: Stability and Control[END_REF] we also obtain 

(γ -|ε|)
As x 1 (ζ 1 ) = [x 1 ] L it follows that x 1 (ζ 1 ) = 0 and from the first equation of system [START_REF] Goto | Problems of analysis methods for studying nonlinear flight dynamics[END_REF] we obtain that

x 2 (ζ 1 ) = τe -[x1]L and therefore τe -[x1]L ≤ [x 2 ] M .
In a similar way we can show that τe

-[x1]M ≥ [x 2 ] L . By means of (18) it results that [x 2 ] L ≤ τ |γ| δ ≤ [x 2 ] M (20) 
Using [START_REF] Etkin | Dynamics of Flight: Stability and Control[END_REF] we get Using ( 18) and ( 19), it follows that

[x 1 ] M ≤ [x 1 ] L + 1 2 2nπ 0 |x 1 (s)|ds < [x 1 ] L + τ 2nπ 0 e x1(s) ds ≤ ln δ |γ| + 2nπδτ |γ| -|ε| (22) 
and

[x 1 ] L ≥ [x 1 ] M - 1 2 2nπ 0 |x 1 (s)|ds > [x 1 ] M -τ 2nπ 0 e x1(s) ds ≥ ln δ |γ| - 2nπδτ |γ| -|ε| (23) 
More, as x 2 (s) > -z 1 e -x1(s) for any s ∈ [0, 2nπ] it follows that

[x 2 ] L > -z 1 e -[x1]M = |z 1 γ| δ e -2nπδτ |γ|-|ε| (24) 
We have obtained, based on inequalities ( 21 

I 2 = |z 1 γ| δ e -2nπδτ |γ|-|ε| , τ |γ| δ + 2nπδ
considering the open bounded set Ω = {x = (x 1 , x 2 ) T ∈ X : x 1 (s) ∈ I 1 and x 2 (s) ∈ I 2 for any s ∈ R} it follows that assumption (a) of Theorem 5 is fulfilled.

In order to check assumption (b) of Theorem 5, we observe that the equation 

QN x = 0 is equivalent to ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
x = (x 1 , x 2 ) T = ln δ |γ| , τ |γ| δ T ∈ Ω, we evaluate det[J ϕ (x 1 , x 2 )] = γe 3x 1 = δ 3 γ 2 > 0
Hence the Brouwer degree is

deg B (JQN, Ω ∩ KerL, 0) = sign(det[J ϕ (x 1 , x 2 )]) = 1
In conclusion, there exists at least one 2nπ-periodic solution of system [START_REF] Ionita | Delay induced oscillations[END_REF].

The conclusion of this section can be summarized in the following Proposition:

Proposition 3. If assumption (A) holds and γ < -|ε|, then equation ( 2) has at least one solution θ(t) such that its derivative θ(t) is a negative periodic function (i.e. θ(t) is a decreasing oscillatory solution).

Oscillations in longitudinal flight regime

Taking into account the relationship between system (1) and equation ( 2), the following result is obtained: Proposition 4. If Assumption (A) is fulfilled and |γ| > |ε|, then there exists at least one oscillatory solution for system (1). More precisely:

a. If γ > |ε|, then there exists at least one solution (α(t), q(t), θ(t)) T of system

(1) such that α(t) and q(t) = θ(t) are periodic functions and q(t) is strictly positive.

A c c e p t e d m a n u s c r i p t

b. If γ < -|ε|, then there exists at least one solution (α(t), q(t), θ(t)) T of system (1) such that α(t) and q(t) = θ(t) are periodic functions and q(t) is strictly negative.

Numerical example

Numerical simulations have been carried out for the ALFLEX reentry vehicle (see numerical data in the appendix). In this case, the interval J given by Proposition 1 is J = [2.9944 • , 3.8727 • ]. When the elevator deflection δ e is set to values outside this interval, oscillatory behavior is expected, according to the previous theoretical results.

The case δ e < 2.9944 • corresponds to γ > |ε|. A large number of simulations have been completed, using a wide set of initial conditions. Fig. 1 shows that setting δ e = 2.5 • the solutions of system (1) with the initial condition (8.18 • , 0, -9.16 • ) T , converge towards a presumably asymptotically stable oscillatory orbit (α(t), q(t), θ(t)) T , where α(t) and q(t) are periodic functions and θ(t) is strictly increasing. The same phenomenon can be noticed for δ e = 2.8 • , observing that the period of α(t) and q(t) becomes larger. Numerical simulations show that the period increases infinitely as δ e approaches the critical value δ e = 2.9944 • . This suggests that at the critical value δ e = 2.9944 • , the existing saddle-node bifurcation points (given by Proposition 1) are linked by a chain of heteroclinic orbits. More, this allows us to believe that when δ e = δ e = 2.9944 • , a global bifurcation takes place which involves this whole chain of heteroclinic orbits, resulting in the birth of an oscillatory orbit when δ e < δ e .

The case δ e > 3.8727 • corresponds to γ < -|ε|. Fig. 2 shows that setting δ e = 4 • the solutions of system (1) with the initial condition (8.18 • , 0, -9.16 • ) T , converge towards a presumably asymptotically stable oscillatory motion (α(t), q(t), θ(t)) T , where α(t) and q(t) are periodic functions and θ(t) is strictly decreasing. The same phenomenon can be noticed for δ e = 5 • , observing that the period of α(t) and q(t) becomes smaller. Numerical simulations show that the period increases infinitely as δ e approaches the critical value δ e = 3.8727 • . The same

A c c e p t e d m a n u s c r i p t

phenomenon can be noticed as in the previous paragraph.

Conclusions

A theoretical proof has been given for the existence of oscillatory solutions in the case of a simplified mathematical model of longitudinal flight dynamics, whenever the value of the elevator deflection δ e belongs to (-∞, δ e ) ∪ (δ e , ∞)

(where the interval J = [δ e , δ e ] corresponds to the existence of equilibria in system (1)). The mathematical tools involved in this proof are the coincidence degree theory and Mawhin's continuation theorem.

It has been emphasized that at the critical values δ e and δ e of the elevator deflection, an infinity of saddle-node bifurcations take place. In the case of system (1), Hopf bifurcations are not present, and hence, a Hopf bifurcation analysis such as in [START_REF] Liaw | Analysis of longitudinal flight dynamics: A bifurcationtheoretic approach[END_REF][START_REF] Liaw | Two-parameter bifurcation analysis of longitudinal flight dynamics[END_REF][START_REF] Pereira | On nonlinear dynamics and an optimal control design to a longitudinal flight[END_REF] is not an appropriate tool for depicting oscillatory behavior.

Numerical simulations suggest that the saddle-node bifurcation points are linked by a chain of heteroclinic orbits, allowing us to believe that the onset of oscillatory behavior, when δ e exceeds the critical values δ e and δ e , is caused by a global bifurcation which involves this whole chain of heteroclinic orbits. A more thorough investigation of this phenomenon, as well as extending these results

to more general systems describing longitudinal flight dynamics, may constitute directions for future research. 

u

  = first, second, third order derivative of u in Newton's notation u , u = first, second order derivative of u in Lagrange's notation S = closure of the set S ∂S = boundary of the set S N = set of positive non-zero integers Z = set of integers R = set of real numbers DomL = domain of the operator L ImL = codomain (range) of the operator L KerL = kernel of the operator L
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  aircraft, when the automatic flight control system is decoupled and the elevator deflection exceeds the bifurcation values. Sufficient conditions are obtained for the existence of oscillatory solutions for any value of the elevator deflection δ e

satisfying 2nπ 0 e

 0 x(s) ds = T . (b) If for n ∈ N , there exists a 2nπ-periodic solution x(s) of (3), then there exists an increasing oscillatory solution θ(t) of (2) satisfying θ(t + T ) = θ(t) + 2nπ, where T = 2nπ 0 e x(s) ds.

) satisfying 2nπ 0 e

 0 x(s) ds = T .(b) If for n ∈ N , there exists a 2nπ-periodic solution x(s) of (5), then there exists a decreasing oscillatory solution θ(t) of (2) satisfying θ(t+T ) = θ(t)-2nπ, where T = 2nπ 0 e x(s) ds.

  s) ds = -ψ(2nπ) + ψ(0) = T . By successive differentiation, taking into account that θ(ψ(s)) = s, we obtain:

A c c e p t e d m a n u s c r i p t θ = ψ - 1 :

 1 (b) Suppose that equation (5) has a 2nπ-periodic solution x(s). Consider θ 0 ∈ R. It can be easily seen that the function ψ : R → R defined by ψ(s) = -s θ 0 e x(u) du is strictly decreasing and bijective. Consider the inverse function R → R which is also strictly decreasing. One has θ(t) = 1 ψ(θ(t))

  u) du = -ψ(s) + T where T = 2nπ 0 e x(u) du. Making s = θ(t) in the equality ψ(s + 2nπ) = ψ(s) -T , we get ψ(θ(t) + 2nπ) = t -T and applying θ to this equality, we obtain: θ(t -T ) = θ(t) + 2nπ and hence:

A c c e p t e d m a n u s c r i p t by K P Q = L - 1 PTheorem 5 (

 15 called a Fredholm mapping if KerL has finite dimension and ImL is closed and has finite codimension. The index of a Fredholm mapping L is the integer i(L) = dim KerLcodim ImL. In the followings, consider L : DomL ⊂ X → Y a Fredholm mapping of index zero which is not injective. Let P : X → X and Q : Y → Y be continuous projectors such that KerQ = ImL, ImP = KerL, X = KerL ⊕ KerP and Y = ImL ⊕ ImQ. It is clear that the operator L P = L| DomL∩KerP : DomL ∩ KerP → ImL is an isomorphism. Consider the operator K P Q : Y → X defined (I -Q). Let Ω ⊂ X be an open bounded set and N : Ω → Y be a continuous mapping. We say that N is L-compact if K P Q N is compact, QN is continuous and QN ( Ω) is a bounded set in Y . Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL. Continuation theorem [19, 20]). Let Ω ⊂ X be an open bounded set, let L be a Fredholm mapping of index zero and let N be L-compact on Ω. Assume (a) Lx = λN x for any λ ∈ (0, 1) and x ∈ ∂Ω ∩ DomL; (b) QN x = 0 for any x ∈ KerL ∩ ∂Ω; (c) Brouwer degree deg B (JQN, Ω ∩ KerL, 0) = 0. Then Lx = N x has at least one solution in DomL ∩ Ω.

|x 2

 2 (s)|, x∈ X = Y X and Y endowed with the norm • are Banach spaces. Define the linear mappingL : DomL = X ∩ C 1 (R, R 2 ) → Y by Lx = x = (x 1 , x 2 ) T . Consider the nonlinear mapping N : X → Y defined by N x = ⎡ ⎣ τe x1x 2 e 2x1(γε cos s)e x1δ It can be easily seen that KerL = R 2 , ImL = {y ∈ Y : 2nπ 0 y(s)ds = 0} and L is a Fredholm mapping of index zero. Define the continuous projectors P : X → X and Q : Y → Y by P x = x(0) ds = ȳ. Then ImP = KerL, KerQ = ImL, ImQ = KerL = R 2 and

8 )

 8 ε cos s)e x1(s) ds = 2nπδ (Taking into account that γ > |ε|, we can see that γε cos s > γ -|ε| > 0 and e ε cos s)e x1(s) ds ≤ e [x1]M 2nπ 0 (γ-ε cos s)ds

2nπ 0 e

 0 x1(s) ds ≤ 2nπδ ≤ (γ + |ε|) x 1 (ζ 1 ) = [x 1 ] L it follows that x 1 (ζ 1 ) = 0 andfrom the first equation of system (7) we obtain that x 2 (ζ 1 ) = τe -[x1]L and therefore τe -[x1]L ≤ [x 2 ] M . In a similar way we can show that τe -[x1]M ≥ [x 2 ] L . By means of (

  -ε cos s)e x1(s) -δ| < 2nπ 0 (γ-ε cos s)e x1(s) +2nπδ = 4nπδ and therefore [x 2 ] M ≤ [x 2 ] Denoting y(s) = τx 2 (s)e x1(s) , it results that ẏ(s) = λe x1(s) [y(s) 2τy(s) + δ -(γε cos s)e x1(s) ]

  s)x 2 (s)e 2x1(s) 

1 A c c e p t e d m a n u s c r i p t it follows that

 1 and x 2 (s) ∈ I 2 for any s ∈ R} assumption (a) of Theorem 5 is fulfilled.

4. 2 .Theorem 7 .

 27 Existence of a decreasing oscillatory solution of (2) when γ < -|ε| If assumption (A) holds and γ < -|ε|, then system (6) has at least one 2nπ-periodic solution.

2nπ 0 e

 0 x1(s) ds ≤ -2nπδ ≤ (γ + |ε|)

2nπ 0 |x 2 0 x 2 x 2

 02022 (s)|ds = λ 2nπ 0 |(γ-ε cos s)e x1(s) +δ| < 2nπ 0 (γε cos s)e x1(s) +2nπδ = 4nπδ and therefore[x 2 ] M ≤ [x 2 ] s) = -τ + x 2 (s)e x1(s) , it results that ẏ(s) = λe x1(s) [y(s) 2 + τy(s) + δ + (γε cos s)e x1(s) ]As τ > 0, δ > 0 and τ 2 > 4δ it results that the equation z 2 + τz + δ = 0 has two negative real roots z 1 < z 2 < 0.We have shown that y(ζ 1 ) = 0. Assume that there exists ξ < ζ 1 such that y(ξ) = z 2 and y(s) > z 2 for any s ∈ (ξ, ζ 1 ]. As ẏ(ξ) = λ(γε cos ξ)e 2x1(ξ) < 0 it follows that y is strictly decreasing in a neighborhood of ξ, which is absurd, because y(s) > z 2 = y(ξ) for any s ∈ (ξ, ζ 1 ].Hence, we have shown that y(s) > z 2 for any s ∈ R. It results that x 2 (s)e x1(s) > τ + z 2 = -z 1 > 0 and therefore, x 2 (s) > 0 for any s ∈ R.Integrating the first equation of system[START_REF] Goto | Problems of analysis methods for studying nonlinear flight dynamics[END_REF] on the interval [0, 2nπ] we obtain 2nπ (s)e 2x1(s) ds = τ (s)e 2x1(s) ds = 2τ

A c c e p t e d m a n u s c r i p t⎦

  x1(s) + x 2 (s)e 2x1(s) ]ds = 0 2nπ 0 (γε cos s)e x1(s) ds = -2nπδ The only solution of this system belonging to KerL = R 2 is x = (x 1 , x 2 ) (c) of Theorem 5, taking into account that ImQ = KerL = R 2 , we can chose the isomorphism J = Id. Considering the function ϕ : R 2 → R 2 defined by ϕ = QN | KerL , we obtain that ϕ(x 1 , x 2 ) = ⎡ ⎣ -τe x1 + x 2 e 2x1 γe x1 + δ ⎤ As ϕ(x) = 0 if and only if

Figure 2 :

 2 Figure 2: Evolution of the state parameters α, q ad θ of system (1) in time, considering the initial condition (8.18 • , 0, -9.16 • ) T , and choosing δe = 4 • (left) and δe = 5 • (right).
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 t Numerical data for the ALFLEX reentry vehicle m = 760 g = 9.81 δ e0 = 3 • α 0 = 8.18 • θ 0 = -9.16 • S = 9.45 b = 3.295 c = 3.154 ρ = 1.156 k = ρS/2 I x = 407 I y = 1366 I z = 1634 I xz = 10.4 V = 73.84 C yβ = -0.6849 C L = 0.2387 C lβ = -0.1774 C nβ = -0.0657 C yδr = 0.1907 C Lα = 2.016 C lp = -0.007 C np = 0.0032 C yr = 0 C Lδe = 0.6355 C lr = 0.004 C nr = -0.006 C mα = -0.0134 C D = 0.0745 C lδa = 0.1488 C nδa = -0.0266 C mq = -0.0474 C Dα = 0.2714 C lδr = 0.0788 C nδr = -0.099 C mδe = -0.2152 C Dδe = 0.1019 C zα = -C Lα cos α 0 + C L sin α 0 -C D cos α 0 -C Dα sin α 0 C zδe = -C Lδe cos α 0 -C Dδe sin α 0 a 11 = kV m C zα = -1.10058 a 21 = ckV 2 C mα = -0.92142 a 22 = ckV 2 C mq = -3.25936 b 1 = kV m C zδe = -0.34151 b 2 = ckV 2 C mδe = -14.79777

  )-(24) that, if x(s) ∈ DomL is a solution of the operator equation Lx = λN x then, for any s ∈ R we have

	ln	δ |γ|	-	2nπδτ |γ| -|ε|	< x 1 (s) < ln	δ |γ|	+	2nπδτ |γ| -|ε|
	and							
		|z 1 γ| δ	e -2nπδτ |γ|-|ε| < x 2 (s) <	τ |γ| δ	+ 2nπδ
	Therefore, considering the intervals
	I 1 = ln	δ |γ|	-	2nπδτ |γ| -|ε|	, ln	δ |γ|	+	2nπδτ |γ| -|ε|
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