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Micromorphic continuum.

Part III: Small deformation plasticity

coupled with damage

P. Grammenoudis ∗ and Ch. Tsakmakis ∗∗
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Institute of Continuum Mechanics

Hochschulstraße 1, D-64289 Darmstadt, Germany

D. Hofer

Westinghouse Electric Germany GmbH

Abt. PEM, Dudenstr. 44, D-68167 Mannheim, Germany

Abstract

Properties of the micromorphic theory proposed in Part II are discussed for the

case of small deformations. Model responses for beam specimens under bending

loading and plates with circular holes under tension loading are calculated by em-

ploying the finite element method. The results reported are concerned with the

capabilities of the theory to predict size effects.

Key words: micromorphic plasticity; finite deformation; isotropic and kinematic

hardening rules; isotropic continuum damage mechanics; finite element

implementation;
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1 Introduction

A finite deformation micromorphic plasticity theory, exhibiting isotropic and

kinematic hardening, and incorporating damage effects, has been proposed

in Part II. The theory is consistent with the second law of thermodynamics

and deals with a plastic micromorphic curvature tensor, which is not required

to fulfill some compatibility conditions, i.e. it is not related to some gradient

terms. Furthermore, a measure of smallness ε has been introduced in Part II,

and the theory has been defined to be of small deformations, if terms only up

to order O(ε) are retained. It is a straightforward task to verify that the small

deformation version of the micromorphic model proposed, reads as follows (we

confine attention to static balance equations and omit the body and double

body forces).

Equilibrium equations

∂Tij

∂Xj

= 0 in RR , (1)

∂Tijk

∂Xk

+ Tij − Σij = 0 in RR . (2)

Boundary conditions

Tijnj = t̄i on ∂Rti
R

= ∂RR \ ∂Rui

R
, (3)

Tijknk = t̄
(d)
ij on ∂R

t
(d)
ij

R
= ∂RR \ ∂R

hij

R
, (4)

ui = ūi on ∂Rui

R
, (5)

∗ Corresponding author.
∗∗Corresponding author.

Email addresses: pascha@mechanik.tu-darmstadt.de (P. Grammenoudis),

tsakmakis@mechanik.tu-darmstadt.de (Ch. Tsakmakis).
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hij = h̄ij on ∂R
hij

R
. (6)

Kinematics

Hij =
∂ui

∂Xj

, (7)

βij =
1

2
(hij + hji) , εij = Hij − hij , Kijk =

∂hij

∂Xk

, (8)

βij = (βe)ij + (βp)ij , εij = (εe)ij + (εp)ij , Kijk = (Ke)ijk + (Kp)ijk .

(9)

Specific free energy

Ψ = Ψe + Ψis + Ψk . (10)

Elasticity laws

�Ψe =(1−D)
{

1

2
(AAAe)ijpq(εe)ij(εe)pq +

1

2
(BBBe)ijpq(βe)ij(βe)pq

+(DDDe)ijpq(εe)ij(βe)pq +
1

2
(Ce)ijpqr(Ke)ijk(Ke)pqr

}
, (11)

Σij =�
∂Ψe

∂(βe)ij

= (1−D){(BBBe)ijpq(βe)pq + (DDDe)ijpq(εe)pq} , (12)

Tij =�
∂Ψe

∂(εe)ij

= (1−D){(AAAe)ijpq(εe)pq + (DDDe)ijpq(βe)pq} , (13)

Tijk =�
∂Ψe

∂(Ke)ijk

= (1−D)(Ce)ijkpqr(Ke)pqr . (14)

Yield function

f =
1

1−D

(
(Tij − T k

ij)
D(AAAy)ijpq(Tpq − T k

pq)
D + (Σij − Σk

ij)
D(BBBy)ijpq(Σpq − Σk

pq)
D

+(Tijk − T
k

ijk)
D(Cy)ijkpqr(Tpqr − T

k
pqr)

D
)− 1

2 −
R

1−D
− k̄0 , (15)

k :=
R

1−D
+ k̄0 , k := R0 + k̄0 . (16)
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Flow rule

(ε̇p)ij =
ṡ

ζ

∂f

∂Tij

, (β̇p)ij =
ṡ

ζ

∂f

∂Σij

, (K̇p)ijk =
ṡ

ζ

∂f

∂Tijk

, (17)

ζ :=

√√√√ ∂f

∂Tij

∂f

∂Tij

+
∂f

∂Σij

∂f

∂Σij

+
∂f

∂Tijk

∂f

∂Tijk

. (18)

Plasticity

L(t) := [ḟ(t)]s=const. (19)

ṡ

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

> 0 for f = 0 & L > 0 ,

= 0 otherwise ,

(20)

ṡ : to be determined from consistency condition ḟ = 0 . (21)

Viscoplasticity

ṡ :=
〈f〉m

η
≥ 0 , (22)

〈f〉 : overstress . (23)

Isotropic hardening

�Ψis = (1−D)
γ

2
(r2 + 2r0r) , (24)

R = �
∂Ψis

∂r
= (1−D)γ(r + r0) = (1−D)(γr + R0) , (25)

ṙ = (1− βr)
ṡ

ζ
. (26)

Kinematic hardening

�Ψk =(1−D)
{

1

2
(AAAk)ijpq(εk)ij(εk)pq +

1

2
(BBBk)ijpq(βk)ij(βk)pq

+(DDDk)ijpq(εk)ij(βk)pq +
1

2
(Ck)ijpqr(Kk)ijk(Kk)pqr

}
, (27)
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(Σk)ij =�
∂Ψk

∂(βk)ij

= (1−D){(BBBk)ijpq(βk)pq + (DDDk)ijpq(εk)pq} , (28)

(Tk)ij =�
∂Ψk

∂(εk)ij

= (1−D){(AAAk)ijpq(εk)pq + (DDDk)ijpq(βk)pq} , (29)

(T k)ijk =�
∂Ψk

∂(Kk)ijk

= (1−D)(Ck)ijkpqr(Kk)pqr , (30)

ε̇k =ε̇p −
ṡ

1−D
{Mk

1 (trTk)1 + Mk
2 Tk + Mk

3 (Tk)
T} , (31)

β̇k =β̇p −
ṡ

1−D
{Nk

1 (trΣk)1 + 2Nk
2 Σk} , (32)

K̇k =K̇p −
ṡ

1−D
P̂k[T ] . (33)

Evolution law for damage

Ḋ = −α1ṡ�
∂Ψ

∂D
. (34)

The aim of the present paper is to demonstrate the capabilities of this model

in describing size effects present in bending of beam specimens and in plates

with a hole under tension loading. It should be remarked that Part I and

II made it clear, that micromorphic constitutive theories are very complex

and include a large number of material parameters. Therefore, we decided to

make transparent capabilities of such theories only for small deformations,

excluding from considerations geometrical nonlinearities. Also, several mate-

rial parameters will be assumed to vanish, in order to reduce the effort of

the analysis. Of course, this implies that important capabilities of the model

may be not activated. However, the present investigation is not entitled to

be complete and will be of qualitative character only. This also concerns the

isotropic hardening rule. In fact, isotropic hardening effects due to strains and

micromorphic curvature tensors are captured in a unified manner. There are,

however, possibilities to account for isotropic hardening effects due to strain

and micromorphic curvature effects separately. Such isotropic hardening rules
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have been elaborated by Grammenoudis and Tsakmakis (2008) in micropolar

plasticity and are not pursuit here.

2 Examples

Examples illustrating the capabilities of the theory to capture size effects are

given in this section and are taken from the doctoral thesis of Hofer (2003),

where also more details about the implementation are given. Further examples

and interesting results on this topic may be found in Dillard and Ienny (2006);

Kirchner and Steinmann (2005); Neff and Forest (2007); Lazar and Maugin

(2007) as well as Hirschberger and Steinmann (2007).

In the ensuing analysis, the chosen values of the material parameters do not

reflect some responses of realistic material behavior, i.e., they are only of

academic interest and serve to discuss basic features of the model. We set

Ae
1 ≡ λ = 1, 21 · 105N/mm2 , Ae

2 = μ + α , Ae
3 = μ− α , (35)

μ = 8, 08 · 104N/mm2 , (36)

Be
1 ≡ λ , Be

2 ≡ μ + b2 , b2 = 10 · μ , (37)

De
1 ≡ λ , De

2 ≡ μ , (38)

Ce
i = 0 for i �= 7 , Ce

7 = c7 ≥ 0 . (39)

Although for the case (39), important aspects of the constitutive model may

be retain inactive, we shall confine ourself on this special case in order to limit

the discussion. For what follows, of particular interest is the internal length

lc :=

√
c7

μ
, (40)
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suggested by the elasticity laws. Firstly, we shall discuss micromorphic elas-

ticity without damage (pure micromorphic elasticity).

2.1 Pure micromorphic elasticity

2.1.1 Rectangular specimens with circular hole under tension loading

Consider the plane strain problem in Fig. 1 where the quadratic section

(length b) with a circular hole (radius r) located in the center of the sec-

tion, is stretched in y direction. With respect to the Cartesian coordinate

system x, y, the boundaries x = ±
b

2
are assumed to be traction-free. At the

boundary y = −
b

2
the displacement uy and the traction tx are assumed to van-

ish, while at the boundary y =
b

2
, given displacement uy and traction tx = 0

are imposed. The whole circular hole is assumed to be traction free, while the

whole boundary is subjected to vanishing double traction t(d).

For small circular hole, a nearly uniform stress component σ0 in y direction, at

y =
b

2
, will be required to realize the given boundary conditions. In classical

elasticity, attention is focussed on the so-called stress concentration factor

T �
yy

σ0

, T �
yy := Tyy(x = r, y = 0) , (41)

which turns out to be equal to 3 (see e.g. Gould, 1983, p. 124), whenever the

section is of infinite extension b. In the present context, we refer to as classical,

the case where α ≈ 0, c7 ≈ 0, which are approximated numerically for given

values of b, r. Particularly, we set b = 2, 5mm and r = 0, 25mm, which imply

the value
T �

yy

σ0
= 3, 14. Typical properties of micromorphic elasticity may be

elucidated by regarding the distribution of
Tyy

σ0
along the line y = 0 and

7
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uy

b

b
r

x

y

AA

a

Fig. 1. Plane strain problem. The quadratic section with a circular hole is stretched

in y direction.

x ≥ r, or equivalently a := x − r ≥ 0. For
c7

μ
= 0, 1mm2 this distribution,

parameterized by
α

μ
, is shown in Fig. 2. It can be recognized that increasing

values of
α

μ
cause decreasing values of

Tyy

σ0
in the neighborhood of a = 0,

and consequently decreasing values of stress concentration factors
T �

yy

σ0

for the

micromorphic material. Note that all distributions intersect at a = 0, 13mm.

The effect of α, c7 on the stress concentration factor is illustrated in Fig. 3.

For very large values
α

μ
and values

c7

μ
≥ 10−3mm2, the stress concentration

factor
T �

yy

σ0
becomes decreasing, whereas for small

α

μ
the value of

T �
yy

σ0
is nearly

equal to the classical one. It seems that, at fixed
α

μ
,

T �
yy

σ0

converges for
c7

μ

against ∞ or 0, respectively to limits, the limit for
c7

μ
→ 0 being the classical

one.
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0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5
classical
α/μ=10.0
α/μ=100.0

a [mm]

T
y
y
/σ

0
[
]

Fig. 2. Distribution of
Tyy

σ0
, Tyy = Tyy(y = 0, a ≥ 0), for

c7

μ
= 0, 1mm2 and varying

values
α

μ
.

10−4 10−3 10−2 10−1 100 101 1022

2.2

2.4

2.6

2.8

3

3.2

α/μ=0.01
α/μ=0.1
α/μ=1.0
α/μ=10.0

c7/μ [mm2]

T
∗ y
y
/σ

0
[
]

Fig. 3. Effect of α, c7 on the stress concentration factor
T �

yy

σ0
.
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To obtain an insight into the size effects due to different, but otherwise similar

boundary value problems, we ask for the stress concentration factor
T �

yy

σ0
for the

cases where α ≡ μ and geometry and boundary conditions of the specimens

vary from each other according to a factor n = 1, 4, 20, 200. Corresponding

results are displayed in Fig. 4, from which we deduce that all distributions are

similar. In fact, if the
T �

yy

σ0

values corresponding to the specimen according to

factor n are plotted as a function of
c7

μ · n2
, then all plots will coincide (see

Fig. 5). In other words, for linear micromorphic elasticity, size effects may be

visualized by varying the parameter c7, the other parameters being held fixed.

10−6 10−4 10−2 100 102 104 1062.2

2.4

2.6

2.8

3

3.2

spec. 1
spec. 4
spec. 20
spec. 200

c7/μ [mm2]

T
∗ y
y
/σ

0
[
]

Fig. 4. Distributions of
T �

yy

σ0
against

c7

μ
, for α = μ and different specimens. Geometry

and boundary conditions of the specimens differ by a factor n = 1, 4, 20, 200,

the corresponding specimens being referred to as specimen 1, . . . , specimen 200,

respectively.
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c7/ (μ · n2) [mm2]

T
∗ y
y
/σ

0
[
]

Fig. 5. Distributions of
T �

yy

σ0
against

c7

μ · n2
. The results for all specimens (n = 1, 4,

20, 200) are identical.

40200 60 80 100

lm/lc [ ]

T
∗ y
y

/
σ

0
[
]

3

lm/lc [ ]

T
∗ y
y
/σ

0
[
]

Fig. 6. Stress concentration factor
T �

yy

σ0
as a function of the ratio

lm
lc

at α = μ and

c7

μ
= 0, 1mm2; left: linear plot, right: semilogarithmic plot.
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Further size effects may be elucidated by introducing a typical geometry

length, as e.g. lm := 4r = 0, 4b. Again we concentrate ourself on specimen

geometries and related boundary conditions, differing according to a fac-

tor n, with n being now n = 0, 0001, 0, 01, . . ., 400, 10000. On choosing

c7

μ
= 0, 1mm2, the internal length lc becomes lc = 0, 31623mm. It can be

seen in Figure 6, that the stress concentration factor
T �

yy

σ0
is a function of the

ratio
lm
lc

(cf. also Mindlin (1963)).

2.1.2 Displacement controlled loading of cantilever rectangular beam

Further features of micromorphic elasticity may be illustrated with the aid

of the cantilever rectangular beam shown in Fig. 7. We use Cartesian coor-

dinates x, y and assume plane strain state to apply, with following boundary

conditions,

x = 0 : uy = ūy , tx = 0 , t(d) = 0 , (42)

x = l : u = 0 , h = 0 , (43)

y = 0 : t = 0 , t(d) = 0 , (44)

y = l : t = 0 , t(d) = 0 , (45)

with the given displacement ūy being uniformly distributed along the bound-

ary x = 0. Again we focus attention on the effect of the material param-

eters α and c7. Thereby, it is convenient to consider points, which indicate

large amounts of stress gradients. Clearly, the edge point x = l, y = b could

be selected for this goal. However, such points will exhibit stress distributions

with some singularities. Therefore, we shall confine the discussion on points A,

B located at a distance of about 0, 02 · l and 0, 17 · l, from the boundary x = l,

respectively. Note that the length l and the height b of the beam are chosen to

be l = 3, 4375mm and b = 1, 25mm, while the displacement component pre-
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scribed on the boundary x = 0 amounts ūy = 0, 01mm. Also, A, B are Gauss

points with distances from the upper boundary y = b, of about 0, 033 · b, re-

spectively. However, we shall refer to such points as being located at the upper

boundary y = b = 1, 25mm. Accordingly, Fig. 8 displays the stress compo-

nent Txx at the boundary y = b, as a function of x. It may be seen, that in

the neighborhood of x = l, the stress component Txx takes vary large values,

which designates the singularity in the distribution of Txx.

b

uy

uy

l

x

y

AB

Fig. 7. Displacement controlled loading of a cantilever rectangular beam,

l = 3, 4375mm, b = 1, 25mm, ūy = 0, 01mm.

Once more, we denote by ”classical”, solutions obtained numerically for very

small values
α

μ
and

c7

μ
. Fig. 9 makes clear, that in the neighborhood of the

singularity (point A), stress component Txx may become larger than T (class)
xx ,

dependent on the material parameters α, c7. However, with increasing distance

from the singularity point, as e.g. at point B, Txx remains smaller than T (class)
xx ,

independent of material parameters α, c7 (see Fig. 10).
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0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

450

x [mm]

T
x
x

[N
/m

m
2
]

Fig. 8. Distribution of Txx as a function of x, at the upper bound-

ary y = b = 1, 25mm, suggesting a singularity at x = l (α = 10−8 · μ,

c7

μ
= 10−8 mm2).

Significant differences between the shear stress components Txy and Tyx may

be present, as can be seen in Fig. 11, for point A. Both components approach

for very large values of
c7

μ
, different limits, the one for Txy being vanishing. Of

particular interest is also the response of the couple stress Mc := Txyx − Tyxx,

which is shown in Fig. 11 too. It can be recognized that Mc is vanishing for

small values
c7

μ
, while Mc approaches a constant value for very large values

c7

μ
.
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10−4 10−2 100 102 1040

0.2

0.4

0.6

0.8

1

1.2

1.4

α/μ=0.1
α/μ=0.3
α/μ=0.4
α/μ=0.45
α/μ=0.5
α/μ=1.0

c7/μ [mm2]

T
x
x
/T

(c
la

ss
)

x
x

[
]

Fig. 9. Effect of material parameters α, c7 on the response of stress component Txx

for point A (in the vicinity of the singular point x = l, y = b).

Finally, Fig. 12 illustrates, for fixed α = μ, the effect of material parameter c7

on the deformed geometry of the beam. It may be recognized that for small

values of c7 the bending mode is dominated, while for very large values of c7

the deformation resamples simple shear mode.
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0.0001 0.01 1 100 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

α/μ=0.1
α/μ=0.3
α/μ=0.4
α/μ=0.45
α/μ=0.5
α/μ=1,0

c7/μ [mm2]

T
x
x
/T

(c
la

ss
)

x
x

[
]

Fig. 10. Effect of material parameters α, c7 on the response of stress component Txx

for point B (indicating a larger distance than point A from the singular point x = l,

y = b). The values of Txx are always smaller than T
(class)
xx .

10−8 10−4 100 104 108

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Txy
Tyx

c7/μ [mm2]

T
x
y
/T

(c
la

ss
)

x
x

,
T

y
x
/T

(c
la

ss
)

x
x

10−4 10−2 100 102 104

0

0.25

0.5

0.75

1

1.25

c7/μ [mm2]

M
c
/

( T
(c

la
ss

)
x
x

·
l) [

]

Fig. 11. Responses of Txy and Tyx (left), as well as Mc (right), at point A (α = 1, 0·μ).
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y
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m
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2
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]

Fig. 12. Initial and deformed meshes of the rectangular beam for fixed α = μ

and varying material parameter c7. Displacements uy are presented enlarged, by

factor 100. The classical case is approached for c7 → 0.
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2.2 Micromorphic plasticity coupled with damage

In the following, we set

Ay
1 ≡ 0 , Ay

2 = 1, 5 , Ay
3 = 0 , (46)

By
1 ≡ 0 , By

2 = 0 , (47)

Cy
i ≡ 0 for i �= 7 , Cy

7 = r7 �= 0 , (48)

k0 = 350N/mm2 (49)

in the yield function, and

β = 17 , γ = 4100N/mm2 (50)

in the rule for isotropic hardening. Moreover, we fix the values of α and c7 in

the elasticity laws by

α = 0, 1 · μ ,
c7

μ
= 0, 1mm2 . (51)

2.2.1 Uniaxial loading

First, we present calculations for homogeneous uniaxial tension loading of a

rectangular specimen (plane strain), according to Fig. 13. At the bottom of

the specimen it is given uy = 0, tx = 0, t(d) = 0, while at the top it is uy = ūy,

tx = 0, t(d) = 0. The remaining boundaries are subject to the conditions t = 0

and t(d) = 0. The aim is to demonstrate the capabilities of the damage model.

To this end, it suffices to concentrate on isotropic hardening only. Further, as

the deformations are homogeneous, no material parameters of terms related

to micromorphic curvature tensors are involved. Fig. 14 shows the effect of the

damage parameter α1 (cf. Eq. (34)) on the responses of the uniaxial stress σ
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and the damage variable D. Further discussion about the damage law for the

classical case is provided in Lämmer and Tsakmakis (2000).

x

y

uy

Fig. 13. Displacement controlled uniaxial loading (1 element, plain strain).
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Fig. 14. Effect of material parameter α1 on the responses of the uniaxial stress σ

(left) and the damage variable D (right).
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2.2.2 Rectangular specimens with circular hole under tension loading

(a)
d

b

uy

l

x

y

Fig. 15. Displacement controlled tension loading of rectangular sections with circular

hole. All stress responses in the following figures are referred to point (a) on the

hole (x =
b + d

2
, y =

l

2
).

We consider again the boundary value problem of Sect. 2.1.1, but now with

respect to the specimen geometry displayed in Fig. 15 (length l differs from

width b). In order to elucidate the capabilities of the micromorphic theory in

predicting size effects, four specimen geometries are considered, referred to as

specimens 1, 4, 20 and 200 (see Tab. 1).

First, only isotropic hardening is addressed, with material parameters as given

in Sect. 2.2, and r7 = 10mm−2. The discussion is referred to the stress com-
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ponent Tyy at point (a) (see Fig. 15). It can be recognized from Fig. 16 that

softening for large specimens begins earlier than for small ones.

size factor n length l width b diameter d

(number of specimen) [mm] [mm] [mm]

spec. 1 10 2,5 1

spec. 4 40 10 4

spec. 20 200 50 20

spec. 200 2000 500 200

Table 1

Specimen geometries.

0 1 2 3 4 5
0

100

200

300

400

500

600

700

spec. 1
spec. 4
spec. 20
spec. 200

Δl/l0 [%]

T
y
y

[N
/m

m
2
]

Fig. 16. Response of the stress component Tyy on the hole at point (a) as a function

of the global strain
Δl

l
(α1 = 0.1, r7 = 10mm−2).
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Fig. 17. Response of the stress component Tyy on the hole at point (a) as a function

of the global strain
Δl

l
(α1 = 1.0, r7 = 10mm−2).

Comparison of Fig. 16 (α1 = 0, 1) with Fig. 17 (α1 = 1, 0) suggests that the

form of the responses is strong dependent on the damage parameter α1. More-

over, Fig. 18 illustrates that maximal values of stresses and maximal global

strains depend on the material parameter r7, present in the yield function.
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Fig. 18. Effect of the material parameter r7 on the response of stress component Tyy

at (a) (specimen 4, α1 = 0, 1).

Next, we assume the micromorphic model material to exhibit kinematic hard-

ening only, governed by the material parameters

r7 = 10mm−2 , Mk
2 = 50mm2/N , Ak

2 = Ak
3 = 200N/mm2 , (52)

Pk
7 = 500/N , Ck

7 = 200N/mm , (53)

the remaining material parameters related to kinematical hardening being

vanishing. Similar to the case of pure isotropic hardening, Fig. 19 suggests

that, softening for large specimens begins earlier than for small ones. Fig. 20

confirms that this holds also for the case of combined isotropic and kinematic

hardening.
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Fig. 19. Responses of Tyy at (a) for pure kinematic hardening (α1 = 1,

k0 = 500N/mm2).
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Fig. 20. Responses of Tyy at (a) for combined isotropic and kinematic hardening

(α1 = 1, k0 = 350N/mm2)
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3 Concluding remarks

A general framework for micromorphic plasticity has been formulated in Part I,

II, incorporating isotropic and kinematic hardening. The hardening laws are

of the Armstrong-Frederick type and the yield function is a generalization of

the classical v. Mises yield function. Some properties of the resulting theory,

concerning prediction of size effects for small deformations, are reported in

Part III. However, no comparison with experimental data is available, so that

it is not possible to evaluate the appropriateness of the chosen constitutive

functions. This concerns over all the yield function and the isotropic harden-

ing, the latter being unifiedly postulated. Further studies, with reference to

experimental results will help to clarify such issues, but this is beyond of the

scope of the present paper. All the discussions in the three articles make clear,

that phenomenological micromorphic theories (at least plasticity theories) are

very complicated and involve a large number of material parameters. There-

fore, it will be useful to clarify in future works, if it is possible to approximate

the essential material responses predicted by micromorphic theories by some

simpler gradient models, which deal with classical stresses only, and involve

a smaller number of material parameters. Also it is of interest to answer the

following question. Is the micromorphic model appropriate enough to describe

all known size effects to the necessary degree?
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