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Micromorphic continuum. Part III: Small deformation plasticity coupled with damage
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Properties of the micromorphic theory proposed in Part II are discussed for the case of small deformations. Model responses for beam specimens under bending loading and plates with circular holes under tension loading are calculated by employing the finite element method. The results reported are concerned with the capabilities of the theory to predict size effects.

A c c e p t e d m a n u s c r i p t 1 Introduction

A finite deformation micromorphic plasticity theory, exhibiting isotropic and kinematic hardening, and incorporating damage effects, has been proposed in Part II. The theory is consistent with the second law of thermodynamics and deals with a plastic micromorphic curvature tensor, which is not required to fulfill some compatibility conditions, i.e. it is not related to some gradient terms. Furthermore, a measure of smallness ε has been introduced in Part II, and the theory has been defined to be of small deformations, if terms only up to order O(ε) are retained. It is a straightforward task to verify that the small deformation version of the micromorphic model proposed, reads as follows (we confine attention to static balance equations and omit the body and double body forces).

Equilibrium equations

∂T ij ∂X j = 0 in R R , (1) 
∂T ijk ∂X k + T ij -Σ ij = 0 in R R . (2) 
Boundary conditions

T ij n j = ti on ∂R t i R = ∂R R \ ∂R u i R , (3) 
T ijk n k = t(d) ij on ∂R t (d) ij R = ∂R R \ ∂R h ij R , (4) 
u i = ūi on ∂R u i R , (5) 
A c c e p t e d m a n u s c r i p t

h ij = hij on ∂R h ij R . (6) 
Kinematics

H ij = ∂u i ∂X j , (7) 
β ij = 1 2 (h ij + h ji ) , ij = H ij -h ij , K ijk = ∂h ij ∂X k , (8) 
β ij = (β e ) ij + (β p ) ij , ij = ( e ) ij + ( p ) ij , K ijk = (K e ) ijk + (K p ) ijk . (9) 
Specific free energy

Ψ = Ψ e + Ψ is + Ψ k . ( 10 
)
Elasticity laws 

Ψ e =(1 -D) 1 
T ijk = ∂Ψ e ∂(K e ) ijk = (1 -D)(C e ) ijkpqr (K e ) pqr . (13) 
Yield function

f = 1 1 -D (T ij -T k ij ) D (A A A y ) ijpq (T pq -T k pq ) D + (Σ ij -Σ k ij ) D (B B B y ) ijpq (Σ pq -Σ k pq ) D +(T ijk -T k ijk ) D (C y ) ijkpqr (T pqr -T k pqr ) D -1 2 - R 1 -D -k0 , (15) 
k := R 1 -D + k0 , k := R 0 + k0 . (16) 

A c c e p t e d m a n u s c r i p t

Flow rule

( ˙ p ) ij = ṡ ζ ∂f ∂T ij , ( βp ) ij = ṡ ζ ∂f ∂Σ ij , ( Kp ) ijk = ṡ ζ ∂f ∂T ijk , (17) 
ζ := ∂f ∂T ij ∂f ∂T ij + ∂f ∂Σ ij ∂f ∂Σ ij + ∂f ∂T ijk ∂f ∂T ijk . ( 18 
)
Plasticity

L(t) := [ ḟ(t)] s=const. ( 19 
) ṡ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ > 0 for f = 0 & L > 0 , = 0 otherwise , (20) 
ṡ : to be determined from consistency condition ḟ = 0 .

Viscoplasticity

ṡ := f m η ≥ 0 , (22) 
f : overstress . ( 23 
)
Isotropic hardening

Ψ is = (1 -D) γ 2 (r 2 + 2r 0 r) , (24) 
R = ∂Ψ is ∂r = (1 -D)γ(r + r 0 ) = (1 -D)(γr + R 0 ) , (25) 
ṙ = (1 -βr) ṡ ζ . ( 26 
)
Kinematic hardening

Ψ k =(1 -D) 1 2 (A A A k ) ijpq ( k ) ij ( k ) pq + 1 2 (B B B k ) ijpq (β k ) ij (β k ) pq +(D D D k ) ijpq ( k ) ij (β k ) pq + 1 2 (C k ) ijpqr (K k ) ijk (K k ) pqr , (27) 
A c c e p t e d m a n u s c r i p t

(Σ k ) ij = ∂Ψ k ∂(β k ) ij = (1 -D){(B B B k ) ijpq (β k ) pq + (D D D k ) ijpq ( k ) pq } , ( 28 
) (T k ) ij = ∂Ψ k ∂( k ) ij = (1 -D){(A A A k ) ijpq ( k ) pq + (D D D k ) ijpq (β k ) pq } , (29) 
(T k ) ijk = ∂Ψ k ∂(K k ) ijk = (1 -D)(C k ) ijkpqr (K k ) pqr , (30) 
˙ k = ˙ p - ṡ 1 -D {M k 1 (trT k )1 + M k 2 T k + M k 3 (T k ) T } , ( 31 
) βk = βp - ṡ 1 -D {N k 1 (trΣ k )1 + 2N k 2 Σ k } , (32) 
Kk = Kp - ṡ 1 -D Pk [T ] . ( 33 
)
Evolution law for damage

Ḋ = -α 1 ṡ ∂Ψ ∂D . ( 34 
)
The aim of the present paper is to demonstrate the capabilities of this model in describing size effects present in bending of beam specimens and in plates with a hole under tension loading. It should be remarked that Part I and II made it clear, that micromorphic constitutive theories are very complex and include a large number of material parameters. Therefore, we decided to make transparent capabilities of such theories only for small deformations, excluding from considerations geometrical nonlinearities. Also, several material parameters will be assumed to vanish, in order to reduce the effort of the analysis. Of course, this implies that important capabilities of the model may be not activated. However, the present investigation is not entitled to be complete and will be of qualitative character only. This also concerns the isotropic hardening rule. In fact, isotropic hardening effects due to strains and micromorphic curvature tensors are captured in a unified manner. There are, however, possibilities to account for isotropic hardening effects due to strain and micromorphic curvature effects separately. Such isotropic hardening rules
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have been elaborated by [START_REF] Grammenoudis | Isotropic hardening in micropolar plasticity[END_REF] in micropolar plasticity and are not pursuit here.

Examples

Examples illustrating the capabilities of the theory to capture size effects are given in this section and are taken from the doctoral thesis of [START_REF] Hofer | Simulation von größeneffekten mit mikromorphen theorien[END_REF],

where also more details about the implementation are given. Further examples and interesting results on this topic may be found in [START_REF] Dillard | Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams[END_REF]; [START_REF] Kirchner | A unifying treatise on variational principles for gradient and micromorphic continua[END_REF]; Neff and Forest (2007); Lazar and Maugin (2007) as well as [START_REF] Hirschberger | On deformational and configurational mechanics of micromorphic hyperelasticity -theory and computation[END_REF].

In the ensuing analysis, the chosen values of the material parameters do not reflect some responses of realistic material behavior, i.e., they are only of academic interest and serve to discuss basic features of the model. We set

A e 1 ≡ λ = 1, 21 • 10 5 N/mm 2 , A e 2 = μ + α , A e 3 = μ -α , (35) 
μ = 8, 08 • 10 4 N/mm 2 , (36) 
B e 1 ≡ λ , B e 2 ≡ μ + b 2 , b 2 = 10 • μ , (37) 
D e 1 ≡ λ , D e 2 ≡ μ , (38) 
C e i = 0 for i = 7 , C e 7 = c 7 ≥ 0 . ( 39 
)
Although for the case (39), important aspects of the constitutive model may be retain inactive, we shall confine ourself on this special case in order to limit the discussion. For what follows, of particular interest is the internal length are imposed. The whole circular hole is assumed to be traction free, while the whole boundary is subjected to vanishing double traction t (d) .

l c := c 7 μ , (40) 
For small circular hole, a nearly uniform stress component σ 0 in y direction, at y = b 2 , will be required to realize the given boundary conditions. In classical elasticity, attention is focussed on the so-called stress concentration factor

T yy σ 0 , T yy := T yy (x = r, y = 0) , (41) 
which turns out to be equal to 3 (see e.g. Gould, 1983, p. 124) The effect of α, c 7 on the stress concentration factor is illustrated in Fig. 3. 
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To obtain an insight into the size effects due to different, but otherwise similar boundary value problems, we ask for the stress concentration factor T yy σ 0 for the cases where α ≡ μ and geometry and boundary conditions of the specimens vary from each other according to a factor n = 1, 4, 20, 200. Corresponding results are displayed in Fig. 4, from which we deduce that all distributions are similar. In fact, if the T yy σ 0 values corresponding to the specimen according to factor n are plotted as a function of c 7 μ • n 2 , then all plots will coincide (see Fig. 5). In other words, for linear micromorphic elasticity, size effects may be visualized by varying the parameter c 7 , the other parameters being held fixed. 

T * yy / σ 0 [ ] 3 l m /l c [ ] T * yy /σ 0 [ ]
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Further size effects may be elucidated by introducing a typical geometry length, as e.g. l m := 4r = 0, 4b. Again we concentrate ourself on specimen geometries and related boundary conditions, differing according to a factor n, with n being now n = 0, 0001, 0, 01, . . ., 400, 10000. On choosing c 7 μ = 0, 1mm 2 , the internal length l c becomes l c = 0, 31623mm. It can be seen in Figure 6, that the stress concentration factor T yy σ 0 is a function of the ratio l m l c (cf. also Mindlin (1963)).

Displacement controlled loading of cantilever rectangular beam

Further features of micromorphic elasticity may be illustrated with the aid of the cantilever rectangular beam shown in Fig. 7. We use Cartesian coordinates x, y and assume plane strain state to apply, with following boundary conditions,

x = 0 : u y = ūy , t x = 0 , t (d) = 0 , (42) x = l : u = 0 , h = 0 , (43) y = 0 : t = 0 , t (d) = 0 , (44) y = l : t = 0 , t (d) A c c e p t e d m a n u s c r i p t 

c 7 /μ [mm 2 ] M c / T (class) xx • l [ ]
0 1 2 3 -2 -1 0 1 2 c 7 = 10 -8 • μ mm 2 x [mm] y [mm] 0 1 2 3 -2 -1 0 1 2 c 7 = 0.1 • μ mm 2 x [mm] y [mm] 0 1 2 3 -2 -1 0 1 2 c 7 = μ mm 2 x [mm] y [mm] 0 1 2 3 -2 -1 0 1 2 c 7 = 5 • μ mm 2 x [mm] y [mm] 0 1 2 3 -2 -1 0 1 2 c 7 = 10 • μ mm 2 x [mm] y [mm] 0 1 2 3 -2 -1 0 1 2 c 7 = 10 8 • μ mm 2 x [mm] y [mm]

A c c e p t e d m a n u s c r i p t 2.2 Micromorphic plasticity coupled with damage

In the following, we set

A y 1 ≡ 0 , A y 2 = 1, 5 , A y 3 = 0 , (46) 
B y 1 ≡ 0 , B y 2 = 0 , (47) 
C y i ≡ 0 for i = 7 , C y 7 = r 7 = 0 , (48) 
k 0 = 350N/mm 2 (49)
in the yield function, and

β = 17 , γ = 4100N/mm 2 (50)
in the rule for isotropic hardening. Moreover, we fix the values of α and c 7 in the elasticity laws by

α = 0, 1 • μ , c 7 μ = 0, 1mm 2 . ( 51 
)

Uniaxial loading

First, we present calculations for homogeneous uniaxial tension loading of a rectangular specimen (plane strain), according to Fig. 13. At the bottom of the specimen it is given u y = 0, t x = 0, t (d) = 0, while at the top it is u y = ūy ,

t x = 0, t (d) = 0.
The remaining boundaries are subject to the conditions t = 0 and t (d) = 0. The aim is to demonstrate the capabilities of the damage model.

To this end, it suffices to concentrate on isotropic hardening only. Further, as the deformations are homogeneous, no material parameters of terms related to micromorphic curvature tensors are involved. Fig. 14 shows the effect of the damage parameter α 1 (cf. Eq. ( 34)) on the responses of the uniaxial stress σ We consider again the boundary value problem of Sect. 2.1.1, but now with respect to the specimen geometry displayed in Fig. 15 (length l differs from width b). In order to elucidate the capabilities of the micromorphic theory in predicting size effects, four specimen geometries are considered, referred to as specimens 1,4,20 and 200 (see Tab. 1).

First, only isotropic hardening is addressed, with material parameters as given in Sect. 2.2, and r 7 = 10mm -2 . The discussion is referred to the stress com- Table 1 Specimen geometries. Comparison of Fig. 16 (α 1 = 0, 1) with Fig. 17 Next, we assume the micromorphic model material to exhibit kinematic hardening only, governed by the material parameters

r 7 = 10mm -2 , M k 2 = 50mm 2 /N , A k 2 = A k 3 = 200N/mm 2 , ( 52 
) P k 7 = 500/N , C k 7 = 200N/mm , (53) 
the remaining material parameters related to kinematical hardening being vanishing. Similar to the case of pure isotropic hardening, Fig. 19 suggests that, softening for large specimens begins earlier than for small ones. Fig. 20 confirms that this holds also for the case of combined isotropic and kinematic hardening. Part III. However, no comparison with experimental data is available, so that it is not possible to evaluate the appropriateness of the chosen constitutive functions. This concerns over all the yield function and the isotropic hardening, the latter being unifiedly postulated. Further studies, with reference to experimental results will help to clarify such issues, but this is beyond of the scope of the present paper. All the discussions in the three articles make clear, that phenomenological micromorphic theories (at least plasticity theories) are very complicated and involve a large number of material parameters. Therefore, it will be useful to clarify in future works, if it is possible to approximate the essential material responses predicted by micromorphic theories by some simpler gradient models, which deal with classical stresses only, and involve a smaller number of material parameters. Also it is of interest to answer the following question. Is the micromorphic model appropriate enough to describe all known size effects to the necessary degree?

  2 (A A A e ) ijpq ( e ) ij ( e ) pq + 1 2 (B B B e ) ijpq (β e ) ij (β e ) pq +(D D D e ) ijpq ( e ) ij (β e ) pq + 1 2 (C e ) ijpqr (K e ) ijk (K e ) pqr ,(11)Σ ij = ∂Ψ e ∂(β e ) ij = (1 -D){(B B B e ) ijpq (β e ) pq + (D D D e ) ijpq ( e ) pq } ,(12)T ij = ∂Ψ e ∂( e ) ij = (1 -D){(A A A e ) ijpq(e ) pq + (D D D e ) ijpq (β e ) pq } ,

  elasticity laws. Firstly, we shall discuss micromorphic elasticity without damage (pure micromorphic elasticity). 2.1 Pure micromorphic elasticity 2.1.1 Rectangular specimens with circular hole under tension loading Consider the plane strain problem in Fig. 1 where the quadratic section (length b) with a circular hole (radius r) located in the center of the section, is stretched in y direction. With respect to the Cartesian coordinate system x, y, the boundaries x = ± b 2 are assumed to be traction-free. At the boundary y = -b 2 the displacement u y and the traction t x are assumed to vanish, while at the boundary y = b 2 , given displacement u y and traction t x = 0

Fig. 1 .

 1 Fig. 1. Plane strain problem. The quadratic section with a circular hole is stretched in y direction. x ≥ r, or equivalently a := xr ≥ 0. For c 7 μ = 0, 1mm 2 this distribution, parameterized by α μ , is shown in Fig. 2. It can be recognized that increasing values of α μ cause decreasing values of T yy σ 0 in the neighborhood of a = 0, and consequently decreasing values of stress concentration factors T yy σ 0 for the micromorphic material. Note that all distributions intersect at a = 0, 13mm.

Fig. 3 .

 3 Fig. 2. Distribution of T yy σ 0 , T yy = T yy (y = 0, a ≥ 0), for c 7 μ = 0, 1mm 2 and varying values α μ .

  Fig. 4. Distributions of T yy σ 0 against c 7 μ , for α = μ and different specimens. Geometry and boundary conditions of the specimens differ by a factor n = 1, 4, 20, 200, the corresponding specimens being referred to as specimen 1, . . . , specimen 200, respectively.

Fig

  Fig. 6. Stress concentration factorT yy σ 0 as a function of the ratio l m l c at α = μ and c 7 μ = 0, 1mm 2 ; left: linear plot, right: semilogarithmic plot.

Fig. 7 .]Fig. 8 .Fig. 9 .

 789 Fig. 7. Displacement controlled loading of a cantilever rectangular beam, l = 3, 4375mm, b = 1, 25mm, ūy = 0, 01mm.

Finally,Fig. 10 .

 10 Fig. 10. Effect of material parameters α, c 7 on the response of stress component T xx for point B (indicating a larger distance than point A from the singular point x = l, y = b). The values of T xx are always smaller than T (class) xx .

Fig. 11 .

 11 Fig. 11. Responses of T xy and T yx (left), as well as M c (right), at point A (α = 1, 0•μ).

Fig. 12 .

 12 Fig. 12. Initial and deformed meshes of the rectangular beam for fixed α = μ and varying material parameter c 7 . Displacements u y are presented enlarged, by factor 100. The classical case is approached for c 7 → 0.

  Fig. 13. Displacement controlled uniaxial loading (1 element, plain strain).

Fig. 15 .

 15 Fig. 15. Displacement controlled tension loading of rectangular sections with circular hole. All stress responses in the following figures are referred to point (a) on the hole (x = b + d 2 , y = l 2 ).

(

  ponent T yy at point (a) (see Fig.15). It can be recognized from Fig.16that softening for large specimens begins earlier than for small ones. size factor n length l width b diameter d

]Fig. 16 .

 16 Fig. 16. Response of the stress component T yy on the hole at point (a) as a function of the global strain Δl l (α 1 = 0.1, r 7 = 10mm -2 ).

]Fig. 17 .

 17 Fig. 17. Response of the stress component T yy on the hole at point (a) as a function of the global strain Δl l (α 1 = 1.0, r 7 = 10mm -2 ).

(α 1

 1 = 1, 0) suggests that the form of the responses is strong dependent on the damage parameter α 1 . Moreover, Fig.18illustrates that maximal values of stresses and maximal global strains depend on the material parameter r 7 , present in the yield function.

]Fig. 18 .

 18 Fig. 18. Effect of the material parameter r 7 on the response of stress component T yy at (a) (specimen 4, α 1 = 0, 1).

]Fig. 19 .]Fig. 20 .

 1920 Fig. 19. Responses of T yy at (a) for pure kinematic hardening (α 1 = 1,k 0 = 500N/mm 2 ).
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