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Abstract

Analytical models with geometric nonlinearities accounting for interactions between
local and global instability modes leading to localized buckling in sandwich struts are
formulated. For the core material response, two increasingly sophisticated bending
models are compared against each other: Timoshenko beam theory (TBT) and
Reddy–Bickford beam theory (RBT). Numerical solutions of the analytical models
are validated with the commercial finite element code Abaqus. It is found that there
is a small but significant difference in the critical load between the two models and
that the previously obtained solution slightly underestimates the linear buckling
strength. More importantly, it is found that the RBT model predicts the onset of
interactive buckling before the TBT model and, according to the results from the
finite element study, matches the actual behaviour of a strut in both its initial and
advanced post-buckling states with excellent correlation.

1 Introduction

Sandwich construction, comprising two stiff face plates separated by a softer
core material, is popular as a provider of structural strength combined with
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weight efficiency and is used extensively in astronautic [1], aeronautic [2,3] and
marine applications [4]. However, precisely because they are both specialized
and efficient, the responses of sandwich struts are liable to exhibit compli-
cated collapse mechanisms [5–8]. It is well known from classical work [9] that
compressed sandwich panels, or more specifically struts, sometimes fail by a
combination of overall (Euler-type) buckling and local buckling (wrinkling)
of the face plates. Figure 1 shows a sequence of test photographs [10] along
with a characteristic equilibrium diagram of compression sandwich panels rep-
resenting the different phases of the loading history. The phases in sequence
are: (1) pre-buckling followed by (2) Euler buckling and then proceeding to
(3) interactive buckling where the structure becomes unstable and localiza-
tion is clearly observed. This type of structural response has been previously
modelled using a combination of nonlinear structural stability theory and a
Timoshenko beam approach; the appearance of shearing strains within the
core material being vital in introducing a nonlinear interaction between the
overall buckling wavelength scale and the local buckling “strut on an elastic
foundation” wavelength scale [11,12]. More advanced work on the sensitivity
due to imperfections [13], the possibility of face–core delamination [14,15] and
the buckling of panels with differing face plate thicknesses [16] has also been
presented.
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Fig. 1. A sandwich panel under axial compression shown in photographs (1)–(3): left
to right and response graph of equilibrium paths of load P versus end-shortening
E . Photo (1) pre-buckling—path (a) on graph; photo (2) overall buckling—point
C and path (b) on graph; photo (3) interaction between overall and local buckling
leading to localization—path(c) on graph. Path (d) on the graph represents the
imperfect response, S and l mark the location of the secondary bifurcation for perfect
geometries and the limit point for imperfect geometries respectively.

In spite of significant progress, these earlier works have focused only on the
more simplified case of plane sections remaining plane within the core material
once buckling occurs, although not necessarily normal to the neutral axis of
bending. This, of course, introduces shear strains into the model [17], but for
the more practical cross-section geometries, principally with deeper and rela-

2



Acc
ep

te
d m

an
usc

rip
t 

tively softer cores, the local shear strains—particularly in the neighbourhood
of the face–core interface—may distort the core nonlinearly such that the as-
sumptions used previously may need updating. Higher order bending models
have been developed [18] and been applied in the literature to account for
stress concentrations in the vicinity of lateral point loads [19,20] and thermal
buckling studies [21]. In the current work, the core is also represented with
a higher-order bending model, so-called Reddy–Bickford Theory (RBT). This
distributes the distorting displacement of the previously plane section as a
cubic polynomial function [22], leading to a quadratic shear strain distribu-
tion in the cross-section that diminishes to zero at the top and bottom surface
which maintains compatibility with the adjacent face plates. The aim of the
current work is to evaluate the mechanical accuracy of the elastic behaviour
from models formulated with the RBT approach and with Timoshenko Beam
Theory (TBT) approach, the latter being used in the earlier work outlined
above.

The current paper begins with the development of the analytical model for
the sandwich strut with RBT bending in the core material. A system of non-
linear ordinary differential equations and integral constraints is derived from
minimizing the total potential energy using variational principles. This sys-
tem of equations is solved within the numerical continuation software package
Auto97 [23]. The results from the analytical models developed with RBT
currently and TBT previously are compared against each other and validated
in conjunction with a purely numerical model formulated within the commer-
cial nonlinear finite element software Abaqus [24]; the latter being used as a
benchmark. The practically significant results are presented with discussions
on the effects of changing various physical parameters that significantly affect
the behaviour; particular emphasis is placed on the relative validity of each
analytical model and the parameter ranges where the principal differences lie.
Conclusions are then drawn.

2 Definitions

The fundamental interactive buckling model previously developed [12,6] adopts
a Timoshenko Beam Theory (TBT) approach, which deviates from Euler–
Bernoulli Theory (EBT: also known as “Engineer’s Bending Theory”) by re-
laxing the constraint of orthogonality between the deflected neutral axis of
bending and the plane section. This introduces shear strains in the core ma-
terial during bending that are neglected in EBT and have been shown to be
vital in allowing the prediction of interactive buckling in sandwich struts that
leads to localization from an analytical perspective. A higher order bending
theory such as the Reddy–Bickford Theory (RBT) takes this a step further
by relaxing the assumption that forces plane sections to remain plane [22].
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This makes the theory more suitable for structural elements with deep cross-
sections or softer cores, allowing the axial displacements to vary nonlinearly
over the depth of the section as shown in Figure 2. More importantly, a higher
order theory such as RBT satisfies the vanishing shear strain condition at
the top and bottom flange while having a quadratic distribution through the
depth of the cross-section [25,26].

dW

dx

θ(x)

dW

dx
= θ(x)

dW

dx

θ(x)

dW

dx
�= θ(x)

dW

dx

θ(x)

dW

dx
�= θ(x)

(a) Euler-Bernoulli beam theory (b) Timoshenko beam theory (c) Reddy-Bickford beam theory

Fig. 2. Outline of the three bending theories. (a) EBT, (b) TBT, and (c) RBT

The dimensions of the sandwich strut and the coordinate system are shown in
Figure 3. The model assumes isotropic face plates of Young’s modulus E and

t

t

x

P
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b

cL

Elevation: Cross-section:

Fig. 3. The sandwich panel in elevation and cross-section.

Poisson’s ratio ν. For the core material, provision for orthotropic behaviour is
included by allowing different Young’s moduli and Poisson’s ratios in the x and
y directions—Ex and νx with Ey and νy respectively. The overall (Euler-type)
buckling mode is represented by two generalized coordinates that comprise
the amplitudes of a sway and a tilting mode. These functions are taken as
trigonometric in x with dimensionless amplitudes of qs and qt respectively for
the sway and tilt components, thus:

W (x) = qsL sin
πx

L
, θ(x) = qtπ cos

πx

L
, (1)

and the overall mode components are shown in Figure 4. The expressions for
W and θ are given for the buckling mode of a simply-supported strut, found
by solving the linear Euler strut equation [27], which is the most common
support case. Alternative support conditions can easily be implemented by
changing W and θ to reflect these and the same procedure can henceforth be
followed. The corresponding shear strain, assumed to be zero in EBT, is the
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b

Fig. 4. Modal descriptions. Overall—top: sway mode W (x); middle: tilt mode θ(x).
Local—bottom: u(x) and w(x) becoming non-zero beyond the second bifurcation.
The generalized coordinate Δ gives the purely compressive strain arising from the
axial load P .

difference between the slope of the deformed neutral axis due to the lateral
deflection W (x) and the angle of tilt θ(x) such that:

γxy =
dW

dx
− θ (2)

The localized mode, w(x), is an initially unknown function that is maximum
at the bottom face plate and is assumed to decrease linearly to zero at the
top face. The associated local in-plane displacement u(x), which arises from
the formation of w, follows the same distribution, thus:

uc(x, y) =

(
b− 2y

2b

)
u(x), wc(x, y) =

(
b− 2y

2b

)
w(x), (3)

where uc and wc represent the distribution of the local modes through the core
and are assumed to be linear in y; this is a pragmatic choice as it had been
found in preliminary studies that a cubic distribution in y, which would be
similar to RBT, yielded similar results to the linear case. Hence, for simplicity
the linear distribution is kept as in earlier work [12]. The localized mode
components are shown in the final diagram of Figure 4.

It should also be noted that displacement functions accounting for localized
buckling in the top face plate are not considered in the modelling. The rea-
son is that for the panels considered presently, overall buckling is assumed
to occur first since the critical load for local buckling for the face plates is
usually greater. However, even in the cases where local buckling or wrinkling
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occurs first, previous studies [13,16] have clearly shown that the overall buck-
ling is triggered almost instantaneously leading to interactive buckling and
localization in the way described by the current model.

3 Reddy–Bickford Theory and Model Formulation

The formulation of the model follows the procedure outlined in [6], but it now
incorporates a new expression for the in-plane tilt displacement during overall
buckling, uR:

uR(x, y) = −y

{
θ(x) +

4y2

3b2

[
∂W

∂x
− θ(x)

]}
. (4)

Note that the first component of the tilt displacement is the same as for the
TBT model whilst the second component provides the nonlinear variation that
releases the common “plane sections remain plane” assumption. Differentiat-
ing this expression with respect to y gives the new angle of tilt θR that has a
quadratic distribution in y and depends on both qs and qt:

θR(x, y) = −
∂uR

∂y
= θ(x) +

4y2

b2

[
∂W

∂x
− θ(x)

]
. (5)

It is worth noting that to avoid further complication to the model the distribu-
tions of uc and wc remain linear through the core depth, as given in Equation
(3).

For the nonlinear buckling problem, the total potential energy V of the strut
under axial loading is formulated. It is composed of the strain energy U minus
the work done PE , where P is the axial load and E is the total end-shortening
at the point of load application. The strain energy is integrated over the volume
of the strut and is derived from bending and membrane strains in the face
plates together with axial, transverse and shear strains in the core. In the
current model it is assumed that the core behaves linearly elastically upon
loading; nonlinearities arising from the core constitutive behaviour under axial
compression [12] and from face–core delamination [14] are left for further work.

The total potential energy V of the current system is accumulated in a hybrid
formulation using continuous functions and generalized coordinates. This is
minimized using variational principles [28,29] to produce a system of equilib-
rium equations comprising ordinary differential and integral equations. The
initial bifurcation point can be found through classical linear eigenvalue anal-
ysis. Moreover, solving the nonlinear equilibrium equations simultaneously
allows the position of the secondary bifurcation to be found together with the
post-buckling path and its associated localized buckling mode.
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3.1 Strain energy

3.1.1 Face plates

There are two components of strain energy stored within the face plates: from
bending and membrane action. The former component arises from the local
and global curvature of the face plates along the strut:

Ub =
EI

2

∫ L

0

(
2Ẅ 2 + ẅ

2

)
dx. (6)

where EI is the flexural rigidity of one face plate about its local minor axis,
hence:

EI =
Ect

3

12 (1− ν2)
. (7)

Note that the localized mode w is confined only to one face and dots denote dif-
ferentiation with respect to x. The membrane strain energy component arises
from the axial strain in the two face plates due to squashing and subsequent
buckling:

Um = D

∫ L

0

(
ε
2

xb + ε
2

xt

)
dx, (8)

where D = Etc/2 with εxt and εxb being the axial strains in the top and
bottom face plates respectively. The axial strain in the top face is given by:

εxt = −
b

2
θ̇ −

b

6

(
Ẅ − θ̇

)
−Δ, (9)

with terms accounting for pure squash strain Δ and overall buckling, while
for the bottom face plate, which is susceptible to local buckling:

εxb =
b

2
θ̇ +

b

6

(
Ẅ − θ̇

)
−Δ + u̇ +

1

2
ẇ

2
, (10)

there are two additional von Kármán strain terms that are familiar from large
deflection plate theory [27].

3.1.2 Core material

The strain energy stored in the core has three sources: axial, transverse and
shear strains. Firstly, both the axial and transverse strain contributions are
considered. These arise from the direct strains where conditions of plane stress
(σz = τxz = τyz = 0) and orthotropy are assumed; the latter assumption giving
the following reciprocal relationship between the Young’s moduli Ex and Ey

and the Poisson’s ratios νx and νy:

Exνy = Eyνx. (11)
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Therefore, the core energy from axial strains is:

Uca =
c

2 (1− νxνy)

∫ L

0

∫ b/2

−b/2

(
Exε

2

x + Eyε
2

y + 2νxEyεxεy

)
dy dx. (12)

where:

εx = −yθ̇ −
4y3

3b2

(
Ẅ − θ̇

)
−Δ + u̇c +

1

2
ẇ

2

c , (13)

and

εy = −νxΔ +
∂wc

∂y
. (14)

It should be noted that the first term in Eq. (14) is necessary to remove spuri-
ous terms in the total potential energy that would arise if the Poisson’s ratio
effect under pure compression is not considered [6]. The other contribution
to the strain energy in the core Ucs comes from the shear strain γxy present,
where:

Ucs =
c

2

∫ L

0

∫ b/2

−b/2

Gcγ
2

xy dy dx. (15)

The quantity Gc is the shear modulus of the core material and the shear strain
γxy contains both overall and local components:

γxy =
∂W

∂x
− θR +

∂wc

∂x
+

∂uc

∂y
. (16)

Note that there are no von Kármán shear strain terms present in this last
expression, this is because these are always zero for cylindrical bending cases.

3.2 Work done by load

The work done comprises the axial load P multiplied by the total end-shortening
E . The contributions come from pure compression, overall buckling and the
in-plane displacement due to local buckling:

PE = P

∫ L

0

(
Δ +

1

2
Ẇ

2 −
1

2
u̇

)
dx. (17)

3.3 Total potential energy

Integrating over the depth and assembling all the strain energy and work
done contributions, the total potential energy V is given as an integral over

8
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the length of the strut.

V = Ub + Um + Uca + Ucs − PE

=
∫ L

0

{
D

[
(2qt + qs)

2 b2π4

9L2
sin2

πx

L
+ (2qt + qs)

bπ2

6L
sin

πx

L

(
ẇ

2 + 2u̇
)

+ 2Δ2

+
1

4
ẇ

4 + u̇ẇ
2 − 2u̇Δ− ẇ

2Δ + u̇
2

]
+

EI

2

[
q
2

s

2π4

L2
sin2

πx

L
+ ẅ

2

]

+
Cx

1260

[(
5q2

s + 32qsqt + 68q2

t

) b2π4

L2
sin2

πx

L
+ 315u̇ẇ

2 + 420
(
u̇

2 − ẇ
2Δ
)

− 21 (qs + 4qt)
bπ2

L
sin

πx

L

(
ẇ

2 + 2u̇
)

+ 1260(Δ2 − u̇) + 63ẇ4

]

+ Cyνx

[
νxΔ

(
u̇ +

1

3
ẇ

2 −Δ
)
−

u̇w

b
Δ−

1

3b
wẇ

2

]
+

1

2
kw

2

+ G

[
(qs − qt)

2 8π2

15
cos2

πx

L
+ (qs − qt)

2π

3

(
ẇ −

2u

b

)
cos

πx

L
+

1

3
ẇ

2

−
uẇ

b
+

u2

b2

]
− P

[
Δ + q

2

s

π2

2
cos2

πx

L
−

1

2
u̇

]}
dx.

(18)

For brevity, some of the material and geometric property terms have been
combined into the quantities given below:

Cx =
Exbc

2 (1− νxνy)
, Cy =

Eybc

2 (1− νxνy)
, k =

2Cy

b2
, G =

Gcbc

2
. (19)

The total potential energy is minimized using the calculus of variations [29] by
employing the procedure detailed in Hunt and Wadee [12]. The first variation
of V vanishes by assuming simply supported boundary conditions for w where
w(0) = ẅ(0) = w(L) = ẅ(L) = 0, while for u more complicated conditions
need to be invoked by matching the applied stress at the ends; for instance,
the condition for x = 0 is:

u̇(0)
(
2D +

2Cx

3

)
+ ẇ

2(0)
(
D +

Cx

4

)
−Δ

(
2D + Cx − Cyν

2

x

)
+

P

2
= 0, (20)

and a similar condition exists for x = L.

More importantly, the minimization yields a system of two non-autonomous
coupled ordinary differential equations (ODEs)—a fourth-order ODE in w

and a second-order ODE in u—along with three integral equations that are
obtained by differentiating V with respect to the generalized coordinates qs,

9
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qt and Δ respectively and setting those expressions to zero:

EI
....
w + G

[
(qs − qt)

2π2

3L
sin

πx

L
+

u̇

b
−

2

3
ẅ

]
+

2Cy

3
νx

[
ẇ2

b
− ẅ

(
νxΔ−

w

b

)]

+ D

[
(2qt + qs)

bπ2

3L

(
sin

πx

L
ẅ +

π

L
cos

πx

L
ẇ

)
+ 2ẅΔ− 2 (ẇü + ẅu̇)− 3ẅẇ

2

]

+ Cx

[
2

3
ẅ −

3

5
ẇ

2
ẅ −

Δ

2
(ẇü + ẅu̇) + (qs + 4qt)

bπ2

30L

(
sin

πx

L
ẅ + ẇ

π

L
cos

πx

L

)]

−
Cyνx

b

(
u̇ +

ẇ2

3

)
+ kw = 0,

(21)

(
2D +

2

3
Cx

)
ü + D

[
2ẇẅ − (qs + 2qt)

bπ
3

3L2
cos

πx

L

]
−

Cy

b
νxẇ + Cx

[
1

2
ẇẅ

−
bπ

3

30L2
(qs + 4qt) cos

πx

L

]
+

G

b

[
ẇ +

4

3π
(qs − qt) cos

πx

L
−

2u

b

]
= 0,

(22)

∫ L

0

{
2Gπ

3
cos

πx

L

(
ẇ −

2u

b

)
−

(
D

6
+

Cx

60

)
bπ2

L

(
ẇ

2 + 2u̇
)

sin
πx

L

}
dx +

EIπ4

L

+
Db2π4

18L
(2qt + qs) +

Cxb
2π4

1260L
(16qt + 5qs) +

8GLπ2

15
(qs − qt)−

PLπ2

2
qs = 0,

(23)∫ L

0

[
D

3
+

Cx

15

]
bπ2

L
sin

πx

L

(
2u̇ + ẇ

2
)

dx +
Db2π4

9L
(2qt + qs)

+
Cxb

2π4

315L
(17qt + 4qs) +

8GLπ2

15
(qt − qs) = 0, (24)

P = Δ
[
4D + 2Cx − 2Cyν

2

x

]
+
∫ L

0

[(
Cyν

2

x − Cx

)(
u̇ +

ẇ2

3

)
− 2D

(
u̇ +

ẇ2

2

)]
dx.

(25)

Assuming that the overall mode occurs first, by setting w(x) and u(x) to zero,
a linear eigenvalue analysis can be performed that yields the critical load.
The following expressions from the RBT model differ significantly from the
equivalent expressions from the TBT model owing to the presence of the sway
mode W in the membrane energy:

q̃s

[
1−

5D̃π2φ

24G̃
−

C̃xπ
2φ

42G̃

]
= q̃t

[
1 +

5D̃π2φ

12G̃
+

17C̃xπ
2φ

168G̃

]
, (26)

P̃C =
π2

8G̃φ
+

[
D̃π2φ

18G̃
+

C̃xπ
2φ

252G̃
+

8

15

]
+

A1

A2

[
D̃π2φ

9G̃
+

4C̃xπ
2φ

315G̃
−

8

15

]
, (27)
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where:

A1 =

[
1−

5D̃π2φ

24G̃
−

C̃xπ
2φ

42G̃

]
, A2 =

[
1 +

5D̃π2φ

12G̃
+

17C̃xπ
2φ

168G̃

]
. (28)

The terms with tildes are dimensionless quantities of their respective terms,
thus:

q̃s =
bπ2

L
qs, q̃t =

bπ2

L
qt, D̃ =

DL2

8EI
, G̃ =

GL3

8EIb
,

P̃ =
P

2G
, C̃x =

CxL
2

8EI
, C̃y =

CyL
2

8EI
, φ =

b

L
.

(29)

The system of nonlinear equations for the RBT model are solved using the
same software as for the TBT model namely the numerical continuation pack-
age Auto97 [23], which is well-known for its capability to pinpoint bifurcation
points and plot out multiple branching paths as model parameters are var-
ied. To reduce the computational cost, symmetry in the physical system is
exploited in solving the equations for only half the length of the strut. This is
achieved by employing the following conditions at midspan:

ẇ(L/2) =
...
w(L/2) = u(L/2) = 0. (30)

Obviously as a result of the above conditions any possible asymmetric solutions
of the nonlinear ordinary differential equations are automatically neglected.
This is not alarming as previous studies [13] have shown that the symmetric
solution has the lowest load at which interactive buckling occurs. Applying
continuation principles from the critical point (P = PC) by introducing a small
perturbation to the amplitude of tilt, qt, a secondary bifurcation is identified
which leads to buckle localization. Once identified, continuation is applied
again, this time by varying the axial load P to trace out the new equilibrium
path of secondary buckling. Care needs to be exercised when searching for the
secondary bifurcation since if the step-size is too large, there is a possibility
that the solver might jump over the most severe secondary buckling mode
and as a result a higher energy localized buckling mode may be captured.
This is an important feature of this class of nonlinear model; it is well known
that the equations of a post-buckled axially-loaded cylindrical shell [30] and a
strut on a softening foundation [11,31] have a multiplicity of possible solutions,
only one of which is the energy minimizer and hence the practically observed
solution. Once the practical localized mode is found, homotopy—the use of
numerical continuation in varying physical parameters—is used extensively to
find post-buckling equilibrium solutions for different strut configurations.
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4 Results and Discussion

4.1 Material and geometrical properties

The set of properties for the sandwich strut is given below and is in accordance
with Hunt and Wadee [12] as a practical configuration for a strut in order to
draw comparisons with the previous models reported in the literature.

Face plate Young’s Modulus: E = 68900 N/mm2,
Face plate Poisson’s ratio: ν = 0.3,
Face plate thickness: t = 0.5 mm,
Core Young’s modulus: (in x and y) Ex = Ey = 199 N/mm2,
Core Poisson’s ratio: (in x and y) νx = νy = 0.2,
Core Shear modulus: Gc = 83 N/mm2,
Core depth (range): b = 5.1 mm to 10.2 mm,
Strut length (range): L = 100 mm to 508 mm.

The strut width c can be cancelled out from the governing equations without
any loss in accuracy, hence the width c has been taken to be unity and the
dimensional axial forces are given as a force per unit width in the results
below. The length of the strut, L, and the core depth b are left as the principal
parameters to vary.

4.2 Equilibrium paths

The equilibrium load versus end-shortening paths of the two analytical models
for the same strut are shown in Figure 5(a), plotting the normalized load
P/PC against the normalized end-shortening, E/L. From these results it is
evident that the two models are well correlated with minor differences in the
initial stiffness. More importantly, the RBT model predicts the secondary
bifurcation before the TBT model, which can be attributed to a more flexible
representation of the cross-sectional deformation. This greater flexibility in
shear leads indirectly to larger axial stresses in the face plates, which exceeds
the compressive stress needed to cause local buckling at midspan significantly
earlier than the equivalent TBT model. As a result of the increase in the axial
strains in the face plates, there is a redistribution of shear strain through the
depth of the strut as shown in Figure 5(b). Having zero shear strain at the
edges of the core might not be entirely accurate but a good approximation for
the case of thin face plates, as presented in the current formulation, especially
where the local centroid of the face plates is taken at the edge of the core.
The higher order theory for core bending is more suitable for sandwich panels
with deeper cores as it better accounts for the local nonlinear deformations of
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Fig. 5. (a) Equilibrium paths for a strut of length 100 mm and depth 5.08 mm for
the two models. (b) Shear strain distribution through the core depth of the two
models at the same load in the post-buckling range (P = 0.9PC), as expected the
RBT model shows a parabolic distribution of γxy with depth as opposed to the
constant shear strain given by the TBT model. Note that the dashed lines represent
the TBT model and the solid lines represent the RBT model.

the cross-sectional planes in the neighbourhood of the extreme fibres, which
can be seen in physical experiments [10] and from finite element simulations
presented below (see Figure 11).

4.3 Interactive buckling

Beyond the secondary bifurcation, a localized buckle akin to wrinkling ap-
pears purely on the bottom face plate at the location of maximum compressive
stress. This effect manifests itself as w(x) and u(x) become non-zero and grow
as the axial load carrying capacity decreases from P C, as shown in Figure 6.
The evolution of the two local modes for the RBT model is similar to the
one observed in the results of the TBT model, which is triggered at a slightly
lower critical load but at a larger amplitude of sway qs. The modes of the two
analytical models are compared at different stages in the post-buckling path
(Figure 7). During the early stages of post-buckling, both the amplitude and
the so-called “wavelength of localization” λ—the distance between the first
extrema on either side of midspan, see Figure 8 [10]—are smaller for TBT
compared to the equivalent values for RBT. Nevertheless, as the path evolves
the difference in the modes from the two models is reduced as both the wave-
length and the maximum amplitudes of w converge; a similar trend is followed
by the u(x) mode. An explanation for the results of the two models converging
at the advanced post-buckling state is probably due to the effect of the large

13



Acc
ep

te
d m

an
usc

rip
t Fig. 6. Mode evolution versus the falling axial load for (a) w(x) and (b) u(x). In

this case: L = 100 mm and b = 5.08 mm.

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

x (mm)

w
/b

(a)

RBT
TBT

0 20 40 60 80 100
−0.04

−0.02

0

0.02

0.04

x (mm)

u/
b

(b)

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

x (mm)

w
/b

(c)

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

x (mm)

u/
b

(d)

0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

x (mm)

w
/b

(e)

0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

x (mm)

u/
b

(f)

Fig. 7. The evolution of the local modes w(x) and u(x) for the two modes for
different stages in the unloading path (a)–(b) P/PC = 0.9, (c)–(d) P/PC = 0.7 and
P/PC = 0.6. In this case: L = 100 mm and b = 5.08 mm.
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Fig. 8. Definition of localized buckle wavelength λ and maximum wave height H.

amount of lateral deflection, attributed to overall buckling, which then domi-
nates the behaviour. The growth of the sway amplitude qs reduces the relative
effect of the nonlinear in-plane deformation field—the main difference in the
modelling—which grows at a much smaller rate. This progressively reduces
the relative difference in the response between the two models.

4.4 Parametric study

4.4.1 Length variation

Increasing the length L of the strut configuration given in §4.1 increases the
space between the critical and secondary bifurcations as overall buckling be-
comes dominant. For lengths ranging from 100 mm to 508 mm (φ = 0.0508→
0.0100) localized buckling is triggered at a larger normalized end-shortening
with increasing levels of snap-back being observed as the aspect ratio φ is
reduced. The wavelength of localization λ remains relatively constant. As the
total length increases the buckle appears more localized; an extra wave peak
or trough is observed giving rise to a quasi-linear relationship between the
length and the number of peaks and troughs clearly visible in the localized
mode, see Figure 9(a).

4.4.2 Core depth variation

The core depth is probably the most informative parameter to vary in the
current study, as the objective of developing a higher order theory model such
as RBT is to account for nonlinear cross-sectional deformations. As the depth
increases the effect of the higher order deformation, the assumption of plane
sections remaining plane is less likely to hold even approximately. This is also
applicable for softer cores where the axial stresses are principally concentrated
at the much stiffer extreme fibres and comparatively less strain energy is stored
in the core.

Using the previous strut configuration for three different depths (b = 5.6 mm,
6.6 mm and 10.2 mm), the interaction between the overall and local mode
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Fig. 9. (a) The quasi-linear relationship between the number of half-sine waves in
localized buckling and the length for the sandwich strut with b = 5.08 mm. (b)
Local versus overall mode for sandwich struts (L = 100 mm) with varying depth
showing a comparison in the response between TBT (dashed line) and RBT (solid
line) models. The maximum wave height H is defined in Figure 8 and the secondary
bifurcation occurs where the curves intersect the abscissa.

is examined. The pattern shown in Figure 9(b) clearly indicates the increase
of the sway mode at the secondary bifurcation, with increasing depth. In all
cases, comparing the RBT model with the TBT model, the amount of the sway
mode qs before the secondary bifurcation is triggered is again always smaller
and the subsequent evolution of the localized mode occurs earlier. The graph
also shows that the comparison between RBT and TBT becomes worse as the
core depth becomes relatively larger; this is to be expected since the RBT
model should be superior for deeper cores owing to its improved modelling of
the cross-section distortion.

4.5 Validation

The results of the current research work are based on analytical formulations
of perfectly elastic struts. However, no provision for delamination and hence no
discontinuity in the stress distribution at the face–core interface is considered.
The analytical models have been validated by means of the Finite Element
(FE) method using the general purpose commercial software Abaqus [24].
The sandwich strut with the geometric and material properties given in §4.1
was modelled as a 2D continuum with the plane stress assumption. The core
material was discretized with the two-dimensional solid element CPS4R, which
is a 4-noded bilinear element with reduced integration and hourglass control.
Mesh convergence studies revealed that ten elements through the core thick-
ness with an aspect ratio of unity accurately capture the structural response
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of the strut. Regarding the discretization of the face plates, two alternative
modelling approaches were considered. The first approach involved modelling
the face plates with plane stress solid elements, while the second approach
consisted of modelling the face plates as stringers bonded to the edges of the
existing core while specifying suitable engineering properties. The 2D linear
Timoshenko beam element B22 was used to discretize the stringers.

Although the first approach is conceptually simpler and easier to implement, it
is computationally expensive as several layers of plane stress solid elements are
needed to discretize each face plate in order to avoid shear locking. Owing to
the small thickness of a face plate (t = 0.5 mm), in conjunction with the large
length and the need to maintain a reasonable element aspect ratio, the first
approach results in an unduly large number of elements. The second approach
is less computationally demanding as only one beam element through the
thickness of the face plate is used without compromising accuracy and has
therefore been implemented currently.

As in the analytical model, symmetry has been utilized and only half the
length of the strut has been modelled in the FE simulations by applying
suitable boundary conditions along the axis of symmetry at the midspan of
the strut. Simple pinned conditions were simulated by restraining the degree
of freedom perpendicular to the strut’s axis at the mid-height of the loaded
edge. Displacement control was utilized to apply loading by prescribing a
displacement at all the nodes of the loaded edge of the strut; the corresponding
axial force was derived from the reaction forces at the strut’s mid-height,
where symmetry boundary conditions were applied. No further constraints
were applied to the model; the lateral expansion of the cross-sections due to
the Poisson’s ratio effect and the non-planar deformation of the strut’s cross-
sections were free to develop.

It is well known that FE packages cannot analyse perfect systems in the post-
buckling range without a small perturbation [32]; hence very small imper-
fections in the form of the lowest buckling mode shape were incorporated in
order to give the closest possible comparison to the perfect case from the an-
alytical model. A linear eigenvalue analysis was initially conducted to extract
the lowest buckling mode shape. This was thereafter used as an initial per-
turbation in the model geometry in the subsequent geometrically nonlinear
analysis, employing the modified Riks method [24]. An imperfection ampli-
tude of L/10000 was selected as it was sufficient to trigger instability, yet
small enough to give results close to the perfect case. It should be noted that
although no local imperfection was explicitly incorporated in the model, a sec-
ondary instability and buckle pattern localization was subsequently observed
from a self-generated local imperfection that evolved during the post-critical
analysis.
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Comparison of the finite element results with the Auto97 results of the RBT
model reveals excellent agreement at the full range of the elastic response
including initial stiffness, the critical load, the triggering of localized buckling
and the post-buckling path as shown in Figure 10. The TBT result is also
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Fig. 10. The equilibrium paths for a strut of length 100 mm for the two models and
FE simulation: (a)–(b) strut depth 5.1 mm; (c)–(d) strut depth 10.2 mm. Note that
Wmax is given by qsL, see Equation (1).

plotted to emphasize the improvement in the response of the model both
in the critical load estimation and the post-buckling response. A deformed
strut from the Abaqus model, whose post-buckling results are presented in
Figure 10(a)–(b), is shown in Figure 11.

4.5.1 Critical loads

A common feature of all the analytical models is the underestimation of the
critical load at the critical bifurcation as established by the method described
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Fig. 11. A snapshot and close-up of the Abaqus model of a sandwich panel of
length 100 mm and depth 5.1 mm during unloading exhibiting interactive buckling
(P = 0.6PC). Note the non-planar profile of the originally plane sections in the
localized buckling region.

in Allen [9] for thin face plates and weak cores.

P
C
Allen =

PE

1 + (PE/PS)
, (31)

where:

PE =
Dπ

2

L2
(b + t)2

, PS =
Gcc

b
(b + t)2

. (32)

The reason for this is that the lever arm that was used to calculate the axial
strains in the faces was taken to be b/2, which simplifies the formulation con-
siderably but effectively calculates the strains at the face–core interface rather
than the local face plate neutral surface. For a strut of the above configuration
(b/t = 10) and L = 200 mm, the difference in P

C is approximately 14% while
for a configuration approaching to b/t = 20 the difference drops to less than
4% (see Table 1). The model could be improved to evaluate the critical load
more accurately by altering the in-plane tilt displacement field, uR(x, y) to:

uR(x, y) = −y

{
θ(x) +

4y2

3 (b + t)2

[
∂W

∂x
− θ(x)

]}
, (33)
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Percentage difference in PC L/b = 39.4 L/b = 28.1 L/b = 19.7

compared to Allen (1969) b/t = 10 b/t = 14 b/t = 20

TBT model 17.1% 14.6% 9.1%

RBT model 14.2% 8.7% 3.7%

modified RBT 0.7% 1.8% 3.4%

Table 1
Comparison between critical loads

where y ranges from:

−(b + t)/2 � y � (b + t)/2. (34)

Changes would also need to be made to the vertical distribution of the core
in-plane deformation functions, wc and uc, leading to longer and more com-
plicated coefficients in the ordinary differential equations. However, as the ob-
jective of the analytical approach was to capture the localized post-buckling
response, this change is deemed not to be necessary even though it is appreci-
ated that the applicability of the model depends to some extent on the level of
acceptable percentage difference in the estimation of the critical load. Another
option is to consider that the critical load results provided by the model are
more suitable for a strut with a core of effective thickness b′, where b′ = b− t,
since the axial stresses in the core are actually very small and the reduction in
the total strain energy would be minimal. Such an approach would reduce the
error further, effectively matching the Allen’s critical load. It should be noted
that the second FE modelling approach described in the previous subsection—
modelling the face plates with stringers—is actually in accordance with the
assumptions regarding the effect of the face thickness made in the analytical
model; this partly explains the excellence in the comparisons between the FE
and TBT models.

4.5.2 Interactive buckling

In addition, the comparison between the RBT and the FE models for the lo-
calized buckling modes of the bottom face plate with respect to the localized
wavelength and the lateral displacement at midspan is excellent. This corre-
lation improves for deeper beams as observed in Figure 12, highlighting the
strength of the RBT model for deeper sandwich struts in particular. The de-
flected shapes of the more compressed face plate in Figure 12 were compared
at different stages of post-buckling. The effective match in the amplitude of
localization between the RBT and FE models at early post-buckling can be
attributed to the close proximity of the secondary bifurcation points. The sec-
ondary bifurcation for the TBT model is found to occur at a lower load and
therefore the localized buckling mode initially has a much smaller amplitude,

20



Acc
ep

te
d m

an
usc

rip
t 

0 10 20 30 40 50
−0.4

−0.2

0

0.2

0.4

x (mm)

w
 (m

m
)

(a)

0 10 20 30 40 50
−0.5

0

0.5

x (mm)

w
 (m

m
)

(d)

0 10 20 30 40 50
−0.5

0

0.5

x (mm)

w
 (m

m
)

(b)

0 10 20 30 40 50

−0.5

0

0.5

x (mm)

w
 (m

m
)

(e)

0 10 20 30 40 50
−1

−0.5

0

0.5

1

x (mm)

w
 (m

m
)

(c)

0 10 20 30 40 50

−1

0

1

x (mm)

w
 (m

m
)

(f)

Fig. 12. The local mode at different stages in post-buckling for a strut of length
100 mm and depth of 5.1 mm for (a)–(c) and 10.2 mm for (d)–(f). (a)P/PC = 0.95,
(b) P/PC = 0.9, (c) P/PC = 0.7, (d) P/PC = 0.9, (e) P/PC = 0.85, (f)
P/PC = 0.7. TBT is absent in (a) and (d) as its localized mode is triggered at
a lower load level. The results for the RBT model is represented by the thick solid
line, the TBT model by the dashed line and the FE model by the thin solid line.

see Figures 12(b) and 12(e), when compared to both the RBT and FE mod-
els. Further along the post-buckling path, the results for the analytical models
have more significant numbers of peaks and troughs away from midspan. This
introduction of more peaks and troughs that spread towards the ends of the
strut produces a slightly stiffer equilibrium path when compared to the FE
model. Conversely, the FE model shows the localization being confined to a
limited number of peaks and troughs that only increase in amplitude, not in
number. The difference between the post-buckling paths of the FE and RBT
models is evaluated by comparing the load levels of each path and quantifying
their difference as a percentage of the critical load. It has been found that the
overestimation, or difference, of the load level at various stages in post-buckling
is close to 3% in early post-buckling (0.9 � P/PC � 1.0), whilst further down
the post-buckling path (P/P C ≈ 0.6), where the strut has lost a significant
proportion of its original strength, the error increases to approximately 5%,
which remains an excellent comparison.
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A rational explanation for the slightly softer response of the FE model in the
advanced post-buckling state is connected with the fact that the change in the
local cross-sections is accounted for in the mechanical response, whereas the
analytical models assume that the core depth remains at b. To account for this
in the analytical model would be quite cumbersome as the limits of integration
in y for the core energy and the lever arm for the membrane energy would
have to be adjusted to account for the displacement w and the commensurate
change in the position of the cross-section neutral axis. This would introduce a
considerable number of new nonlinear terms that may improve the comparison
even more, but it is arguable whether any gains in accuracy would be only
marginal given that there are probably more important effects to consider such
as core material nonlinearities and plasticity in the faces or the core.

5 Concluding Remarks

An analytical model with higher order bending theories for the interactive
buckling of sandwich struts was developed. This was achieved by relaxing
the constraint of plane sections remaining plane under bending and allowing
the presence of a nonlinear shear strain distribution over the depth of the
strut. The model was compared against an existing analytical model that
uses the Timoshenko beam approach and validated against a nonlinear finite
element formulation. The validation shows excellent agreement between the
new analytical formulation and the purely numerical model for the full range
of elastic behaviour from critical buckling through to the far post-buckling
range.

The results of the comparative study between the previous and current ana-
lytical formulations have shown that the current model significantly improves
the estimation of the critical load and, more importantly, provides a better
prediction within the nonlinear buckling range. The location of the secondary
instability that leads to interactive buckling, the resulting post-buckling path
and the mode profile that localizes on the more compressed face plate after
overall buckling all show that the current model surpasses the previous one
in accuracy. It is worth noting though that the difference in the responses of
the two models is more important in the early stages of post-buckling; the
superiority of the current model is greater for struts with larger core depths
and those with a larger difference in the elastic moduli between the face plates
and the core.

Work is now continuing to develop the higher-order analytical model further to
incorporate combinations of axial force and moment, the effect of imperfections
and the effects of using of functionally graded core materials.
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