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Continuum damage models with

non-conventional finite element formulations

C. M. Silva ∗∗ and L. M. S. S. Castro ∗

Departamento de Engenharia Civil e Arquitectura, Instituto Superior Técnico,
Avenida Rovisco Pais, 1049-001 Lisbon, Portugal

Abstract

In recent years, some research effort has been devoted to the development of non-
conventional finite element models for the analysis of concrete structures. These
models use continuum damage mechanics to represent the physically non-linear be-
havior of this quasi-brittle material. Two alternative approaches proved to be robust
and computationally competitive when compared with the classical displacement
finite element implementations. The first corresponds to the hybrid-mixed stress
model where both the effective stress and the the displacement fields are indepen-
dently modeled in the domain of each finite element and the displacements are
approximated along the static boundary, which is considered to include the inter-
element edges. The second approach corresponds to a hybrid displacement model.
In this case, the displacements in the domain of each element and the tractions
along the kinematic boundary are independently approximated. Since it is a dis-
placement model, the inter-element boundaries are now included in the kinematic
boundary. In both models, complete sets of orthonormal Legendre polynomials are
used to define all approximations required so very effective p-refinement procedures
can be implemented. This paper illustrates the numerical performance of these two
alternative approaches and compares their efficiency and accuracy with the classical
finite element models. For this purpose, a set of numerical tests is presented and
discussed.
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∗ email:luis@civil.ist.utl.pt,phone:+351+218418253∗∗email:cmsilva@civil.ist.utl.pt,phone:+351+218418356

Preprint submitted to Elsevier Science



Acc
ep

te
d m

an
usc

rip
t 

1 Introduction

The main objective of the research work reported in this paper is the develop-
ment of robust and computational competitive numerical techniques for the
physically non-linear analysis of concrete structures.

The non-conventional hybrid and mixed finite element formulations used in
this work were first developed by Freitas et al [16] during the nineties. Three
main classes are defined, namely the hybrid-mixed, the hybrid and the hybrid-
Trefftz formulations. Two models are derived for each formulation, the dis-
placement and the stress models [45,5]. All formulations evolve directly from
the first principles of mechanics, in particular equilibrium, compatibility and
constitutive relations. What distinguishes the three types of formulations is
the set of constraints enforced, a priori, on the domain approximations.

In recent years, some of these non-conventional finite element formulations
have been extended to non-linear analysis using isotropic damage models [39–
41,38,37].

In [39,34] the hybrid-mixed stress model based on the use of orthonormal
Legendre polynomials [32] is chosen. The stress and the displacement fields in
the domain of each element and the displacements on the static boundary are
independently approximated. None of the fundamental relations is enforced a
priori and all field equations are enforced in a weighted residual form, ensuring
that the discrete numerical model embodies all the relevant properties of the
continuum it represents. The Mazars’ isotropic model [26] is adopted and a
non-local integral formulation where the damage variable is taken as the non-
local variable is considered.

In [35,40] an improved hybrid-mixed stress model is presented and discussed.
The approximation of the stress field in the domain is here replaced by the
approximation of the effective stress field. The isotropic damage models pre-
sented by Comi and Perego [11,9] are now adopted using a non-local integral
model. An alternative technique based on the definition of an explicit enhanced
gradient model has also been tested [38].

The use of hybrid-Trefftz displacement formulations, where the displacements
in the domain of each element and the stress field on the kinematic boundary
are independently approximated, is reported in [36,41]. The main feature of
these models is that the functions used to approximate the displacements
are derived from bi-harmonic displacement potentials that solve the Navier
equations for a homogeneous elastic material [17,5]. Due to the strategy used
in their definition, only while concrete presents a linear elastic behavior the
model may be considered as a pure hybrid-Trefftz formulation. When this
behavior is no longer valid, it becomes an hybrid-displacement model.
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The use of hybrid-displacement models with Legendre polynomials is reported
in [38,42]. An isotropic model with a non-local integral formulation is again
adopted.

The main objective of this paper is to compare the numerical efficiency of the
two most promising non-conventional finite element formulations implement-
ing damage mechanics models, namely the hybrid-mixed stress model with
the independent approximation of the effective stress field and the hybrid-
displacement formulation with Legendre polynomials. A set of classical bench-
mark tests is chosen to illustrate the use of such models and to assess and
compare their numerical performance. Comparisons are also made with solu-
tions obtained with the classical finite element formulation, to prove that the
proposed models are competitive.

The numerical models are both incremental and iterative and are solved with
a modified Newton-Raphson method that uses the secant matrix. The models
are implemented in a C program and all tests were run on a Pentium IV
Machine, 2996 Mhz, running Linux.

This paper is organised as follows: the formulation of the problem and the
adopted damage models are presented in Section 2 and 3. The non-conventional
finite element formulations are described in Section 4. The numerical examples
are shown in Section 5 and finally, Section 6 summarises the main conclusions
and indicates future research work in this field.

2 Fundamental relations

Consider a domain V limited by the boundary Γ, referred to a cartesian coor-
dinate system. The static boundary Γσ (or Neumann boundary) and the kine-
matic boundary Γu (or Dirichlet boundary) are complementary sub-regions
of the boundary Γ, whereon traction-resultants and displacements are respec-
tively prescribed.

The body under analysis is assumed to be homogeneous and isotropic. The
model is geometrically linear and only static and monotonic loads are consid-
ered. No viscous, thermal or other non-mechanical dissipative effects are taken
into account.

The fundamental equilibrium equations may be written in a matrix form as
follows:

Dσ + b = 0 in V, (1)

Nσ = tγ on Γσ,
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where D is the differential equilibrium operator. The matrix N contains the
components of the unit outward normal vector to the static boundary Γσ. The
vector σ lists the independent components of the stress tensor. The vector b
represents the body force vector in the domain V and tγ corresponds to the
tractions vector on the static boundary Γσ.

The compatibility equations may be written in the following format:

ε = D∗u in V, (2)

u = u on Γu,

where D∗ is the differential compatibility operator, adjoint of the differential
equilibrium operator D since the model is geometrically linear. The vector ε
collects the independent components of the strain tensor and the vector u lists
the independent components of the displacement field. The vector u denotes
the prescribed displacements on the boundary Γu.

The constitutive relation depends on the damage model adopted, as detailed
in Section 3.

3 Non-local Damage Model

The mechanical behavior of quasi-brittle materials such as concrete, is char-
acterised by the development of micro-cracks and subsequent evolution to
localised macro cracking. The Continuum Damage Mechanics models describe
the evolution of the mechanical properties of the continuum as cracking devel-
ops. This type of constitutive models are able to describe, with a continuum
approach, some of the material properties observed in experiments, such as
global softening, stiffness degradation, anisotropy and development of inelastic
deformations [43,27,23,18,10].

In this paper, two different damage models are considered. The first one
(Model 1) corresponds to a simple isotropic continuum damage model with
only one damage variable used e.g. in the works of [25,11,12]. The second model
(Model 2) considers two independent damage variables and was introduced by
Comi and Perego in [9,10,7]. In both models, plastic strains are neglected. The
two adopted models are presented summarily in Tables 1 and 2.

The strain softening behavior is well known to produce strain localization with
consequent dependence on the data of the finite element model, as for instance
the dependence on the mesh and on the degrees of the approximation func-
tions [1,21]. To overcome this problem, several regularisation techniques are
proposed in the literature, in particular non-local integral [33,2] and gradient-
enhanced damage formulations [29,6]. Following Pijaudier-Cabot and Bažant
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[33], the present work assumes a non-local integral analysis for both damage
models. When the model with one damage variable is used, the strain en-
ergy release rate is adopted as the non-local variable. When using the second
model, the strain invariants involved in the definition of the constitutive laws
are defined as non-local variables.

As defined in [33], a generic non-local variable v is computed considering the
following weighted average over the whole domain:

v(x) =
∫
V

W (x, s) v(s) ds ,

where W (x, s) is a weight function taken here as the normalised Gauss func-
tion:

W (x, s) =
1

W0(x)
exp

(
−‖x− s‖2

2 l2

)
, W0(x) =

∫
V
exp

(
−‖x− s‖2

2 l2

)
ds .

The length l in the previous equation is a geometric length, usually denoted
as characteristic length. It works as a localisation limiter and regularises the
mathematical problem. According to [3], this length may also be interpreted as
a material-dependent parameter related to the width of the fracture process
zone. A normalised weight function is chosen because the non-local model
should be able to reproduce correctly local uniform fields.

Model 1 has the limitation of considering the same behavior for the material in
prevailing tension and compression states, which is not realistic for most of the
materials. To overcome this limitation, it is assumed that damage may only
appear and develop if the strain tensor trace is positive, tr ε > 0. The consti-
tutive model with the referred assumption is suitable for studying structures
subjected mainly to tension stresses and it is competitive due to its simplicity.

Model 2 requires more computational effort than Model 1. This happens be-
cause it is not possible to define explicitly the values of dt and dc in terms of
the potentials ft and fc. On the other hand, the non-local integral model to
be used [7] is more demanding from the computational point of view.

5



Acc
ep

te
d m

an
usc

rip
t 

4 Non-conventional Finite Element Formulations

4.1 Hybrid-mixed Stress Formulation (HMS)

The hybrid-mixed stress formulation adopted in this work was for the first time
described in [40]. Compared to the original version of the hybrid-mixed stress
formulation [16] the particularity of the new model is that the approximation
of the stress field σ is replaced by the approximation of the effective stress
field σ̃, defined e.g. by Lemaitre in [25]. The approximations may be expressed
as:

σ̃ = Sv X̃ in V, (3)

u = Uv qv in V,

u = Uγ qγ on Γσ,

where the matrices Sv, Uv and Uγ collect the approximation functions and

the vectors X̃, qv and qγ list the associated weights (generalised variables).
Since the three fields are approximated independently, it is possible to adopt
different degrees of approximation for each one.

Due to the properties presented by Legendre polynomials, it is possible to in-
crease the degree of the approximations without having any problems in terms
of numerical stability. This fact enables the implementation of highly efficient
p-refinement procedures, as it is possible to define high degree approximations
without deteriorating the condition number of the global governing system. In
order to ensure the numerical stability of the hybrid-mixed stress model, it is
necessary to ensure that the number of stress parameters (number of degrees
of freedom associated with the approximation of the static fields) is greater
than the number of displacement parameters (number of degrees of freedom
associated with the approximation of the kinematic fields). To avoid spurious
kinematic modes, it is also important to ensure that the degrees of the Legen-
dre polynomials used in the displacement fields approximation is smaller than
the polynomial degrees involved in the effective stress components approxi-
mation [16].

While the concrete is linear elastic, the model proposed coincides with the
one described in [16]. When damage appears, the models are different since
the effective stress and the stress field are no longer coincident. In the context
of a non-linear analysis with softening, the main advantage of the proposed
approach when compared to the one described by Freitas [16] is that the
effective stress field is directly related to the evolution of damage, since it is
comparable to the to the strain field, while the stress field is not.
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The generalised strains, e, body forces, Qv, and tractions, Qγ are defined by

e =
∫

Stv ε dV, Qv =
∫

Ut
v b dV, Qγ =

∫
Ut
γ tγ dΓσ, (4)

in order to ensure the inner product invariance between the pairs of dual
discrete variables (X̃ , e), (qv , Qv), and (qγ , Qγ) and the continuum fields
they represent.

As demonstrated in [35,40,38], using the definition of the effective stress in
the form σ = σ̃ (1− d) [25] and enforcing the fundamental equations (Section
2) on average, in the sense of Galerkin, one obtains the following equilibrium
equations for the discrete model:

(At
v −Mv) X̃ = −Qv in V, (5)

(At
γ −Mγ) X̃ = Qγ on Γσ,

where the matrices Mv, Mγ and Av, Aγ are defined as follows:

Mv = −
∫
(D∗Uv)

t Sv d dV +
∫
(N∗Uv)

t Sv d dΓ, Mγ =
∫

Ut
γ (NSv) d dΓσ,

(6)

Av =
∫
(DSv)

tUv dV, Aγ =
∫
(NSv)

tUγ dΓσ.

In a more complex damage model, as the Model 2 described in Section 3, a
similar procedure may be followed to define matrices Mv and Mγ [38].

The compatibility condition in the discrete model (Equation (7)) may be
obtained integrating by parts the average enforcement of the compatibility
equation in the domain and then replacing in the resulting expression the
approximations for the displacements (Equation (3)) [35,40]:

e = −Av qv +Aγ qγ + e, with e =
∫
(NSv)

t u dΓu. (7)

The relation between the independent components of the effective stress tensor
and the strain components can be expressed as [40]:

ε = F σ̃ , (8)

where F is the symmetric non-singular matrix of elastic constants character-
izing a linear reciprocal elastic law.

Introducing the constitutive relation (Section 3) and the generalised strains
(Equation (4)) in Equation (7), we obtain Equation (9) that englobes the
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compatibility and the constitutive relations of the discrete model:

� X̃+Av qv −Aγ qγ = e, with � =
∫

Stv FSv dV. (9)

Combining Equation (5) and (9), one obtains the following solving system for
each finite element:

⎡⎢⎢⎢⎢⎢⎣
� Av −Aγ

(At
v −Mv) 0 0

−(At
γ −Mγ) 0 0

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
X̃

qv

qγ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e

−Qv

−Qγ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (10)

The governing system of the finite element mesh is assembled by direct allo-
cation of the contribution of the elementary systems [16].

According to Equation (10), when a damage mechanism in a finite element
is active, the elementary governing system is nonsymmetric, since Mv �= 0
and Mγ �= 0. Nevertheless, the governing system remains very sparse and the
non-local behavior due to damage appears in the “small dimension” of the
system (Figure 1).

Because the non-conventional models adopted in this work use macro-element
meshes, it is not possible to control the length of the nonlinear strain localiza-
tion band through the finite element mesh, as usually happens in a traditional
displacement formulation. Consequently, a more refined mesh must be chosen
to implement the nonlocal integral model. In this work, the Lobatto points
mesh is used for this purpose. Another choice would also be valid. The choice
of the Lobatto points mesh is adopted because this mesh is already defined
to ensure the accuracy of the numerical integrations. Since the hybrid-mixed
stress model requires the knowledge of the damage evolution on the bound-
ary, the Lobatto quadrature rule is used instead of the usual Gauss quadrature
rule. In order to capture the strain localization band, it is necessary to ensure
that a convenient number of Lobatto control points lie inside the process zone,
so the number of control points must be large (at least 10× 10 per element),
as shown in the numerical tests presented in the paper.

The algorithm used in the solution of the non-linear governing system follows
a secant Newton-Raphson method. At load step j the iterative algorithm can
be described by the following steps:

(1) Initialize the variables by setting v0 = v(j−1)

(2) Error= 10× tol and iter=1
(3) while Error > tol

8
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(a) iter=iter+1
(b) computation of the non-local variable at each Lobatto point;
(c) validation of the Kuhn-Tucker conditions (see Tables 1 and 2) in

order to define the new values for the damage variable;
(d) computation of the secant matrix, A;
(e) computation of the residual vector, R;
(f) solution of the system AΔsol = −R;
(g) update the value for the generalized variables,

soliter = soliter−1 +Δsol;
(h) computation of the new value for the controlling parameter, Error;

(4) store the final value for the generalized variables, v(j) = viter.

In the hybrid-mixed stress model, the secant operator A corresponds to the
matrix presented in Eq.(10). The solution vector v collects the generalized
effective stress parameters, X̃, and the generalized domain and static boundary
displacement variables, qv and qγ. The residual vector R is defined according
to Eq.(10).

4.2 Hybrid Displacement Formulation (HD)

Let us express the approximations as:

u = Uv q in V, (11)

t = T p on Γu,

where the matrices Uv and T collect the approximation functions for the
displacements in the domain and for the tractions on the boundary Γu. The
vectors q and p list the associated weights. As each field is approximated
independently, the approximations may be refined separately.

Enforcing the inner product invariance between discrete and continuum dual
quantities, it is possible to obtain the following generalised displacements v
and the generalised body forces Qv:

v =
∫

Tt u dΓu, Qv =
∫

Ut
v b dV. (12)

In the hybrid displacement formulation, the equilibrium in the domain and
the continuity between elements is enforced on average, in a weighted-residual
form, using the compatibility equation on Γu. It can be shown [41] that the
first set of equations in the discrete model is:

9
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�̃q−Bp = Qv +QΓ in V, (13)

where:

�̃ =
∫
(D∗Uv)

t K̃ (D∗Uv) dV, (14)

with K̃ = K (1− d),

B =
∫

Ut
v T dΓu,

QΓ =
∫

Ut
v tγ dΓσ,

In the discrete model, the compatibility equation on the boundary Γu is given
by [41]:

−Bt q = −v on Γu. (15)

The combination of Equation (13) and (15) leads to the following solving
system for each finite element:

⎡⎢⎣ �̃ −B

−Bt 0

⎤⎥⎦
⎧⎪⎨⎪⎩

q

p

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
Qv +QΓ

−v

⎫⎪⎬⎪⎭ . (16)

Again, the governing system of the finite element mesh is assembled by direct
allocation of the contribution of each elementary system [16].

Because the material is assumed to be non-linear, all the coefficients of the
elementary generalised stiffness matrix �̃ are a priori nonzero, see Figure 2(b).
Since the dimension of the matrix �̃ is the most important dimension of the
governing system, it can become computationally very expensive to store and
to solve the non-linear system in the form (16). In order to optimize the
numerical performance of the hybrid displacement formulation, two different
implementations are considered:

• Implementation 1 (I1): to solve the governing system in the form (16);

• Implementation 2 (I2): to update the generalised stiffness matrix K̃ in load
step n whenever the number of iterations in load step (n−1) is higher than
a certain fixed value. An additional vector on the right hand side of the
governing system is introduced, σ0:

σ = K̃ ε = K (1− d0) ε+ σ0, (17)

10
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where d0 corresponds to the damage distribution when the operator K̃
was last updated. It is possible to write:

σ = K̃ ε = K (1− d) ε = K (1− d0 + d0 − d) ε,

yielding the following definition for vector σ0

σ0 = K (d0 − d) ε,

The equilibrium equation is in this case given by:

�̃
0

n q−Bp = Qv +QΓ +Q∗ in V, (18)

with:

�̃
0

n =
∫
(D∗Uv)

t K (1−d0) (D
∗Uv) dV ; Q∗ =

∫
(D∗Uv)

t K ε (d−d0) dV.

(19)

Once more, the expressions presented in this paper assume an isotropic model
with only one damage variable. If this is not the case, the final expressions
are somewhat different and may be found in [38]. However, all conclusions
illustrated are still valid.

For the solution of the non-linear governing system it is adopted an algorithm
similar to the one presented for the hybrid-mixed stress model.

5 Numerical Applications

Three tests are presented: the Hassanzadeh’s test, an L-shaped plate and a
gravity dam.

The Hassanzadeh’s test is used here to compare the performance of the hybrid-
mixed stress model (HMS), the hybrid displacement (HD) model and the
classical displacement finite element formulation (FEM).

Initially, the numerical performance of the HMS model is evaluated and com-
pared with the classical FEM, using the numerical results obtained by Claudia
Comi, partly published in [7]. In this analysis, the two damage variable model
described in Section 3 is chosen. The global load-displacement diagrams and
the damage and strain distributions obtained with both models are directly
compared. The relative numerical efficiency is qualitatively evaluated using
for this purpose the number of iterations required in each step of the loading
procedure. It is not useful to compare directly the CPU time since the tests
were run using different hardware.

11
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Then, the numerical performance of the HMS and HD models is assessed
assuming a simpler damage model (Model 1 presented in Section 3). The
strain field distributions, the CPU time required to complete the analysis and
the number of iterations in each step of the loading procedure are compared.

5.1 Hassanzadeh’s test [19]

The Hassanzadeh’s test is illustrated in Figure 3(a). Due to the geometry
and to the applied load, only the tension mechanism is activated through the
loading history. The structure is analysed as a strain plane problem. In all
discretizations a (20× 20) Lobatto mesh points is used in each element.

5.1.1 HMS versus FEM

The two variable damage model described in Section 3 is used. Following [7]
the material parameters are: at = 0.31, bt = 4.4 MPa, kt = 15.1 MPa2, ct = 35,
dot = 0.10, (σe/σo)t = 0.80, lt = 1.0 mm, E = 36000 MPa and υ = 0.15.

Table 3 lists the main characteristics of the discretizations associated with
each one of the models. The Legendre polynomial degrees adopted to define
the approximation for both the stress (Sv) and the displacement (Uv) fields
in the domain are given in columns 2 and 3, for the case of Test I and Test II,
respectively. The same table lists also the polynomial degrees involved in the
definition of the displacement field along the static boundary (Uγ).

In all discretizations, the approximation is refined near the center of the struc-
ture, because the higher stress gradients are located exactly in that region. The
FEM meshes use constant strain triangle (CST) elements and correspond to
the meshes adopted by Claudia Comi in [7], see Figure 4. For the HMS model
two different discretizations are adopted, both using a 7 element mesh (Fig-
ure 3(b)), but considering different approximation degrees. Test I refines the
approximation mainly at the vertical direction, where Test II uses the same
degree of approximation in both directions.

Figure 5 presents the reaction R - prescribed displacement u diagrams, ob-
tained with the numerical simulations and with the experimental test. Both
numerical formulations, the HMS and the FEM, correctly model the experi-
mental behavior, except for the experimental bump. On the other hand, the
results provided by the different numerical models are almost coincident.

Figure 6 shows that also the damage distribution evolution obtained with both

12
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numerical models is quite similar.

As shown in Table 3, the use of HMS models leads to larger number of de-
grees of freedom, Ndof. However, the iterative procedure associated with the
proposed HMS formulation is less demanding. Figure 7 shows the evolution
of the number of iterations required by each incremental load step in terms of
the prescribed displacement u. This information is plotted for the HMS Tests
I and II and for the FEM hd00d Test. Both formulations use constant local
increments and a secant Newton-Raphson technique for the solution of the
non-linear governing system. Test hd00d requires 800 load steps until the final
prescribed value, u = 0.040 mm, is reached. The test cases run with the HMS
model use either 40 or 200 load steps, as indicated in Figure 7. For both formu-
lations it is possible to notice an increase in the number of iterations near the
maximum load peak and when the stress dissipation starts to greatly influence
the behavior of the structure. In spite of using a larger number of load steps,
the curve associated with Test hd00d is always above the curves obtained with
the HMS models. When comparing the two tests involving this later model,
it is possible to notice a significant decrease in the number of iterations when
using 200 load steps instead of 40. This decrease would be even greater if 800
load steps would have been used. This qualitative study indicates that the
HMS model is more stable from the numerical point of view than the classical
displacement finite element formulations, requiring less number of iterations
in each load step to converge 1 .

The numerical stability associated with the use of HMS models can be ex-
plained by the accuracy of the numerical solution obtained for the strain field,
ε, which is used to define and control the material damage evolution and
the corresponding mechanical structural behavior. On one hand, in the HMS
formulation, the strain field ε is directly computed using the approximation
defined for the effective stress fields, σ̃. When using the classical finite element
formulation, the computation of the strain field ε requires the definition of dis-
placement field derivatives. On the other hand, since the damage distribution
is continuous, the inter-element continuity of the fields σ̃/ε is enforced in a
weighted residual form in the HMS model through the equilibrium equation
on the static boundary. On the contrary, the FEM formulation using the same
non-local damage model does not satisfy the inter-element strain continuity.
Moreover, the HMS formulation works with macroelements and adopts pref-
erentially a p-refinement instead of an h-refinement, minimizing the number
of inter-element boundaries.

1 Please note that the error criteria is probably not the same for both formulations,
so the comparison made in this paper is only qualitative. However, it is shown that
the three tests lead to identical results in terms of global behavior and damage
distribution, so the qualitative comparison is adequate.
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The accuracy of the strain field in each formulation may be confirmed by the
analysis of Figures 8 and 9, where the evolution of the vertical strain field,
εyy for Tests I and hd00d is shown. This strain component is chosen since it is
the one that most influences the non-linear behavior of the structure. The εyy
distribution is quite different in both formulations. The HMS solution shows a
smooth variation of this physical quantity in the vertical direction, while the
strain field εyy obtained with the FEM formulation is clearly discontinuous
between elements.

5.1.2 HMS versus HD

In this comparative analysis, the model with one damage variable, presented in
Section 3, is considered. The corresponding material parameters are given by
n = 12, k = 5.8×10−14 MPa, c = 405, l = 1.6 mm, E = 36 GPa and ν = 0.15.
These are the values used by Comi and Perego in [12]. All discretizations use
the seven element mesh presented in Figure 3(b). The approximation details
of each discretization are summarised in Table 4.

According to Figure 10, both models correctly model the global load-displacement
diagram. Since the one variable damage model is associated with a larger char-
acteristic length than the model with two damage surfaces [14,12], the global
behavior in this case is not so brittle (Figure 7 versus Figure 10).

According to the values presented in Table 4, although the HMS models are
associated with a larger number of degrees of freedom when compared to the
HD models, the CPU time required by the HMS implementations is always
smaller, specially if Implementation I1 (Section 4) is used with the HD formu-
lation. The same happens even if the Implementation I2 (Section 4) is used.
This behavior may be justified because the strain filed used in the definition
of the damage evolution is obtained more precisely in the HMS model. In this
model, the strain field is computed directly from the effective stress field ap-
proximation while in the HD formulation the strain field is obtained through
the differentiation of the displacement fields modeled in the domain of each
element. In terms of vertical strain distribution the final results are quite sim-
ilar, as illustrated in Figure 11, where the εyy distribution is presented for
all test cases. Only Test C presents a different behavior. However this differ-
ence can be overcome by increasing the degree of the approximation in the
horizontal direction.

Figure 12 compares the number of iterations required by the convergence
of each load step increment, assuming in all test cases a total number of 40
uniform load steps until a maximum prescribed displacement of u = 0.040 mm
is reached. When using an implementation I1, the number of iterations per
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load step is similar when using the HMS or the HD models, see Tests A and
B versus Test C (I1). As expected, a larger number of iterations is required
near the peak of the load-displacement diagram. After that, the number of
iterations required by each load increment decreases with the increase of the
prescribed displacement. When compared to the case where the bi-dissipative
damage model is used, the unloading process is smoother and there is no
increase in terms of number of required iterations at the unloading region
(Figure 7 versus Figure 12). As CPU times associated with Implementation
I1 are unacceptable (see Table 4) the use of the Implementation I2 is highly
recommended. In this case, the curve number of iterations versus prescribed
displacement presents a very different behavior because the global governing
system is updated only when the number of iterations required at the previous
load step is greater than a given tolerance.

Since the results of Tests A and B are equivalent in terms of global response,
strain field distribution and iterative procedure, one may conclude that the
discretization of Test A is sufficiently accurate and that excessive p-refinement
associated with a huge number of degrees of freedom (as in Test B) is not
needed.

5.2 L-shaped plate

Let us consider the L-shaped concrete plate presented in Figure 13. The thick-
ness of the plate is 100mm and an upward vertical displacement, u, at the
lowest right corner is prescribed.

The experimental results and the solutions obtained with several numerical
simulations are available at the NWD-IALAD website 2 .

The numerical analysis presented here is based on the HMS model. The dam-
age model with one damage variable presented in Section 4 is adopted in this
case. The available experimental data are the Young modulus E = 25850 MPa,
the Poisson coefficient, ν = 0.18 and the maximum strength in tension,
ft = 2.70MPa. The remaining material parameters are defined in order
to minimize the differences between the experimental and numerical load-
prescribed displacement diagrams. The following values have been assumed:
n = 9.5, k = 1.1× 10−11 MPa, c = 270 and l = 11 mm.

A plane stress behavior is considered and the vertical displacement at the
lower right corner is prescribed. Two different numerical tests have been per-
formed. Test 1 considers the three element mesh represented in Figure 14.
The discretization associated with this test uses Sξ,ηv = 10, Uξ,η

v = 9 and

2 Currently, http://nw-ialad.uibk.ac.at/, grupo WP2/TG2, Test n. 1

15



Acc
ep

te
d m

an
usc

rip
t 

Uξ,η
γ = 7, yielding a total of 1385 degrees of freedom. In each finite element,

a (20× 20) Lobatto mesh points is used to perform all numerical integrations
and to compute the non-local variables. Test 2 uses the 10 element mesh shown
in Figure 14 and assumes Sξ,ηv = 7, Uξ,η

v = 6 and Uξ,η
γ = 6. This discretization

involves a total of 3251 degrees of freedom. In this case a (10× 10) Lobatto
mesh points is used.

The reaction-prescribed displacement u diagrams are presented in Figure 15.
It is possible to confirm that both numerical and experimental diagrams are
quite similar.

The evolution for the horizontal displacement at the upper left corner of the
structure is shown in Figure 16. The numerical response is stiffer than the
experimental behavior at the beginning of the loading procedure. This type of
behavior is also observed in other numerical simulations and can be justified
by the fact that the numerical simulation does not take into account the
rotational stiffness of the steel device that embraces the L-shaped concrete
structure.

Figure 17 presents the damage evolution and identifies the principal direc-
tions of the effective stress tensor. As expected, damage first appears near the
reentrant corner with a diagonal orientation and evolves towards an almost
horizontal macro crack.

Finally, Figure 18 shows the damage evolution represented in a deformed con-
figuration. The damage appearing in the lower right corner is a local effect
induced by the prescribed displacement imposition and does not interfere with
the global behavior of the structure.

5.3 Koyna dam

The Koyna dam is located in the southern part of India. The geometry of
this concrete gravity dam is presented in Figure 19(a). In December 1967, this
dam was subjected to an important earthquake. In the last few years, several
authors have tried to compute numerically the damage distribution installed
due to that earthquake, see for instance [4,24].

The numerical study presented in this paper aims to identify the highest water
lever in the reservoir ensuring dam security conditions considering an initial
damage distribution caused directly by the earthquake, the dam self weight
and the hydrostatic lateral pressure.

Following the work of [4], an initial qualitative damage distribution is taken
into account, as illustrated in Figure 20. The initial damage distribution is con-
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centrated near the structure-foundation interface and near the dam geometric
change. Three different damage values are considered in the region with initial
diffuse cracking (red region in Figure 20): dinitial = 0.00 (Test 1), dinitial = 0.30
(Test 2) and dinitial = 0.60 (Test 3). For the numerical simulations the HMS
model is used.

A plane strain behavior is assumed. The finite element mesh presented in
Figure 19(b) is used in the analysis. Following [20], the rock foundation is
included in the finite element analysis. The degrees of approximation are de-
fined by Sξ,ηv = 5, Uξ,η

v = 4, Uξ,η
γ = 3 and a (20× 20) Lobatto mesh points is

defined in each element.

The bi-dissipative damage model presented in Section 4 is used in the analysis.
The material parameters for concrete and rock are defined according to [4,9]:

• for concrete: E = 30 GPa, υ = 0.20, ρ = 2630 kg/m3, at = 0.25, bt = 4.4
MPa, kt = 9.14 MPa2, ct = 3.3, (σe/σo)t = 0.70 and dot = 0.0;

• for rock: E = 41 GPa, υ = 0.10, ρ = 2700 kg/m3, at = 0.333, bt = 3.3 MPa,
kt = 8.6 MPa2, ct = 3.3, (σe/σo)t = 0.70 and dot = 0.0.

The characteristic length is lt = 400 mm. The behavior to compression states
is considered to be linear elastic.

Figure 21 shows the evolution of the horizontal displacement measured at the
top of the dam in terms of parameter q = hwater/hdam. When evaluating the
load carrying capacity and the safety of a dam against failure, it is a common
procedure to consider values greater than unity for parameter q, leading to
the so called imminent failure flood analysis.

The damage distribution is presented in Figure 22 for all three cases. It is
possible to notice a significant damage evolution near the interface foundation-
structure. There is also a slight damage increase at the region where de the
geometry of the structure changes.

Interestingly, the comparison of the solutions obtained for the three cases
shows that the initial damage value has a very little influence in terms of final
collapse load and displacements fields. This conclusion was also obtained by
other authors [4,9].

6 Conclusions

Two promising non-conventional finite element formulations, namely the hybrid-
mixed stress (HMS) and the hybrid displacement (HD) models, are discussed
in this paper. The main properties of such models and their numerical per-
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formance are illustrated through the analysis of a set of classical benchmark
tests.

The main conclusions can be summarised as follows:

(1) both the HMS and the HD models lead to stable and robust numerical
procedures. The HMS models show better convergence rates than the
classical displacement FEM implementations. This efficiency can be jus-
tified by the accuracy ensured for the effective stress/strain distributions
that control the damage evolution behavior;

(2) in all performed numerical tests, the quality of the solutions does not
depend on the finite element mesh orientation (mesh bias). This behavior
results mainly from the use of macroelement meshes associated with the
implementation of highly effective p-refinement procedures. As discussed
in [22], this type of phenomena may influence the quality of the results
provided by the classical FEM computations;

(3) the HMS model may lead to quasi -equilibrated solutions. Consequently,
this model may provide lower bounds for the structure collapse loads.

The physically non-linear analysis of concrete structures is still a challenge
and corresponds to an application field where the high performance alternative
formulations presented in this paper can be conveniently explored.

The fracture processes strongly influence the structural behavior of concrete
structures and may be modeled using continuous or discrete approaches. One
strong drawback associated to the application of pure continuous models lies
in the fact that fragile rupture is frequently governed by the growth of a
dominant crack. Although both approaches continue to deserve the scientific
community attention, the current trend is clearly to combine the two method-
ologies. Therefore, the main expected development corresponds to the imple-
mentation of cohesive crack models based on the use of non-conventional finite
element formulations. Then, some of the existing alternative schemes used to
account for the transition from continuum to discrete approaches [8,44,28] will
be studied, implemented, tested and compared.

The other developments expected for the near future have as main goal to make
even more competitive the HMS and the HD non-conventional formulations
described in this paper. Among several research lines, one can mention the
following:

(1) to implement p-refinement procedures based on the use of local functions,
such as wavelets or Heaviside functions [42]. Using the critical damage
concept [13], this refinement may be adaptive;

(2) the non-conventional finite element models allow the use of local refine-
ment functions. This is one important issue when working with damage
models, as the non-linear behavior concentrates usually in a specific zone
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of the structural domain.
(3) to implement an implicit gradient model in order to avoid the definition

of an independent spatial averaging [29–31,15,44]. One of the important
advantages of this type of procedure is that the computation of tangent
stiffness matrices is simpler than in other types of formulations;

(4) to test the numerical performance of the HMS and HD finite element
models when using parallel processing techniques;

(5) to generalise the existing 2D models for 3D analysis;
(6) to generalise the models for cyclic and dynamic analysis.
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(a) (b)

Fig. 1. Nonzero coefficients in the governing system of one finite element (Equa-
tion (10)) (a) without damage and (b) with damage.
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(a) (b)

Fig. 2. Nonzero coefficients in the governing system of one finite element (Equa-
tion (16)) (a) without damage and (b) with damage.
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(a)

(b)

Fig. 3. Hassanzadeh’s test [19]: (a) geometry and (b) adopted finite element mesh.
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(a) Mesh A. (b) Mesh B.

Fig. 4. Hassanzadeh’s test [19]: finite element meshes used in the analysis with FEM
[7].
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(d) Test hd00d for u = 0.040 mm [7].

Fig. 6. Hassanzadeh’s test [19]: damage [–] distribution evolution obtained with
HMS and FEM models.
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Fig. 7. Hassanzadeh’s test [19]: number of iterations versus prescribed displacement
u [mm] in both HMS and FEM formulations.
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Fig. 8. Hassanzadeh’s test [19]: εyy [–] evolution in Test I.
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(f) u = 0.040 mm.

Fig. 9. Hassanzadeh’s test [19]: εyy [–] evolution in Test hd00d.
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Fig. 10. Hassanzadeh’s test [19]: reaction R [N]- prescribed displacement u [mm].
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(a) Color scaling

(b) Test A. (c) Test B.

(d) Test C. (e) Test D.

Fig. 11. Hassanzadeh’s test [19]: εyy strain field distribution[–] when u = 0.040 mm.
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Fig. 12. Hassanzadeh’s test [19]: number of iterations versus prescribed displacement
u [mm] in HMS and HD models.

36



Acc
ep

te
d m

an
usc

rip
t 

Fig. 13. L-shaped plate: experimental device (available at the NWD-IALAD website)
.
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Fig. 14. L-shaped plate: finite element meshes.
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Fig. 15. L-shaped plate: reaction R [N]- prescribed vertical displacement [mm] dia-
grams.
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Fig. 16. L-shaped plate: reaction R [N]- horizontal displacement at the upper left
corner of the structure [mm] diagrams.
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(a) Color scaling.

(b) u = 0.125 mm. (c) u = 0.175 mm.

(d) u = 0.250 mm. (e) u = 0.375 mm.

(f) u = 0.500 mm. (g) u = 0.750 mm.

Fig. 17. L-shaped plate, Test 1: damage variable evolution [–] and effective stress
tensor principal directions.
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(a) Color scaling.

(b) u = 0.125 mm. (c) u = 0.175 mm.

(d) u = 0.250 mm. (e) u = 0.375 mm.

(f) u = 0.500 mm. (g) u = 0.750 mm.

Fig. 18. L-shaped plate, Test 1: damage variable evolution [–] on the structure
deformed configuration.
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Fig. 19. Koyna dam: (a) geometry of the structure (dimensions in m) and (b) finite
element mesh.
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Fig. 20. Koyna dam: qualitative initial damage distribution.
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Fig. 21. Koyna dam: evolution of the horizontal curves q = hwater/hdam - displace-
ment measured at the top of the dam [mm].
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(a) Color scaling.

(b) Dam without initial damage.

(c) Initial damage of 0.30.

(d) Initial damage of 0.60.

Fig. 22. Koyna dam: damage distribution on the deformed configuration at the final
stage of the loading procedure.
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Model 1 [25,11,12]

Damage Variable d

Helmholtz free energy density(a) Ψ = 1
2 (1− d) εtE ε+Ψin(ξ)

with

Ψin(ξ) = k (1− ξ) ∑n
i=0

n!
i! ln

i
(

c
1−ξ
)

State equations(b) σ = ∂Ψ
∂ε = (1− d)E ε

χ = −∂Ψ
∂ξ = −Ψ′in(ξ)

Y = −∂Ψ
∂d =

1
2 εtE ε

Activation function f(Y − χ) = Y − χ = 1
2 εtE ε− χ

Evolution laws (c) ḋ = ∂f
∂Y γ̇ = γ̇

ξ̇ = − ∂f
∂χ γ̇ = γ̇

Kuhn Tucker Conditions f ≤ 0, ḋ ≥ 0, ḋ f = 0

Non-local Variable Y = 1
2 εtE ε

(a) ξ is a scalar internal variable of kinematic nature and variables k, n and c are
material parameters.
(b) ε, ξ and d are the state variables and σ, χ and Y represent the corresponding
associated variables.
(c) for this particular damage model, the internal variable ξ coincides with the
damage variable d.

Table 1
Continuum damage model with one scalar variable.
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Model 2 [9,10,7]

Damage Variable dt, dc

Helmholtz free energy density(a,b) ψ = 1
2

{
2μ e : e+ k+ (tr+ε)2 + k− (tr−ε)2

}
μ = μ0(1− dt)(1− dc)

k+ = k0 (1− dt) if tr ε ≥ 0

k− = k0 (1− dc) if tr ε < 0

tr+ε =
trε+ |trε|

2
, tr−ε =

trε− |trε|
2

Constitutive Relation σ = ∂ψ
∂ε = 2μ e+ k+ (tr+ε) I+ k− (tr−ε) I

Activation functions(c,d,e) ft = J2 − at I21 + bt rt I1 − kt r2t (1− α dc)

fc = J2 + ac I
2
1 + bc rc I1 − kc r2c

ri(di) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− 1− (σe

σo
)i

d2oi
(doi − di)2 se di < doi

[
1−

(
di − doi
1− doi

)ci]0.75
se di ≥ doi

Kuhn Tucker Conditions ft ≤ 0, ḋt ≥ 0, ḋt ft = 0

fc ≤ 0, ḋc ≥ 0, ḋc fc = 0

Non-local Variable(f) tr+ε, tr−ε, Jε

(a) μ0, k0 represent the initial undamaged shear and bulk moduli, respectively.
(b) e denotes the deviatoric part of the small strain tensor.
(c) at, bt, kt, ac, bc, kc and α are non-negative material parameters.

(d) I1 corresponds to the stress tensor first invariant and J2 =
1
2

s : s.

(e) doi represents the damage value at the peak of the uniaxial diagram.

(g) Jε =
1
2

e : e.
Table 2
Continuum damage model with two variables.
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Model

HMS Test I II

Mesh (see Figure 3(b)) Mesh 1 Mesh 1

(7 elem.) (7 elem.)

Sξv 4 8 (elem. 2, 4, 6)

and 5 (others)

Uξ
v 3 7 (elem. 2, 4, 6)

and 4 (others)

Sηv 8 (elem. 2, 4, 6) 8 (elem. 2, 4, 6)

and 4 (others) and 5 (others)

Uη
v 7 (elem. 2, 4, 6) 7 (elem. 2, 4, 6)

and 3 (others) and 4 (others)

Uξ,η
γ 3 6 (on Γ(a)e )

and 3 (others)

Ndof 1153 1885

FEM Test(b) hd00d hb00d

Mesh (see Figure 4) Mesh A Mesh B

(472 elem.) (908 elem.)

Ndof 492 938

(a) As indicated in Figure 3(b).
(b) Notation adopted by Claudia Comi.
Table 3
Hassanzadeh’s test [19]: comparative study of HMS and FEM models.
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Formulation

HMS Test A B

Description Sξv = 4, Uξ
v = 3, Uξ,η

γ = 3 Sξ,ηv = 10,

Sηv = 8 (elem. 2, 4, 6) Uξ,η
v = 9

and 4 (others) Uξ,η
γ = 8

Uη
v = 7 (elem. 2, 4, 6)

and 3 (others)

Ndof 1153 4229

CPU(c) [seconds] 4327 125471

HD Test C D

Description Uξ
v = 6 Uξ

v = 9 (elem. 2, 4, 6)

4 (others)

Uη
v = 9 (elem. 2, 4, 6) Uη

v = 9 (elem. 2, 4, 6)

6 (others) 4 (others)

Tξ,η = 5 Tξ,η = 3

except Tη
elem 4 = 8

Ndof 956 906

CPU(c) [seconds] 6824 (I2)(a) 9586 (I2)(a)

and 152755 (I1)(b)

(a) As explained in Section 4 and adopting the value 50 as the maximum number
of iterations at the previous load step.
(b) As defined in Section 4.
(c) In a Pentium 4 machine, 2996 Mhz.
Table 4
Hassanzadeh’s test [19]: comparative study of HMS and HD models.
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