
HAL Id: hal-00607478
https://hal.science/hal-00607478v4

Submitted on 27 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Matrix powers algorithms for trust evaluation in PKI
architectures

Jean-Guillaume Dumas, Hicham Hossayni

To cite this version:
Jean-Guillaume Dumas, Hicham Hossayni. Matrix powers algorithms for trust evaluation in PKI
architectures. STM 2012 - 8th International Workshop on Security and Trust Management (co-
ESORICS 2012), Sep 2012, Pise, Italy. pp16. �hal-00607478v4�

https://hal.science/hal-00607478v4
https://hal.archives-ouvertes.fr

Matrix powers algorithms for trust evaluation in

public-key infrastructures

Jean-Guillaume Dumas∗ Hicham Hossayni†

July 27, 2012

Abstract

This paper deals with the evaluation of trust in public-key infrastruc-
tures. Different trust models have been proposed to interconnect the
various PKI components in order to propagate the trust between them.
In this paper we provide a new polynomial algorithm using linear algebra
to assess trust relationships in a network using different trust evaluation
schemes. The advantages are twofold: first the use of matrix computa-
tions instead of graph algorithms provides an optimized computational
solution; second, our algorithm can be used for generic graphs, even in
the presence of cycles. Our algorithm is designed to evaluate the trust
using all existing (finite) trust paths between entities as a preliminary to
any exchanges between PKIs. This can give a precise evaluation of trust,
and accelerate for instance cross-certificate validation.

1 Introduction

The principle of a Public Keys Infrastructure (PKI) is to establish (using certifi-
cates) a trust environment between network entities and thus guarantee some
security of communications.

For instance companies can establish hierarchical PKI’s with a certification
authority (CA) signing all the certificates of their employees. In such a setting
there is a full trust between employees and their CA. Now if entities with differ-
ent PKI structures want to communicate, either they find a fully certified path
between them or they don’t. In the latter case some degree of trust has to be
established between some disjoint entities.

Ellison and Schneier identified a risk of PKIs to be “Who do we trust, and
for what?” which emphasizes the doubts about the trust relationship between
the different PKI components [4]. Several incidents, including the one in which
VeriSign issued to a fraudulent two certificates associated with Microsoft [8],

∗Laboratoire J. Kuntzmann, Université de Grenoble. 51, rue des Mathématiques, umr
CNRS 5224, bp 53X, F38041 Grenoble, France, Jean-Guillaume.Dumas@imag.fr.
†CEA / Léti, 17 rue des Martyrs, 38054 Grenoble, France, Hossayni.Hicham@gmail.com

1

Jean-Guillaume.Dumas@imag.fr
Hossayni.Hicham@gmail.com

or even the recent fraudulent certificates for Google emitted by DigiNotar [1],
confirm the importance of the trust relationship in the trust models, see also [14].
This leads to the need of a precise and a global evaluation of trust in PKI
architectures. Another approach would be to use some fully trusted keys or
authorities, like the Sovereign Keys or the Convergence project1, or e.g. trust
lists [20].

For example in a cross-certification PKI, an entity called Alice can estab-
lish a communication with another entity called Bob only after validating Bob’s
certificate. For this, Alice must verify the existence of a certification path be-
tween her trust anchor and Bob’s certification authority (CA). This certificate
validation policy imposes that each entity must have a complete trust in their
trust anchors, and that this trust anchor has a complete (direct or indirect)
trust relationship with other CAs.

In e.g. [11, 12, 13, 6] algorithms are proposed to quantify the trust rela-
tionship between two entities in a network, using transitivity. Some of them
evaluate trust throughout a single path, while others consider more than one
path to give a better approximation of trust between entities. However to the
best of our knowledge they are restricted to simple network trees. In this pa-
per we choose the last approach and use transitivity to efficiently approximate
global trust degree. Our idea is to use an adapted power of the adjacency matrix
(used e.g. to verify the graph connectivity or to compute the number of finite
paths between nodes). This spectral approach is similar to that used also e.g.
for community detection in graphs [5] and we use it to produce a centralized or
distributed quantification of trust in a network. Moreover it allows to deal with
any kind of graphs, without any restrictions to trees nor dags.

More generally, the aim of this paper is to propose a generic solution for trust
evaluation adapted to different trust models. The advantage of spectral analysis
is twofold : first the use of matrix computations instead of graph algorithms
provides an optimized computational solution in which the matrix memory man-
agement is more adapted to the memory hierarchy; second, our algorithm can
be used for generic graphs, even in the presence of cycles. Moreover, our algo-
rithm is iterative so that a good approximation of the global trust degrees can
be quickly computed: this is done by fixing the maximum length of the trust
paths that are considered. The complexity of this algorithm is O(n3 · ϕ · `) in
the worst case, polynomial in n, the number of entities (nodes of the graph),
ϕ, the number of trust relationships (edges), and `, the size of the longest path
between entities. For instance the algorithm proposed in [12] worked only for
directed acyclic graphs (DAG) and required the approximate resolution of the
Bounded Disjoint Paths problem, known to be NP-Hard [19]. In case of DAGs
the complexity of our algorithm even reduces to O(n · ϕ · `).

Our algorithm is designed to evaluate the trust using all existing (finite) trust
paths between entities as a preliminary to any exchanges between PKIs. This
can give a precise evaluation of trust, and optimize the certificate validation
time. These computations can be made, in a centralized manner by a trusty

1https://www.eff.org/sovereign-keys, http://convergence.io

2

https://www.eff.org/sovereign-keys
http://convergence.io

independent entity, like Wotsap for a web of trust networks2, by CAs in the
case of cross-certification PKI (e.g. via PKI Resource Query Protocols [18]), or
by the users themselves in the case of PGP web of trust. The latter can even
happen in a distributed manner [3] or with collaborations [17].

Our algorithm works for generic trust metrics but can be more efficient when
the metrics form a ring so that block matrix algorithms can be used. We thus
present in section 2 different possible trust metrics and their aggregation in
trust network. We then present the transformation of DAG algorithms for the
computation of the aggregation into matrix algorithms in section 3. We do this
in the most generic setting, i.e. when even the dotproducts have to be modified,
and with the most generic trust metric (i.e. including trust, uncertainty and
verified distrust). Finally, in section 4, we present our new polynomial algorithm
for generic graphs.

2 Transitive trust metrics

2.1 The calculus of trust

There are several schemes for evaluating the (transitive) trust in a network.
Some present the trust degree as a single value representing the probability
that the expected action will happen. The complementary probability being an
uncertainty on the trust.

Others include the distrust degree indicating the probability that the op-
posite of the expected action will happen [11]. More complete schemes can be
introduced to evaluate trust: Jøsang [15] for instance introduced the Subjective
Logic notion which expresses subjective beliefs about the truth of propositions
with degrees of ”uncertainty”.

[12, 13] also introduced a quite similar scheme with a formal, semantics
based, calculus of trust and applied it to public key infrastructures (PKI). We
chose to present this metric for its generality and include in this section some
definitions and theorems taken from [12]. The idea is to represent trust by a
triplet, (trust, distrust, uncertainty). Trust is the proportion of experiences
proved, or believed, positive. Distrust is the proportion of experiences proved
negative. Uncertainty is the proportion of experiences with unknown character.

Definition 1 ([12, §5.1]). Let d be a trustor entity and e a trustee. Let m be
the total number of encounters between d and e in a given context. Let n (resp.
l) be the number of positive (resp. negative) experiences among all encounters
between d and e.

• The trust degree is defined as the frequency rate of the trustor’s positive
experience among all encounters with the trustee. That is, td(d, e) = n

m .

• The distrust degree: similarly we have dtd(d, e) = l
m .

2http://www.lysator.liu.se/~jc/wotsap/index.html

3

http://www.lysator.liu.se/~jc/wotsap/index.html

• The uncertainty: denoted by ud is defined by: ud(d, e) = 1− td(d, e)−
dtd(d, e).

In the following we will denote the trust relationship by a triple tr(a, b) =
〈td(a, b), dtd(a, b), ud(a, b)〉 or simply tr(a, b) = 〈td(a, b), dtd(a, b)〉 since the
uncertainty is completely determined by the trust and distrust degrees.

In these definitions, the trust depends on the kind of expectancy, the context
of the experiences, type of trust (trust in belief, trust in performance), ..., see
e.g. [13]. For simplicity, we only consider in the next sections the above generic
concept of trust.

2.2 Aggregation of trust

The main property we would like to express is transitivity. Indeed in that case
keys trusted by many entities, themselves highly trusted, will induce a larger
confidence. In the following we will consider a trust graph representing the trust
relationships as triplets between entities in a network.

Definition 2 (Trust graph). Let T ⊂ [0, 1]3 be a set of trust relationships. Let
V be a set of entities of a trust network. Let E be a set of directed edges with
weight in T . Then G = (V,E, T) is called a trust graph and there is an edge
between two vertices whenever there exist a nonzero trust relationship between
its entities.

Next we define the transitivity over a path between entities and using parallel
path between them as sequential and parallel aggregations. We first need to
define a trust path:

Definition 3 (Trust path). Let G = (V,E, T) be a trust graph. A trust path

between two entities A1 ∈ V and An ∈ V is defined as the chain, A1
t1−→ A2

t2−→
...An−1

tn−1−→ An, where Ai are entities in V and ti ∈ T are respectively the trust

degrees associated to each trust relation (Ai
ti−→ Ai+1) ∈ E.

The need of the sequential aggregation is shown by the following example.
Consider, as shown on figure 1, Alice trusting Bob with a certain degree, and
Bob trusting Charlie with a certain trust degree. Now, if Alice wishes to com-
municate with Charlie, how can she evaluate her trust degree toward him? For
this, we use the sequential aggregation of trust to help Alice to make a decision,
and that is based on Bob’s opinion about Charlie.

a b c

−→ : Direct trust relationship

99K : Indirect (sequentially aggregated) trust relation-
ship

Figure 1: Simple sequential trust aggregation

4

Definition 4 (Sequential aggregation of trust [12, Theorem UT-1]). Let G =
(V,E, T) be a trust graph. Let a,b and c be three entities in V and tr(a, b) ∈ T ,
tr(b, c) ∈ T be respectively the trust degrees associated to the entity pairs (a, b)
and (b, c). The sequential aggregation of trust between a and c is a function f ,
that calculates the trust degree over the trust path a→ b→ c. It is defined by :

f : T × T → T with f(tr(a, b), tr(b, c)) = trf (a, c) = 〈tdf (a, c), dtdf (a, c)〉
where tdf (a, c) = td(a, b).td(b, c) + dtd(a, b).dtd(b, c)

dtdf (a, c) = dtd(a, b).td(b, c) + td(a, b).dtd(b, c)

Lemma 1. Definition 4 is sound.

Proof. We consider the trust path a
x→ b

y→ c and let x = 〈xt, xd, xu〉, y =
〈yt, yd, yu〉 and z = 〈zt, zd, zu〉 = f(x, y). Then zu = 1 − xtyt − xdyd − xtyd −
xdyt = 1−xt(yt+yd)−xd(yt+yd) = 1−(xt+xd)(yt+yd) = 1−(1−xu)(1−yu).
Since 0 ≤ xu ≤ 1 and 0 < leqyu ≤ 1, we have that 0 ≤ (1− xu)(1− yu) ≤ 1 so
that 0 ≤ zu = xu + yu ≤ 1. Since xu and yu are positive by definition, it follows
that f(x, y) is a trust relationship.

From the definition we also for instance immediately get the following prop-
erties.

Lemma 2. f (Sequential aggregation) increases uncertainty.

Proof. As in the proof of lemma 1, we let x = 〈xt, xd, xu〉, y = 〈yt, yd, yu〉 and
z = f(x, y). From zu = 1− (1− xu)(1− yu) we have that zu = xu + yu(1− xu).
Therefore as yu and 1 − xu are positive we in turn have that zu ≥ xu. We
also have zu = yu + xu(1 − yu) and therefore also zu ≥ yu. Moreover we see
that if both uncertainties are non zero, then the uncertainty of f(x, y) is strictly
increasing.

Lemma 3 ([13, Property 2]). f (Sequential aggregation) is associative

Proof. We consider the trust path a
x→ b

y→ c
z→ d and let x = 〈xt, xd〉, y =

〈yt, yd〉, z = 〈zt, zd〉. Then f(x, y) = 〈xtyt + xdyd, xdyt + xtyd〉 and f(y, z) =
〈ytzt + ydzd, ydzt + ytzd〉, so that f(f(x, y), z) = 〈(xtyt + xdyd)zt + (xdyt +
xtyd)zd, (xdyt + xtyd)zt + (xtyt + xdyd)zd〉. In other words, f(f(x, y), z) =
〈xt(ytzt+ydzd)+xd(ydzt+ytzd), xd(ytzt+ydzd)+xt(ydzt+ydzd)〉 = f(x, f(y, z)).

From this associativity, this sequential aggregation function can be applied
recursively to any tuple of values of T , to evaluate the sequential aggrega-
tion of trust over any trust path with any length ≥ 2, for instance as follows:
f(t1, ..., tn) = f(f(t1, ..., tn−1), tn).

Now, the following definition of the parallel aggregation function can also be
found in [13, § 7.2.2], it is clearly associative and is illustrated on figure 2.

5

Definition 5 (Parallel aggregation of trust [12, §6.2]). Let G = (V,E, T) be a
trust graph. Let a, b1, . . . , bn, c be entities in V and tri(a, c) ∈ T be the trust
degree over the trust path a → bi → c for all i ∈ 1..n. The parallel aggregation
of trust is a function g, that calculates the trust degree associated to a set of
disjoint trust paths connecting the entity a to the entity c. It is defined by:

g : T n → T with g([tr1, tr2, . . . , trn](a, c)) = trg(a, c) = 〈tdg(a, c), dtdg(a, c)〉

where tdg(a, c) = 1−
∏
i=1..n

(1− tdi) and dtdg(a, c) =
∏
i=1..n

dtdi

a c

...

b

b1

n

−→ : Direct trust relationship

99K : Indirect (parallely aggregated) trust relationship

Figure 2: Parallel aggregation of trust for multiple trust

Lemma 4. Definition 5 is sound.

Proof. We start by proving it for two paths of length 1. Let x = 〈xt, xd〉 and
y = 〈yt, yd〉. Then g(x, y) = 〈1− (1− xt)(1− yt), xdyd〉. It is clear that tdg and
dtdg are non negative. Now from the definition of trust relationship we know
that xt + xd ≤ 1 and yt + yd ≤ 1 so that xd ≤ 1− xt and yd ≤ yt− 1. Therefore
xdyd ≤ (1−xt)(1−yt) and tdg(x, y)+dtdg(x, y) ≤ 1. This generalizes smoothly
to any number of paths by induction.

Definition 6 (Trust evaluation). Let G(V,E, T) be a directed acyclic trust
graph, and let a and b be two nodes in V . The trust evaluation between a
and b is the trust aggregation over all paths connecting a to b. It is computed
recursively by aggregating (evaluating) the trust between the entity a and the
predecessors of b (except, potentially, a). Denote by Pred(b) the predecessors of
b and by pi the elements of Pred(b) \ {a}. The trust evaluation between a and
b consists in first recursively evaluating the trust over all paths a → . . . → pi,
then applying the sequential aggregation over the paths a → pi → b and finally
the parallel aggregation to the results (and (a→ b), if (a→ b) ∈ E).

Remark 1. Note that since the predecessors of b are distinct, after the sequential
aggregations all the resulting edges from a to b are distinct. They are thus
disjoint paths between a and b and parallel aggregation applies.

Remark 2. In the above definition of trust evaluation we favor the evaluation
from right to left. As shown on the example below this gives in some sense
prominence to nodes close to the beginning of the path, that is nodes closer
to the one asking for an evaluation. This is illustrated on figure 3 where to
different strategies for the evaluation of trust are shown: on the left, one with
parallel, then sequential, aggregation; the other one with sequential, then parallel,

6

From left to right, we
get f(a, g(f(b, c), d))

4

3

21

c

d

b

a

From right to left
(definition 6), we get
g(f(a, b, c), f(a, d))

Figure 3: Two strategies for trust evaluation between node 1 and 4.

aggregation. Would f be distributive over g we would get the same evaluation.
As we will see in section 4, this choice of evaluation can has an important impact
in the presence of cycles.

The graph theoretic method proposed by [12, §6.3] for evaluating trust be-
tween two nodes in a DAG requires the approximate solution of the Bounded
Disjoint Paths problem, known to be NP-Hard [19]. This algorithm has two
steps: first an elimination of cycles via BDP, then a composition of sequential
and then parallel aggregation. We will show in the next section that our matrix
algorithm produces the same output on acyclic graphs. Moreover, in section 4,
we will present a variant of this algorithm, still with polynomial time bound,
that directly deals with generic graphs.

By storing the already evaluated relationships, the aggregation part of [12,
§6.3] can for instance compute the global trust in a graph with 1000 vertices
and 250 000 edges in about 1 minute on a standard laptop. In the following, we
propose to rewrite this algorithm in terms of linear algebra [16]. Using sparse
linear algebra the overall complexity will not change, and the analysis will be
eased. Now if the graph is close to complete, the trust matrix will be close to
dense and cache aware linear algebra block algorithms will be more suited.

In both cases, the linear algorithm will decompose the evaluation into con-
verging iterations which could be stopped before exact convergence in order to
get a good approximation faster.

Furthermore, using this linear algebra point of view, we will we able to
generalize the algorithm to any directed graph.

3 Matrix Powers Algorithm For Directed Acyclic
Graphs

In the previous section, we presented the trust propagation scheme introduced
by [12], which consists of using the parallel and sequential trust aggregations
for evaluating the trust between a network’s entities. Indeed, our matrix powers
algorithm can be implemented with different trust propagation schemes under
one necessary condition: the transitivity property of the (sequential and paral-
lel) trust propagation formulas. In this section, we propose a new algorithm for
evaluating trust in a network using the powers of the matrix of trust. This algo-
rithm uses techniques from graph connectivity and communicability in networks
[5].

7

3.1 Matrix and monoids of trust

Definition 7. Let G = (V,E, T) be a trust graph, the matrix of trust of G, de-
noted by C, is the adjacency matrix containing, for each node of the graph ,G the
trust degrees of a node toward its neighbors, Cij = 〈td(i, j), dtd(i, j), ud(i, j)〉.
When there is no edge between i and j, we choose Cij = 〈0, 0, 1〉 and, since
every entity is fully confident in itself, we also choose for all i: Cii = 〈1, 0, 0〉.

Definition 8. Let T be the set T = {〈x, y, z〉 ∈ [0, 1]3, x+ y+ z = 1}, equipped
with two operations ”+” and ”.” such that ∀(〈a, b, u〉, 〈c, d, v〉) ∈ T 2 we have:
〈a, b, u〉.〈c, d, v〉 = 〈ac+bd, ad+bc, 1−ac−ad−bd−bc〉, and 〈a, b, u〉+〈c, d, v〉 =
〈a+c−ac, bd, (1−a)(1−c)−bd〉. We define as the monoids of trust the monoids
(T ,+, 〈0, 1, 0〉) and (T , ., 〈1, 0, 0〉).

〈0, 0, 1〉 is the absorbing element of ”.” in T . This justifies a posteriori
our choice of representation for the absence of an edge between two nodes in
definition 7.

We can also see that the set T corresponds to trust degrees 〈td, dtd, ud〉. In
addition, the operations ”.” and ”+” represent respectively the sequential and
parallel aggregations of trust, denoted f and g in definitions 4 and 5.

Remark 3. Note that ”.” is not distributive over ”+”. This fact can prevent
the use of block algorithms and fast matrix methods. Now if the simpler metric
without distrust is used (i.e. distrust is fixed to zero for every entity in the
graph, and will remain zero all along our trust algorithms), then ”.” becomes
distributive over ”+”. Thus in the following section we will present timings with
or without taking distrust into consideration.

3.2 d-aggregation of trust

Definition 9 (d-aggregation of trust). For d ∈ N, the d-aggregation of trust
between two nodes A and B, in an acyclic trust graph, is the trust evaluation
over all paths of length at most d, connecting A to B. It is denoted d-aggA,B.

Definition 10 (Trust vectors product). Consider the directed trust graph G =

(V,E, T) with trust matrix C. Let
−→
Ci∗ be the i-th row vector and

−→
C∗j be the j-th

column vector. We define the product of
−→
Ci∗ by

−→
C∗j by:

−→
Ci∗.
−→
C∗j =

k 6=j∑
k∈V

Cik.Ckj

Note that Cii = Cjj = 〈1, 0, 0〉 is the neutral element for ”.”. Therefore, our
definition differs from the classical dot product as we have removed one of the
Cij = Cii · Cij = Cij · Cjj , but then it matches the 2-aggregation:

Lemma 5. The product
−→
Ci∗.
−→
C∗j is the 2-aggregated trust between i and j.

8

Proof. We prove first that Cik.Ckj is the sequential aggregation of trust between
i and j throughout all the paths (of length≤ 2) i → k → j with k ∈ V . Let
k be an entity in the network. There are two cases: whether k is one of the
boundaries of the path or not. The first case is: k = i or k = j:

• if k = i, then from the trust matrix definition 7, Cii = 〈1, 0, 0〉∀i, thus we
have Cik.Ckj = Cii.Cij = 〈1, 0, 0〉.Cij = Cij .

• if k = j, then similarly Cik.Ckj = Cij .Cjj = Cij .〈1, 0, 0〉 = Cij

Therefore Cik.Ckj corresponds to the [sequential aggregation of] trust between
i and j throughout the path (i, j) of length 1. This is why in the product, we
added the constraint k 6= j in the sum to avoid taking Cij twice into account.
Now the second case is: k 6= i and k 6= j:

• if k belongs to a path of length 2 connecting i to j, then: i trusts k with
degree Cik 6= 〈0, 0, 1〉, and k trusts j with degree Ckj 6= 〈0, 0, 1〉. From
definition 4, Cik.Ckj corresponds to the sequential aggregation of trust
between i and i throughout the path i→ k → j.

• If there is no path of length 2 between i and j containing k, then we have
Cik = 〈0, 0, 1〉 or Ckj = 〈0, 0, 1〉, and thus Cik.Ckj = 〈0, 0, 1〉 is also the
aggregation of trust between i and j on the path traversing the node k.

Finally, we can deduce that
−→
Ci∗.
−→
C∗j =

∑k 6=j
k∈V Cik.Ckj corresponds to the parallel

aggregation of trust between i and j using all paths of length ≤ 2, which is
the 2-aggregated trust between i and j. Note that the latter is equivalent to−→
Ci∗.
−→
C∗j =

∑
k∈Pred.(j)\{i} Cik.Ckj + Cij .

Definition 11 (Trust matrix product). Let C(ij) and M(ij) be two trust matri-
ces. We define the matrix product N = C ∗M by: ∀i, j ∈ {1..n}

Nij =

−→
Ci∗.
−−→
M∗j =

k 6=j∑
k∈V

Cik.Mkj if i 6= j

〈1, 0, 0〉 otherwise

Lemma 6. Let (Cij) be the trust matrix of a network of entities, whose elements
belong to a trust graph G. The matrix M defined by: M = C2 = C∗C represents
the 2-aggregated trust between all distinct entity pairs and the total trust of
entities for themselves.

Proof. From definition 11, we have: Mij =

−→
Ci∗.
−→
C∗j =

k 6=j∑
k∈V

Cik.Ckj if i 6= j

〈1, 0, 0〉 otherwise

.

Thus, if i = j, then Mii = 〈1, 0, 0〉 as claimed. Otherwise, i 6= j and according
to lemma 5, Mij the 2-aggregated trust between i and j.

9

Now, according to definition 6 of the trust evaluation in a network, we can
generalize lemma 6 to evaluate trust using all paths of a given length:

Theorem 1. Let G = (V,E, T) be an acyclic trust graph with matrix of trust C.
Then Cd represents the d-aggregated trust between all entity pairs in V .

Proof. We proceed by induction. Let HR(d) be the hypothesis that Cd repre-
sents the d-aggregated trust between all entity pairs in V . Then HR(2) is true
from lemma 6. Now let us suppose that HR(d) is true. First if i = j, then
(d+ 1)-aggi,i = 〈1, 0, 0〉 = Cd+1

i,i from definition 11. Second, definition 6, gives:

(d+ 1)-aggi,j =
∑

k∈Pred.(j)\{i}

d-aggik.Ckj + Cij by def. 6

=
∑

k∈Pred.(j)\{i}

Cdik.Ckj + Cij by HR(d)

=
∑

k∈Pred.(j)

Cdik.Ckj since Cii = 〈1, 0, 0〉

=

k 6=j∑
k∈V

Cdik.Ckj if (ik) /∈ E, Cik = 〈0, 0, 1〉

Overall, HR(d+ 1) is proven and induction proves the theorem.

From this theorem, we immediately have that in an acyclic graph the matrix
powers must converge to a fixed point.

Corollary 1. Let G = (V,E, T) be an acyclic trust graph with trust matrix C.
The successive application of the matrix powers of C converges to a matrix C`,
where ` is the size of the longest path in G. Which means that C` is a fixed
point for the matrix powers:

lim
n→∞

Cn = Cl

For the proof of this corollary, we need the following lemma.

Lemma 7. Let λi,j be the length of the largest path between i and j. Then
either λi,j = 1 or λi,j = maxk∈Pred.(j)\{i}(λi,k) + 1.

Proof of corollary 1. We prove the result by induction and consider the hypoth-
esis HR(d) with d ≥ 1:

∀i, j ∈ V, such that λi,j ≤ d and ∀t ≥ λij , then Ctij = C
λi,j

ij

We first prove the hypothesis for d = 1: Let i and j be such that the longest
path between them is of length 1. This means that in this acyclic directed
graph, there is only one path between i and j, the edge i → j. Now from
definition 6, we have that ∀t, Ctij =

∑
k∈Pred.(j)\{i} C

t−1
ik .Ckj + Cij . However,

Pred.(j) \ {i} = ∅ so that Ctij = Cij , for all t. This proves HR(1).

10

Now suppose that HR(d) is true. Let i and j be two vertices in G(V,E, T).
We have two cases. First case: λij ≤ d. Then λi,j ≤ d + 1 and from the

induction hypothesis, we have that Ctij = C
λij

ij ∀t ≥ λij . Therefore HR(d + 1)
is true for i and j. Second case: λij = d + 1 ≥ 2. Then we have ∀u ≥ 0
Cd+1+u
ij =

∑
k∈Pred.(j) C

d+u
ik .Ckj . Now, from lemma 7, the maximum length of

any path between i and a predecessor of j is λi,j − 1 = d. Therefore, from the

induction hypothesis, we have that Cd+uik = Cλik

ik = Cdik for all k ∈ Pred.(j).

Then Cd+1+u
ij =

∑
k∈Pred.(j) C

d
ik.Ckj = Cd+1

ij which proves the induction and
thus the corollary.

From the latter corollary, we now have an algorithm to compute the trust
evaluation between all the nodes in an acyclic trust network: perform the trust
matrix powering with the monoids laws up to the longest path in the graph.

Theorem 2. Let (Cij) be the trust matrix corresponding to an acyclic graph
with n vertices and ϕ edges whose longest path is of size `. The complexity of
the evaluation of the aggregated trust between all entity pairs represented by this
trust matrix is bounded by O(n · ϕ · `) operations.

Proof. C is sparse with ϕ non zero element. Thus multiplying C by a vector
requires O(ϕ) operations and computing C × Ci requires O(nϕ) operations.
Then, theorem 1 shows that Cj for j ≥ ` is the j-aggregated trust between any
entity pair. Finally, corollary 1 shows that Cj = C` as soon as j ≥ `.

The implementation of this algorithm took less than 1 second to perform
an iteration (C2) on the graph of section 2 with 1000 vertices and 250K edges.
And it needed less than 6 seconds to return the final trust degrees.

4 Evaluation of trust in the presence of cycles

The algorithm induced by theorem 1 works only for directed acyclic graphs.
Its advantage is thus restricted to the case when the distrust is not taken into
consideration: then block or sparse algorithms can provide the BLAS3 linear
algebra performance to trust evaluation.

Now, in the presence of cycles in a network, the matrix powers algorithm
will add the contribution of each edge of a cycle indefinitely.

Consider the graph of figure 4, with a, b, c, d the trust degrees corresponding

to the links 1
a→ 2

b→ 3
c→ 4

d→ 2. Its trust matrix C and applications of the
matrix powers algorithm on this matrix are shown on figure 4, right.

For instance, the value:

C5
1,3 = 0 + C4

1,2C2,3 + 0 = (C1,2 + C3
1,4C4,2)C2,3

= (C1,2 + (C2
1,3C3,4)C4,2)C2,3 = (C1,2 + (C1,2C2,3)C3,4)C4,2)C2,3

= (a+ a.b.c.d).b,

3e.g. ATLAS [23], GotoBLAS [9], MUMPS http://graal.ens-lyon.fr/MUMPS etc.

11

http://graal.ens-lyon.fr/MUMPS

2

3

4

1
a

b

d

c

1 a 0 0

0 1 b 0

0 0 1 c

0 d 0 1

1 a a.b 0

0 1 b b.c

0 c.d 1 c

0 d d.b 1

1 a a.b a.b.c

0 1 b b.c

0 c.d 1 c

0 d d.b 1

1 a+ a.b.c.d a.b a.b.c

0 1 b b.c

0 c.d 1 c

0 d d.b 1

1 a + a.b.c.d (a+a.b.c.d).b a.b.c

0 1 b b.c

0 c.d 1 c

0 d d.b 1

Figure 4: Graph with one cycle and its trust matrix C with C2, C3, C4 and
C5.

corresponds to the aggregation on the paths 1 → 2 → 3 and 1 → 2 → 3 →
4 → 2 → 3 linking 1 to 3. If we continue iterations for n > 5, we find that the
algorithm re-evaluates infinitely the trust on the loop 3 → 4 → 2 → 3 to yield
C2+3k

1,3 = (a + C2+3k−1
1,3 .b.c.d).b with most probably an increase in uncertainty

(e.g. from the many sequential aggregations and lemma 2).

4.1 Convergent iteration

To solve this issue, we propose to change the matrix multiplication procedure,
so that each edge will be used only once in the assessment of a trust relationship.
For this, we use a memory matrix Rij . This stores, for each pair of nodes, all
edges traversed to evaluate their trust degree. Only the paths containing an
edge not already traversed to evaluate the trust degree are taken into account
at the following iteration. Therefore, the computation of C`ij for n ≥ 1, becomes
that given in algorithm 1.

By doing this modification of the matrix multiplication we will obtain a
different trust evaluation. We have no guarantee that this new evaluation is
somewhat more accurate but intuitively as in any path an edge is considered
only once, cycles will not have a preponderate effect. Furthermore, we recover
an interesting fixed point.

Theorem 3. Let C be the trust matrix corresponding to a generic trust graph.
Algorithm 1 converges to the matrix C` where ` is the longest acyclic path
between vertices.

Proof. Let C` be the evaluation of the `-aggregated trust between all entity
pairs after ` iterations where ` is the longest acyclic path between vertices. At

12

Algorithm 1 Matrix powers for generic network graphs

Input An n× n matrix of trust C of a generic directed trust graph.
Output Global trust in the network.

1: ` = 2;
2: Repeat
3: For all (i, j) ∈ [1..n]2 with i 6= j do
4: C`ij = 〈0, 0, 1〉;
5: R`ij = ∅;
6: For k = 1 to n do
7: t = C`−1ik .Ckj ;
8: If (t 6= 〈0, 0, 1〉) then
9: C`ij = C`ij + t;

10: R`ij = R`ij
⋃
R`−1ik

⋃
(k → j); // using a sorted list union

11: End If
12: End For
13: If

(
#R`ij ⊂ #R`−1ij

)
then C`ij = C`−1ij ;R`ij = R`−1ij ; End If

14: End For
15: Until C` == C`−1; ++`;
16: return C`;

this stage, for each pair i, j, all the edges belonging to a path between i and j
will be marked in R`ij . Therefore, no new t = C`ik.Ckj will be added to C`+1

ij .
Conversely, at iteration x < `, if there exist an acyclic path between a pair i, j of
length greater than x, then it means that there exists at least one edge e not yet
considered on a sub-path from, say, u to v, of length x: i 99K u 99K

e→99K v 99K j.
Then Rxuv will be different from Rx−1uv and so will be Cxuv from Cx−1uv .

Theorem 4. Let C be the trust matrix corresponding to a generic trust graph
with n vertices and ϕ edges whose longest path between vertices is of size `. The
complexity of the global evaluation of all the paths between any entity is bounded
by O(n3 · ϕ · `) operations.

Proof. Using algorithm 1, we see that the triple loop induces n3 monoid opera-
tions and n3 merge of the sorted lists of edges. A merge of sorted lists is linear
in the number of edges, ϕ. Then the overall iteration is performed at most `
times from theorem 3.

By applying the new algorithm on the example of figure 4, we still obtain
C5

1,3 = (a+ a.b.c.d).b, but now R5
1,3 = {a, b, c, d} and thus no more contribution

can be added to C5+i
1,3 .

A first naive dense implementation of this algorithm took about 1.3 seconds
to perform the first iteration (C2) on the graph of section 2 with 1000 vertices
and 250K edges. And it needed only 7 iterations to return the final trust degrees
with high precision.

13

Remark 4. More generally, the convergence will naturally be linked to the ratio
of the dominant and subdominant eigenvalues of the matrix. For instance on
some random matrices it can be shown that this ratio is O(

√
n) [7, Remark

2.19], and this is what we had experimentally. Of course, for, e.g., PKI trust
graphs, more studies on the structure of the typical network would have to be
conducted.

4.2 Bounded evaluation of trust

In practice, the evaluation of trust between two nodes A and B need not consider
all trust paths connecting A to B for two reasons:

• First, the mitigation is one of the trust properties, i.e. the trust through-
out trust paths decreases with the length of the latter. Therefore after
a certain length L, the trust on paths becomes weak and thus should
have a low contribution in improving the trust degree after their parallel
aggregation.

• Second, if at some iteration n ≥ 1, we already obtained a high trust degree,
then contributions of other paths will only be minor.

Therefore, it is possible to use the matrix powers algorithm with less iterations
and e.g. a threshold for the trust degree, in order to rapidly compute a good
approximation of the trust in a network. To determine the optimal threshold,
we have conducted hundreds of comparisons between results of each iterations
of our algorithm and the final trust degrees computed with Algorithm 1. We
found that on average on 1K-vertices random matrices, we needed 6 iterations
to get an approximation of the trust degrees at 0.01, and only 7 iterations4 (in
97% of the cases) to achieve an error rate less than 10−6.

5 Conclusion and remarks

The actual public-key infrastructure models assume that the relationships be-
tween the PKI entities are based on an absolute trust. However, several risks
are related to these assumptions when using PKI procedures.

In this paper, we have reduced the evaluation of trust between entities of
a DAG network to linear algebra. This gives a polynomial algorithm to asses
the global trust evaluation in a network. Moreover, depending on the sparsity
of the considered graphs, this enables to use adapted linear algebra methods.
Also the linear algebra algorithm decomposes the evaluation into converging
iterations. These iterations can be terminated earlier than convergence in order
to get a good approximation faster. Finally this enabled us also to generalize
the trust evaluation to any directed graph, i.e. not necessarily acyclic, still with
a polynomial complexity.

4From remark 4, we see that would the product be a classical matrix product,
√
n being

about 32, to get an approximation at 10−6 we would have needed on the order of 6/log1032 ≈
3.98 ≤ 4 iterations to converge.

14

Further work include the determination of the optimal number of iterations
necessary to get a good approximation of trust in minimal time. Small-world
theory for instance could be of help [22, 2].

Also, there is a restriction in the current trust models, which imposes that
Alice cannot communicate with Bob if there is no trust path between them.
However, this limitation can be overcome by using the reputation notion jointly
with the trust notion. If Alice can be sure that Bob has a good reputation in
its friends circle and vice versa, then they can extend their trusty network and
communicate safely [21].

Finally, the choice of the implementation model is a crucial subject. One
approach is to adopt a centralized model, where all computation are done by
a unique trusty entity. Then the reliability of the system depends entirely on
the reliability of the trusted entity. This would typically be achieved by CAs.
Another approach is a distributed model, where the entities must contact each
others to share some trust degrees. This will enable each entity to evaluate
the (at least local) trust in its neighborhood. On the one hand, this can be
applied to large networks while preserving for each entity a low computational
cost. On the other hand, each entity might have only a limited view of the
whole network. Therefore, a dedicated Network Discovery Mechanism (NDM)
is needed to expand the entities trust sub-network. This NDM can be crucial to
determine the trust model safety [10]. Besides, the trust degrees could be a sen-
sitive information. Therefore, the join use of trust matrices and homomorphic
cryptosystems enabling a private computation of shared secret could be useful.

References

[1] H. Adkins. An update on attempted man-in-the-middle at-
tacks. Technical report, Google Online Security Blog, Aug.
2011. http://googleonlinesecurity.blogspot.com/2011/08/

update-on-attempted-man-in-middle.html.

[2] R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of the world-wide web.
Nature, 401:130–131, Sept. 1999.

[3] S. Dolev, N. Gilboa, and M. Kopeetsky. Computing multi-party trust
privately: in O(n) time units sending one (possibly large) message at a
time. In Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC ’10, pages 1460–1465, New York, NY, USA, 2010. ACM.

[4] C. Ellison and B. Schneier. Ten risks of PKI: What you’re not being told
about Public Key Infrastructure. Computer Security Journal, 16(1):1–7,
2000. http://www.counterpane.com/pki-risks.pdf.

[5] E. Estrada and N. Hatano. Communicability graph and community
structures in complex networks. Applied Mathematics and Computation,
214(2):500–511, 2009.

15

http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html
http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html
http://www.counterpane.com/pki-risks.pdf

[6] S. N. Foley, W. M. Adams, and B. O’Sullivan. Aggregating trust using tri-
angular norms in the keynote trust management system. In J. Cuéllar,
J. Lopez, G. Barthe, and A. Pretschner, editors, Security and Trust
Management - 6th International Workshop, STM 2010, Athens, Greece,
September 23-24, 2010, Revised Selected Papers, volume 6710 of Lecture
Notes in Computer Science, pages 100–115. Springer, 2011.

[7] G. Goldberg, P. Okunev, M. Neumann, and H. Schneider. Distribution of
subdominant eigenvalues of random matrices. Methodology and Computing
in Applied Probability, 2:137–151, 2000.

[8] F. Gomes. Security alert: Fraudulent digital certificates. Tech-
nical report, SANS Institute InfoSec Reading Room, June 2001.
http://www.sans.org/reading_room/whitepapers/certificates/

security-alert-fraudulent-digital-certificates_679.

[9] K. Goto and R. A. van de Geijn. High-performance implementation of the
level-3 BLAS. ACM Transactions on Mathematical Software, 35(1):4:1–
4:14, 2008.

[10] K. Govindan and P. Mohapatra. Trust computations and trust dynamics
in mobile adhoc networks: A survey. IEEE Communications Surveys and
Tutorials, 14(2):279–298, 2012.

[11] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust
and distrust. In Proceedings of the 13th international conference on World
Wide Web, WWW ’04, pages 403–412, New York, NY, USA, 2004. ACM.

[12] J. Huang and D. Nicol. A calculus of trust and its application to PKI and
identity management. In Proceedings of the 8th Symposium on Identity and
Trust on the Internet, IDTRUST’09, pages 23–37, New York, NY, USA,
2009. ACM.

[13] J. Huang and D. Nicol. A formal-semantics-based calculus of trust. IEEE
Internet Computing, 14:38–46, September 2010.

[14] A. Jøsang. Trust extortion on the internet. In C. Meadows and
C. Fernandez-Gago, editors, Security and Trust Management, volume 7170
of Lecture Notes in Computer Science, pages 6–21. Springer Berlin / Hei-
delberg, 2012.

[15] A. Jøsang. Probabilistic logic under uncertainty. In Proceedings of Com-
puting: The Australian Theory Symposium (CATS’07), January 2007.

[16] L. V. Orman. Transitivity and aggregation in trust networks. In Proc. of
the 21st Workshop on Information Technologies and Systems (WITS 2010),
Dec. 2010.

16

http://www.sans.org/reading_room/whitepapers/certificates/security-alert-fraudulent-digital-certificates_679
http://www.sans.org/reading_room/whitepapers/certificates/security-alert-fraudulent-digital-certificates_679

[17] M. Pala. A proposal for collaborative internet-scale trust infrastructures
deployment: the public key system (pks). In Proceedings of the 9th Sympo-
sium on Identity and Trust on the Internet, IDTRUST ’10, pages 108–116,
New York, NY, USA, 2010. ACM.

[18] M. Pala and S. W. Smith. Peaches and peers. In Proceedings of the 5th Eu-
ropean PKI workshop on Public Key Infrastructure: Theory and Practice,
EuroPKI ’08, pages 223–238, Berlin, Heidelberg, 2008. Springer-Verlag.

[19] M. K. Reiter and S. G. Stubblebine. Resilient authentication using path
independence. IEEE Trans. Comput., 47:1351–1362, December 1998.

[20] H. Rifà-Pous and J. Herrera-Joancomart́ı. An interdomain PKI model
based on trust lists. In J. Lopez, P. Samarati, and J. L. Ferrer, editors, Pub-
lic Key Infrastructure, 4th European PKI Workshop: Theory and Practice,
EuroPKI 2007, Palma de Mallorca, Spain, June 28-30, 2007, Proceedings,
volume 4582 of Lecture Notes in Computer Science, pages 49–64. Springer,
2007.

[21] S. Schiffner, S. Clauß, and S. Steinbrecher. Privacy and liveliness for repu-
tation systems. In F. Martinelli and B. Preneel, editors, Public Key Infras-
tructures, Services and Applications - 6th European Workshop, EuroPKI
2009, Pisa, Italy, September 10-11, 2009, Revised Selected Papers, volume
6391 of Lecture Notes in Computer Science, pages 209–224. Springer, 2010.

[22] S. Schnettler. A structured overview of 50 years of small-world research.
Social Networks, 31(3):165 – 178, 2009.

[23] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empiri-
cal optimizations of software and the ATLAS project. Parallel Com-
puting, 27(1–2):3–35, Jan. 2001. http://www.netlib.org/utk/people/

JackDongarra/PAPERS/atlas_pub.pdf.

17

http://www.netlib.org/utk/people/JackDongarra/PAPERS/atlas_pub.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/atlas_pub.pdf

	Introduction
	Transitive trust metrics
	The calculus of trust
	Aggregation of trust

	Matrix Powers Algorithm For Directed Acyclic Graphs
	Matrix and monoids of trust
	d-aggregation of trust

	Evaluation of trust in the presence of cycles
	Convergent iteration
	Bounded evaluation of trust

	Conclusion and remarks

