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Matrix powers algorithms for trust evaluation in

PKI architectures

Jean-Guillaume Dumas∗ Hicham Hossayni∗†

December 14, 2011

Abstract

This paper deals with the evaluation of trust in a network of public-
key infrastructures. We consider the PGP web of trust or the network
of cross-certificates of trust anchors for website authentication. Different
trust models have been proposed to interconnect the various PKI com-
ponents in order to propagate the trust between them. In this paper we
provide a simple model for trust and reputation management in PKI ar-
chitectures, and a new polynomial algorithm using linear algebra to assess
trust relationships in a network using different trust evaluation schemes.

1 Introduction

The principle of a Public Keys Infrastructure (PKI) is to establish (using cer-
tificates) a trust environment between network entities and thus guaranty some
security of communications. For example in a cross-certification PKI, an entity
called Alice can establish a communication with another entity called Bob only
after validating Bob’s certificate. For this, Alice must verify the existence of
a certification path between her trust anchor and Bob’s certification authority
(CA). This certificate validation policy imposes that each entity must have a
complete trust in its trust anchors, and that this trust anchor has a direct or
indirect relation with other CAs.

In fact, several risks exist in the current trust models if the trust anchors are
not validated out-of-band by their users. Ellison and Schneier identified a risk
of PKIs to be “Who do we trust, and for what?” which emphasizes the doubts
about the trust relationship between the different PKI components [3]. Several
incidents, including the one in which VeriSign issued to an fraudulent two cer-
tificates associated with Microsoft [5], or even the recent fraudulent certificates
for Google emitted by DigiNotar [1], confirms that a global evaluation of trust
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for the trust anchors might be a solution to assess a respective global degree of
trust. In e.g. [6, 7, 8] algorithms are proposed to quantify the trust relationship
between two entities in a network, using transitivity. Some of them evaluate
trust throughout a single path, while others consider more than one path to
give a better approximation of trust between entities. However to the best of
our knowledge they are restricted to simple network trees. Another approach
would be to use some fully trusted keys or authorities, like the Sovereign Keys
or the Convergence projects1.

In this paper we choose the first approach and use transitivity to approximate
global levels of trust, efficiently. Our idea is to use the powers of the incidence
matrix (used e.g. to verify the graph connexity or to compute the number of
[bounded] paths between nodes). The approach is similar to that used also e.g.
for community detection in graphs [4] and we use it to produce a centralized
or distributed quantification of trust in a network. The complexity of this
algorithm is O(n3 · ϕ · k) in the worst case, polynomial in n, the number of
entities (nodes of the graph), ϕ, the number of trust relationships (edges), and
k, the size of the longest path between entities. For instance the algorithm
proposed in [7] worked only for directed acyclic graphs (DAG) and required the
approximate resolution of the Bounded Disjoint Paths problem, known to be
NP-Hard [12]. In case of DAGs the complexity of our algorithm even reduces
to O(n · ϕ · k).

The aim of our algorithm is the evaluation of trust using all existing (bounded)
trust paths between entities as a preliminary to any exchanges between PKIs.
This can give a precise evaluation of trust, and optimize the certificate valida-
tion time. The algorithm can also be adapted (under condition) to different
trust metrics. We present different our chosen trust metric in section 2 and our
algorithm in section 3. Then, we show that trust and reputation are complemen-
tary and propose a simple model for the trust management in PKI architectures,
using both notions (trust & reputation).

2 Transitive trust metric

There are several schemes for evaluating the (transitive) trust in a network.
Some presents the trust degree as a single value representing the probability that
the expected action will happen. Others include the distrust degree indicating
the probability that the opposite of the expected action will happen [6]. More
complete schemes can be introduced to evaluate trust: Jøsang [9] for instance
introduced the Subjective Logic notion which expresses subjective beliefs about
the truth of propositions with degrees of ”uncertainty”. [7, 8] also introduced
a quite similar scheme with a formal, semantics based, calculus of trust and
applied it to public key infrastructures (PKI). In the next sections, we adopt
the latter trust evaluation scheme: the idea is to represent trust by a triplet,
(trust, distrust, uncertainty). Trust is the proportion of experiences proved, or

1https://www.eff.org/sovereign-keys, http://convergence.io
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believed, positive. Distrust is the proportion of experiences proved negative.
Uncertainty is the proportion of experiences with unknown character.

Definition 1. Let d be a trustor entity and e a trustee. Let m be the total
number of encounters between d and e regarding an instanced expectancy in
a given context. Let n (resp. l) be the number of positive (resp. negative)
experiences among all encounters between d and e.

• The trust degree is defined as the frequency rate of the trustor’s positive
experience among all encounters with the trustee. That is, td(d, e) = n

m
.

• The distrust degree: similarly we have dtd(d, e) = l
m
.

• The uncertainty: denoted by ud is defined by: ud = 1− td− dtd.

In the following we will denote the trust relationship by tr(a, b) =< td(a, b),
dtd(a, b), ud(a, b) > or simply tr(a, b) =< td(a, b), dtd(a, b) > since the uncer-
tainty depends directly of the trust and distrust degrees. In these definitions,
the trust depends on the kind of expectancy, the context of the experiences, type
of trust (trust in belief, trust in performance), ..., see e.g. [8]. For simplicity,
we only consider in the next sections the above generic concept of trust.

2.1 Aggregation of trust

The main property we would like to express is transitivity. Indeed in that case
keys trusted by many entities, themselves highly trusted, will induce a larger
confidence. In the following we will consider a trust graph representing the trust
relationships as triplets between entities in a network.

Definition 2. (Trust graph) Let T ⊂ R
3 be a set of trust values. Let V be a

set of entities of a trust network. Let E be a set of directed edges with weight in
T . Then G = (V,E, T ) is called a trust graph and there is an edge between two
vertices whenever there exist a nonzero trust relationship between its entities.

Next we define the transitivity over a path between entities and using parallel
path between them as sequential and parallel aggregations. We first need to
define a trust path:

Definition 3. (Trust path) Let G = (V,E, T ) be a trust graph. A trust
path between two entities T1 ∈ V and Tn ∈ V is represented as the chain,

T1
v1−→ T2

v2−→ ...Tn−1
vn−1

−→ Tn, where Ti are entities in V and vi ∈ T are

respectively the trust degrees associated to each trust relation (Ti
vi−→ Ti+1) ∈ E.

The need of the sequential aggregation is shown by the following example.
Consider, as shown on figure 1, Alice trusting Bob with a certain degree, and
Bob trusting Charlie with a certain trust degree. Now, if Alice wishes to com-
municate with Charlie, how can she evaluate her trust degree toward Charlie?
For this, we use the sequential aggregation of trust to help Alice to make a
decision, and that based on Bob’s opinion about Charlie.
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a b c

−→ : Direct trust relashionship

99K : Indirect (sequentially aggregated) trust relash-
ionship

Figure 1: Simple sequential trust aggregation

Definition 4. (Sequential aggregation of trust) Let G = (V,E, T ) be a
trust graph. Let a,b and c be three entities in V and tr(a, b) ∈ T , tr(b, c) ∈ T be
respectively the trust degrees associated to the entity pairs (a, b) and (b, c). The
sequential aggregation of trust between a and c is a function f , that calculates
the trust degree over the trust path a → b → c. It is defined by :

f : T × T → T with f(tr(a, b), tr(b, c)) = trf (a, c) =< tdf (a, c), dtdf (a, c) >

where tdf (a, c) = td(a, b).td(b, c) + dtd(a, b).dtd(b, c)

dtdf (a, c) = dtd(a, b).td(b, c) + td(a, b).dtd(b, c)

This definition of f the sequential aggregation function is given by [7, The-
orem UT-1]. This sequential aggregation function can be applied recursively to
any tuple of values of T , to evaluate the sequential aggregation of trust over any
trust path with any length ≥ 2 as follows: f(v1, ..., vn) = f(f(v1, ..., vn−1), vn).

Now, the following definition of the parallel aggregation function can also be
found in [8, § 7.2.2] and is illustrated on figure 2.

Definition 5. (Parallel aggregation of trust) Let G = (V,E, T ) be a trust
graph. Let a, b1, . . . , bn, and c be entities in V and and tri(a, c) ∈ T be the trust
degree over the trust path a → bi → c for all i ∈ 1..n. The parallel aggregation
of trust is a function g, that calculates the trust degree associated to a set of
disjoint trust paths connecting the entity a to the entity c. it is defined by

g : T n → T with g([tr1, tr2, . . . , trn](a, c)) = trg(a, c) =< tdg(a, c), dtdg(a, c) >

where tdg(a, c) = 1−
∏

i=1..n

(1− tdi) and dtdg(a, c) =
∏

i=1..n

dtdi

a c

...

b

b1

n

−→ : Direct trust relashionship

99K : Indirect (parallely aggregated) trust relashion-
ship

Figure 2: Parallel aggregation of trust for multiple trust

Definition 6. (Trust evaluation) Let G(V,E, T ) be a directed acyclic trust
graph, and let a and b be two nodes in V . The trust evaluation between a and b is
the trust aggregation over all paths connecting a to b. It is computed recursively
by aggregating (evaluating) the trust between the entity a and the predecessors
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of b (except, potentially, a). Denote by Pred(b) the predecessors of b and by pi
the elements of Pred(b) \ {a}. The trust evaluation between a and b consists in
applying first the sequential aggregation over the paths a → pi → b and then the
parallel aggregation to the results and (a → b) (if (a → b) ∈ E).

The graph theoretic method proposed by [7, §6.3] for evaluating trust be-
tween two nodes in a DAG requires the approximate solution of the Bounded
Disjoint Paths problem, known to be NP-Hard [12]. We propose in algorithm 1
to remove the search for disjoint paths and then we obtain a polynomial time
algorithm.

Algorithm 1 Recursive trust evaluation

Input G = (V,E, T ) a direct acyclic trust graph, A, Z two nodes of G.
Output Trust between A and Z
1: calculate N = Pred(Z) \ {A};
2: For all ni 6= A in N aggregate(A, ni, G);
3: use parallel aggregation to aggregate all paths from A to Z;

By storing the already evaluated relationships, this algorithm can e.g. com-
pute the global trust in a graph with 1000 vertices and 250 252 edges in less
than 100 seconds on a standard laptop. In the following, we propose to rewrite
this algorithm in terms of linear algebra. Using sparse linear algebra the overall
complexity will not change, and the analysis will be eased. Now if the graph
is close to complete, the trust matrix will be close to dense and cache aware
linear algebra algorithms will be more suited. Moreover, the linear algorithm
will decompose the evaluation into converging iterations which could be stopped
before exact convergence in order to get a good approximation faster. Then we
will also deduce from this point of view a generalization to any directed graph.

3 Matrix Powers algorithm

In this section, we propose a new algorithm for evaluating trust in a network
using the powers of the matrix of trust. This algorithm uses techniques from
graph connexity and communicability in networks [4]. Our matrix powers al-
gorithm can be implemented with different trust propagation schemes under
one necessary condition: the transitivity property of the (sequential & parallel)
trust propagation formulas. For the sake of simplicity, we adopt in the following
the trust notions and the formulas of [8].

3.1 Matrix and monoids of trust

Definition 7. Let G = (V,E, T ) be a trust graph, the matrix of trust of G, de-
noted by C, is the incidence matrix containing, for each node of the graph ,G the
trust degrees of a node toward its neighbors, Cij =< td(i, j), dtd(i, j), ud(i, j) >.
When there is no edge between i and j, we choose Cij =< 0, 0, 1 > and, since
every entity is fully confident in itself, we also choose for all i: Cii =< 1, 0, 0 > .
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Definition 8. Let T be the set T = {< x, y, z >∈ [0, 1]3, x + y + z = 1},
equipped with two operations ”+” and ”.” such that ∀ < a, b, u >,< c, d, v >∈ T
we have: < a, b, u > . < c, d, v >=< ac+ bd, ad+ bc, 1−ac−ad− bd− bc >, and
< a, b, u > + < c, d, v >=< 1−(1−a)(1−c), bd, (1−a)(1−c)−bd >. We define
as the monoids of trust the monoids (T ,+, < 0, 1, 0 >) and (T , ., < 1, 0, 0 >).

< 0, 0, 1 > is the absorbing element of ”.” in T . This justifies a posteri-
ori our choice of representation for the absence of an edge between two nodes
in definition 7. We can also see that the set T corresponds to trust degrees
< td, dtd, ud >. In addition, the operations ”.” and ”+” represent respectively
the sequential and parallel aggregations of trust, denoted f and g in defini-
tions 4 and 5.

3.2 d-aggregation of trust

Definition 9. (d-aggregation of trust) For d ∈ N, the d-aggregation of trust
between two nodes A and B, in an acyclic trust graph, is the trust evaluation
over all paths of length at most d, connecting A to B. It is denoted d-aggA,B.

Definition 10. (Trust vectors product) Consider the directed trust graph

G = (V,E, T ) with trust matrix C. Let
−→
Ci∗ be the i-th row vector and

−→
C∗j be

the j-th column vector. We define the product of
−→
Ci∗ by

−→
C∗j in the set T to be:

−→
Ci∗.

−→
C∗j =

k 6=j
∑

k∈V

Cik.Ckj

Note that Cii = Cjj =< 1, 0, 0 > is the neutral element for ”.”. Therefore,
our definition differs from the classical dot product as we have removed one of
the Cij = Cii · Cij = Cij · Cjj , but then it matches the 2-aggregation:

Lemma 1. The product
−→
Ci∗.

−→
C∗j is the 2-aggregated trust between i and j.

Proof. We prove first that Cik.Ckj is the sequential aggregation of trust between
i and j throughout all the paths (of length≤ 2) i → k → j with k ∈ V . Let k be
an entity in the network there are two cases: whether k is one of the boundaries
of the path or not. The first case is: k = i or k = j:

• if k = i, then from the trust matrix definition 7, Cii =< 1, 0, 0 > ∀i, thus
we have Cik.Ckj = Cii.Cij =< 1, 0, 0 > .Cij = Cij .

• if k = j, then similarly Cik.Ckj = Cij .Cjj = Cij . < 1, 0, 0 >= Cij

Therefore Cik.Ckj corresponds to the [ sequential aggregation of ] trust between
i and j throughout the path (i, j) of length 1. This is why in the product, we
added the constraint k 6= j in the sum to avoid taking Cij twice into account.
Now the second case is: k 6= i and k 6= j:
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• if k belongs to a path of length 2 connecting i to j, then: i trusts k with
degree Cik 6=< 0, 0, 1 >, and k trusts j with degree Ckj 6=< 0, 0, 1 >.
From definition 4, Cik.Ckj corresponds to the sequential aggregation of
trust between i and i throughout the path i → k → j.

• If there is no path of length 2 between i and j containing k, then we have
Cik =< 0, 0, 1 > or Ckj =< 0, 0, 1 >, and thus Cik.Ckj =< 0, 0, 1 > is
also the aggregation of trust between i and j on the path traversing the
node k.

Finally, we can deduce that
−→
Ci∗.

−→
C∗j =

∑k 6=j

k∈V Cik.Ckj corresponds to the parallel
aggregation of trust between i and j using all paths of length ≤ 2, which is
the 2-aggregated trust between i and j. Note that the latter is equivalent to
−→
Ci∗.

−→
C∗j =

∑

k∈Pred.(j)\{i} Cik.Ckj + Cij .

Definition 11. (Trust matrix product) Let C(ij) and M(ij) be two trust
matrices. We define the matrix product N = C ∗M by: ∀i, j ∈ {1..n}

Nij =

{−→
Ci∗.

−−→
M∗j =

∑k 6=j

k∈V Cik.Mkj if i 6= j

< 1, 0, 0 > otherwise

Lemma 2. Let (Cij) be the trust matrix of a network of entities, whose elements
belong to a trust graph G. The matrix M defined by: M = C2 = C∗C represents
the 2-aggregated trust between all entities pairs.

Proof. We have: ∀i, j ∈ {1..n} Mij =

{−→
Ci∗.

−→
C∗j =

∑k 6=j

k∈V Cik.Ckj if i 6= j

< 1, 0, 0 > otherwise
.

If i = j: then Mii =< 1, 0, 0 > denotes that i has a total trust on itself.
Otherwise, if i 6= j: according to lemma 1, Mij the 2-aggregated trust between
i and j.

Now, according to definition 6 of the trust evaluation in a network, we can
generalize lemma 2 to evaluate trust using all paths of a given length:

Theorem 1. Let G = (V,E, T ) be an acyclic trust graph with matrix of trust C.
Then Cd represents the d-aggregated trust between all entity pairs in V .

Proof. We proceed by induction. Let HR(d) be the hypothesis that Cd rep-
resents the d-aggregated trust between all entity pairs in V . Then HR(2) is
true from lemma 2. Now let us suppose that HR(d) is true. First if i = j, then
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(d+1)-aggi,i =< 1, 0, 0 >= Cd+1
i,i from definition 11. Second, definition 6, gives:

(d+ 1)-aggi,j =
∑

k∈Pred.(j)\{i}

d-aggik.Ckj + Cij by def. 6

=
∑

k∈Pred.(j)\{i}

Cd
ik.Ckj + Cij by HR(d)

=
∑

k∈Pred.(j)

Cd
ik.Ckj since Cii =< 1, 0, 0 >

=

k 6=j
∑

k∈V

Cd
ik.Ckj if (ik) /∈ E, Cik =< 0, 0, 1 >

Overall, HR(d+ 1) is proven and induction proves the theorem.

From this theorem, we immediately have that in an acyclic graph the matrix
powers must converge.

Corollary 1. Let G = (V,E, T ) be an acyclic trust graph with trust matrix C.
The matrix powers of C converges to a matrix Ck, where k is the size of the
longest path in G.

For the proof of this corollary, we need the following lemma.

Lemma 3. Let λi,j be the length of the largest path between i and j. Then
either λi,j = 1 or λi,j = maxk∈Pred.(j)\{i}(λi,k) + 1.

Proof of corollary 1. We prove the result by induction and consider the hypoth-
esis HR(d) with d ≥ 1:

∀i, j ∈ V, such that λi,j ≤ d and ∀t ≥ λij , then Ct
ij = C

λi,j

ij

We first prove the hypothesis for d = 1: Let i and j be such that the longest
path between them is of length 1. This means that in this acyclic directed
graph, there is only one path between i and j, the edge i → j. Now from
definition 6, we have that ∀t, Ct

ij =
∑

k∈Pred.(j)\{i} C
t−1
ik .Ckj + Cij . However,

Pred.(j) \ {i} = ∅ so that Ct
ij = Cij , for all t. This proves HR(1).

Now suppose that HR(d) is true. Let i and j be two vertices in G(V,E, T ).
We have two cases. First case: λij ≤ d. Then λi,j ≤ d + 1 and from the

induction hypothesis, we have that Ct
ij = C

λij

ij ∀t ≥ λij . Therefore HR(d + 1)
is true for i and j. Second case: λij = d + 1 ≥ 2. Then we have ∀u ≥ 0
Cd+1+u

ij =
∑

k∈Pred.(j) C
d+u
ik .Ckj . Now, from lemma 3, the maximum length of

any path between i and a predecessor of j is λi,j − 1 = d. Therefore, from the

induction hypothesis, we have that Cd+u
ik = Cλik

ik = Cd
ik for all k ∈ Pred.(j).

Then Cd+1+u
ij =

∑

k∈Pred.(j) C
d
ik.Ckj = Cd+1

ij which proves the induction and
thus the corollary.
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From the latter corollary, we now have an algorithm to compute the trust
evaluation between all the nodes in an acyclic trust network: perform the trust
matrix powering with the monoids laws up to the longest path in the graph.

Theorem 2. Let (Cij) be the trust matrix corresponding to an acyclic graph
with n vertices and ϕ edges whose longest path is of size k. The complexity of
the evaluation of the aggregated trust between all entity pairs represented by this
trust matrix is bounded by O(n · ϕ · k) operations.

Proof. C is sparse with ϕ non zero element. Thus multiplying C by a vector
requires O(ϕ) operations and computing C × Ci requires O(nϕ) operations.
Thus, theorem 1 shows that Cj for j ≥ k is the j-aggregated trust between any
entity pair. Finally, corollary 1 shows that Cj = Ck as soon as j ≥ k.

3.3 Evaluation of trust in the presence of cycles

In the presence of cycles in a network, the matrix powers algorithm reevaluates
indefinitely the trust degrees between the nodes in a cycle. This implies that
the algorithm will converge finally to the maximal trust degree 1.

2

3

4

1
a

b

d

c

1 a 0 0

0 1 b 0

0 0 1 c

0 d 0 1

1 a a.b 0

0 1 b b.c

0 c.d 1 c

0 d d.b 1

1 a a.b a.b.c

0 1 b b.c

0 c.d 1 c

0 d d.b 1

1 a+ a.b.c.d a.b a.b.c

0 1 b b.c

0 c.d 1 c

0 d d.b 1

1 a + a.b.c.d (a+a.b.c.d).b a.b.c

0 1 b b.c

0 c.d 1 c

0 d d.b 1

Figure 3: Graph with one cycle and its trust matrix C with C2, C3, C4 and
C5.

Consider the graph of figure 3, with a, b, c, d the trust degrees correspond-
ing to the links 1 → 2 → 3 → 4 → 2. Its trust matrix C and applications
of the matrix powers algorithm on this matrix are shown on figure 3. For in-
stance, the value C5

1,3 = 0 + C4
1,2C2,3 + 0 = (C1,2 + C3

1,4C4,2)C2,3 = (C1,2 +
(C2

1,3C3,4)C4,2)C2,3 = (C1,2 + (C1,2C2,3)C3,4)C4,2)C2,3 = (a + a.b.c.d).b, corre-
sponds to the aggregation on the paths 1 → 2 → 3 and 1 → 2 → 3 → 4 → 2 → 3
linking 1 to 3. If we continue iterations for n > 5, we find that the algorithm
re-evaluates the trust on the loop 3 → 4 → 2 → 3 infinitely.
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To solve this issue, we propose to change the matrix multiplication pro-
cedure, so that each path will be used only once in the assessment of a trust
relationship. For this, we use a memory matrix Rij . This stores, for each pair
of nodes, all edges traversed to evaluate their trust degree. Only the paths
containing an edge not already traversed to evaluate the trust degree are taken
into account at new iteration. Therefore, the computation of Cℓ

ij for n ≥ 1,
becomes:

Algorithm 2 Matrix powers for generic network graphs

Input An n× n matrix of trust C.
Output Global trust in the network.
1: ∀i, j ∈ [1..n], Rij = {∅}; Cii =< 1, 0, 0 >; ℓ = 2;
2: Repeat

3: For all (i 6= j) ∈ [1..n]2 do

4: Cℓ
ij = Cℓ−1

ij ;
5: For k = 1 to n do

6: t = Cℓ−1
ik .Ckj ;

7: Rℓ
ij = Rℓ−1

ij

⋃

Rℓ−1
ik

⋃

(k → j); // using a sorted merge

8: If (t 6=< 0, 0, 1 >) AND
(

#Rn
ij > #Rn−1

ij

)

then Cℓ
ij+ = t; End If

9: End For

10: End For

11: Until Cℓ == Cℓ−1; ++ℓ;
12: return Cℓ;

Theorem 3. Let C be the trust matrix corresponding to a generic trust graph.
Algorithm 2 converges to the matrix Cℓ where ℓ is the longest acyclic path
between vertices.

Proof. Let Cℓ be the evaluation of the ℓ-aggregated trust between all entity pairs
after ℓ iterations. At this stage, for each pair i, j, all the edges belonging to a
path between i and j will be marked in Rij . Therefore, no new t = Cn−1

ik .Ckj

will be added to Cij . Conversely, at iteration k < ℓ, if there exist an acyclic
path between a pair i, j of length greater than k, then it means that there exists
an edge not yet considered on a sub-path (from say u to v) of length k between
i and j. Then Ck

uv will be different from Ck−1
uv .

Theorem 4. Let C be the trust matrix corresponding to a generic trust graph
with n vertices and ϕ edges whose longest path between vertices is of size ℓ. The
complexity of the global evaluation of all the paths between any entity is bounded
by O(n3 · ϕ · ℓ) operations.

Proof. Using algorithm 2, we see that the triple loop induces n3 monoid opera-
tions and n3 merge of the sorted sets of edges. A merge of sorted sets is linear
in the number of edges, ϕ. Then the overall iteration is performed at most ℓ
times from theorem 3.
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By applying the new algorithm on the example of figure 3, we still obtain
C5

1,3 = (a+ a.b.c.d).b, but now R5
1,3 = {a, b, c, d} and thus no more contribution

can be added to C5+i
1,3 . A first naive implementation of this algorithm took less

than 15 seconds to perform the first iteration (C2) on the graph of section 2
with 1000 vertices and 250k edges.

3.4 Bounded evaluation of trust

In practice, the evaluation of trust between two nodes A and B need not consider
all trust paths connecting A to B for two reasons:

• First, the mitigation is one of the trust properties, i.e. the trust through-
out trust paths decreases with the length of the latter. Therefore after
a certain length L, the trust on paths becomes weak and thus should
have a low contribution in improving the trust degree after their parallel
aggregation.

• Second, if at some iteration n ≥ 1, we already obtained a high trust degree,
then contributions of other paths will only be minor.

Therefore, it is possible to use the matrix powers algorithm with less iterations
and e.g. a threshold for the trust degree, in order to compute fast a good
approximation of the trust in a network.

4 Distributed Trust and Reputation for public

key architectures

The reputation can be defined as in [13]: ”a peer’s belief in another peer’s ca-
pabilities, honesty and reliability based on the other peers recommendations.”
Currently, the reputation is implemented in several areas: e-commerce , mailing
(combating spams), search engines (Pages classification), P2P networks, . . . .
Reputation can for instance be used to help peers distinguish good from bad
partners. However, the notions of trust and reputation are usually treated sep-
arately. Yet these two concepts are complementary are both necessary for a
better quantification of the credibility of an entity. On the one hand, it is nec-
essary to have at least one trust path between two entities to evaluate their
trust degree. This cannot always be guaranteed in large networks. There, the
reputation can give a significant indication that will allow users to take the
decision to communicate (or not) with other peers. On the other hand, a low
degree of reputation cannot be conclusive on the credibility of an entity. Indeed,
reputation depends on the number of incoming trust relationships and this may
discriminate the least ”popular” entities. In this case, the trust degree is more
significant. There exist several reputation evaluation systems like e.g. Eigen-
Trust [10], inspired from Google’s PageRank [11] or the Spreading Activation
Model for trust propagation [14], etc. An important advantage of reputation
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systems is their performance. They are fast compared to the binary trust eval-
uation on a network, usually in time quadratic in the size of the network.

In the following, we propose a model combining the trust and the reputation
concepts, for an efficient evaluation of trust in PKI architectures, i.e. with
complexity cubic in the size of the network. The first question is between a
centralized and a distributed model of evaluation. To implement a centralized
trust management model, we would need a new ”trusted authority” (TA) which
would assess trust in all PKI architectures. This is somewhat the case e.g. in
the DNSsec specifications. Its role here would be to retrieve the trust degrees
expressed by all CAs and to evaluate the trust and reputation degrees in the
network. But then TA would need to have a global vision of the network and
to estimate with high accuracy the trust degrees between entities. Moreover,
the reliability of this centralized model is based entirely on the reliability of the
TA. This might not be applicable to very large network like internet but more
suited to small “local” communities of CAs.

Another approach is to use a distributed management model, where the en-
tities must contact others to share some trust degrees. This will enable each
entity to evaluate the trust in its neighborhood. On the one hand, this can be
applied to large networks, while preserving for each entity a low computational
cost. On the other hand, each entity might have only a limited view of the whole
network. Now, in this setting it is also possible to distribute even the compu-
tation of the trust matrix: each entity would be responsible of the computation
of a sub-matrix of the global network. Then the entity could receive some other
(potentially overlapping) sub-matrices, signed by trusted entities. These trust
degrees could be expressed in the certificates, even as a shared secret [2].

Our model can be applied to any PKI system (like cross-certified PKIs or the
PGP web of trust), which consists in a number of entities with certificates/keys,
and in which any entity may sign other entities’ certificates/keys. This cross-
certification/key-signature supposes at least the verification of a policy along
the certification path from the signatory to the owner of the signed certificate.
Thus, each entity may express its trust degrees in the certificates/keys it has
to create/sign. Now, due to the difficulty of expressing precisely a trust degree
a first rating could use a scale from 0 to 10 to normalize the triplet (trust,
distrust, uncertainty). As shown for example on figure 4, one can evaluate a
trust degree to 6/10, usually a smaller value for the known false emissions of
the trustee (often 0/10 or here 1/10) and then the uncertainty is deduced as
1− trust− distrust = 3/10.

Trust Distrust Uncertainty

Figure 4: Example of a scale of trust
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4.0.1 Cross-certified PKI architectures

In the case of cross-certified PKI architectures, the CAs play the main role. In
the context of this article, we assume that the relations [CA → users] are based
on complete trust. In this case, only the inter-CAs relationships are evaluated.
Each CA creates an initial trust matrix from its certificate store and saves it
locally. This matrix corresponds to the sub-graph of the CAs neighborhood. A
network discovery mechanism should then be established to expand the trust
sub-graph and to have a broader view on the network. Then the CA evaluates
the trust and reputation using the matrix powers algorithm of section 3 and a
reputation evaluation scheme. Then it can also decide to forward some of this
information to its users, via e.g. its SCVP services (Server-based Certificate
Validation Protocol), in response to their certificate validation requests.

4.0.2 PGP Web Of Trust

In the case of PGP networks, the same rating system could replace the ac-
tual system (full trust, marginally trusted, no trust). This will allow to assess
more precisely the trust degrees between users. Each user creates its own trust
matrix, which will be initialized from certificates (public keys) in the key-ring.
A network discovery mechanism could also be established to expand the lo-
cal network of trust. Finally, trust and reputation are assessed through the
trust matrix. For instance, the PGP client settings:COMPLETS NEEDED,
MARGINALS NEEDED which are used to compute the required number of
signatures generated by keys with full or marginal trust could be replaced by:
MINIMAL TRUST and MINIMAL REPUTATION, representing the trust and
reputation degrees needed to validate a public key. The values of these param-
eters will depend of course on the used trust propagation system and personal
policies.

5 Conclusion

The actual public-key infrastructure models assume that the relationships be-
tween the PKI entities are based on an absolute trust. However, several risks
when using PKI procedures are related to these assumptions. In this article we
introduce a simple distributed trust model in order to quantify and manage the
trust in cross-certified PKIs and in the PGP web of trust. We use the formal
semantics based calculus of trust introduced by [7, 8] and apply it to the PKIs.
We have reduced the evaluation of trust between entities of a DAG network
to linear algebra. This gives a polynomial algorithm to asses the global trust
evaluation in a network. Moreover, depending on the sparsity of the considered
graphs this enables to use adapted linear algebra methods. Also the linear alge-
bra algorithm decomposes the evaluation into converging iterations which could
be stopped before exact converge in order to get a good approximation faster.
Finally this enabled us also to generalize the trust evaluation to any directed
graph, still with a polynomial complexity.

13



Overall, our model combines the reputation and the trust notions to give a
precise indication about the credibility of the PKI entities.

Further improvement includes a dedicated Network Discovery Mechanism,
used to expand the trust sub-graph and to guaranty the safety in the trust
model. Also the trust degrees could be a sensitive information. Therefore, the
join use of trust matrices and homomorphic cryptosystems enabling a private
computation of shared secret would be useful.
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