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Abstract: Considering a simple one dimensional nonlinear &tihger optical model, we

study the existence of rogue wave events in thélhighcoherent state of the system and
compare them with the recently identified hierarcyational soliton solutions. We show that
rogue waves can emerge in the genuine turbuleminesgnd that their coherent deterministic
description provided by the rational soliton saus is compatible with an accurate statistical
description of the random wave provided by the wawbulence theory. Furthermore, the
simulations reveal that even in the weakly nonlirregime, the nonlinearity can play a key role
in the emergence of an individual rogue wave eireatturbulent environment.

Keywords. Nonlinear optics; Pulse propagation and tempooéitosis; Coherence; Statistical

optics; Optical turbulence



1. Introduction

The evolution of random nonlinear waves can beatttarized by the spontaneous emergence of
short lived high amplitude waves. These rogue waremnts that “appear from nowhere and
disappear without a trace” [1] are among the masied phenomena in nature in these last
years [2]. Besides the hydrodynamic context [3rdgue waves have been recently identified in
various different fields, including optical wavesT], capillary waves [8], superfluid helium [9]
atmosphere [10] or microwaves [11]. Recent optaradl hydrodynamics studies suggest that
rogue wave events can be interpreted in the liglexact analytical solutions of 1D integrable
nonlinear wave equations, the so-called Akhmediggathers (ABs) [1-4,12], or more
specifically their limiting cases of infinite spaltiand temporal periods, tihational soliton(RS)
solutions [13-15]. Because of this key propertyamfalization in both the spatial and temporal
domains, the RSs may be viewed as a kind of 'regue prototype’ [16]. The hierarchy of RSs
has been found, in particular, in the frameworktled integrable 1D nonlinear Schrodinger
equation (NLS) equation, which is known to find el important applications in the
framework of nonlinear optical waves [17]. A rematole property of RSs is that they are
characterized by an increasing value of the ceatrgilitude of the wave field, a feature that can
be used to interpret the emergence of rogue waegatewf higher amplitudes from a chaotic
field [15]. The Peregrine soliton solution refeosthe first order rational solution [18]. It may be
considered as a 'robust solution’, in the sendgeittitan be excited even from non-ideal initial
perturbations of the wave amplitude. In particulds, space-time profile may be closely
approached into the nonlinear stage of the modunatiinstability, a feature that has been
recently exploited in the context of nonlinear fibeptics to report its first experimental

observation [19-20].



RSs are exact analytical solutions of integrablgemaquations, and for this reason they may be
regarded as aoherent and deterministi@approach to the understanding of rogue wave
phenomena. As a matter of fact, however, rogue svaxents are known to spontaneously
emerge from amcoherent turbulent statef the system. It is thus of a fundamental impwé&a

to study whether RSs can emerge from a turbulevit@mment (i.e., in more realistic oceanic
conditions) [21,22]. In this respect, it is intereg to note that RSs have been recently identified
in the midst of a modulationally unstable chaotieldf [12,23]. However, besides these
preliminary numerical observations, the problenthef existence of RS in a truly turbulent wave
system has not been considered so far. Importagstigms, such as, e.g., the impact of the
amount of incoherence in the system on the gewoarafiRSs have not yet been considered. This
actually constitutes a difficult problem, since tHescription of the turbulent wave system
necessarily requires statistical approach, whereas RSs are inherently coherentnaatstic

structures.

The present Letter is aimed at providing some maysnsight into this vast problematic. We
consider the emergence of rogue waves and RSgamine turbulent wave system that can be
described by the Wave Turbulence (WT) theory [28-d®is theory is known to provide an
accurate statistical description of random nonlingaves in their weakly nonlinear regime of
interaction. We address here the following impdriasue: Is the coherent description of rogue
waves provided by RSs consistent with the WT dpson of the random wave? For this
purpose, we consider a rather simple, nearly iatdgr NLS model in which rogue wave events
have been recently identified in the context oficgpf{27-28]. In particular, we recently showed
that the amount of incoherence in the system tigsep impact on the properties of rogue waves,

which may exhibit either intermittent or sporadiehlaviors depending of the system’s energy



[28]. We showed that, by increasing the incoherendbe system, a transition occurs from the
purely coherent and deterministic (quasi-)solitegime toward the fully incoherent turbulent
regime. From a different perspective, this lasbtlent regime has been accurately described by
using the WT theory [29-30], which thus brings tngestion of the existence of rogue wave
events in the framework of the WT regime of theolmerent wave. We note in this respect that
caution should be exercised when drawing conclgsis regard the applicability of the WT
theory. It is indeed well-known that the existendea permanentarge scale coherent structure
(such as a stable soliton or a condensate) leads ioeakdown of the WT theory [26,31].
However, contrary to solitons, rogue waves arenétyre, very short and very rare events. In
this way, although the WT theory is inherently ueato describe rogue waves, their occurrence
does not invalidate the applicability of the WT dhg We show that rogue waves can emerge in
the genuine turbulent state of the random field drat their coherent deterministic description
provided by RSs isompatible with an accurate WT description of tldom waves. In
particular, the nearly Gaussian statistics for theld amplitudes inherent to the WT theory is
compatible with the asymmetric long tail observedhie pdf of the maxima of the field intensity.
Furthermore, the simulations reveal that even ia weakly nonlinear regime, the nonlinearity
can play a key role in the emergence of an indafidague wave evenin this way we report a
readily accessible optical setting in which thenfation of spatiotemporal localized RS

structures can be observed and studied in the \ymeeof interaction.

2. NLS model

We consider the one-dimensional NLS equation irptiesence of third-order dispersion (TOD),
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This equation is known to provide an accurate dgton of light propagation in optical fibers
near by the zero-dispersion wavelength [17]. Irtingi Eq.(1), we normalized the problem with
respect to the nonlinear length E 14P and timety = (B2 Lo)*% wherey is the nonlinear

coefficient, P theaveragepower of the field an@, the second-order dispersion coefficient. In
these units, the normalized TOD coefficient reads p./(6L%*B3?), B3 being the TOD
coefficient. The NLS Eg.(1) is Hamiltonian, H 5 H Hy., where H = | k(w) u(w)]® dwis the
linear dispersive contribution andyH= - /2] |u(t)* dt the nonlinear contribution, dof =
w2 +o & being the linear dispersion relation. Equation él90 conserves the normalized
power N =[ Ju(t)?dt and the momentum PJ= Ju(w)[* dw. The WT theory is usually justified in
the weakly nonlinear regime, where linear dispergffects dominate nonlinear effectsy HH_

« 1 [26,32]. Equation (1) is known to admit quadliten solutions: the TOD termd # 0)

breaks the integrability of the NLS equation, ahd standard soliton solution slowly loses its

power through a process analogous to Cherenkoatrani[26,33].

In a recent work [28], we showed that the NLS BEgddhibits a process analogous to wave
condensation [24,31,34-37]: by studying the longntevolution of the wave, we identified a
transition from the quasi-soliton state at sma#rgres H, toward the fully incoherent WT state
at high energies. For completeness, we reporté&aginl(a) the condensation curve published in
[28]. It can be interpreted by recalling that theey H provides a natural measure of the
amount of incoherence in the system: at high easrtifie system is too incoherent to generate a
coherent quasi-soliton structure. We recall thatdbndensation curve is obtained by varying the
energy H, while the power (‘number of quasi-paest) of the field N is kept constant. As

discussed in detail in Ref. [28], the condensatiorve is characterized by three distinct regimes:



(i) persistent and coherent rogue quasi-solitonsnall energies H, (ii) intermittent-like rogue

guasi-solitons that appear and disappear erratiatlintermediate energies H, and (iii) sporadic
rogue waves events that emerge from turbulentuatmins as bursts of light at high energies.
Accordingly, it is only in the regime (ii) and thpurely WT regime (iii) that the spontaneous
emergence of extreme events was reported. Typpealestime intensity patterns in which rogue

wave events have been identified are illustratéovben Fig. 1(b-c).
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Figure 1: (a) Condensation-like curve: Average led maximum intensity
peak detected in the temporal window as a functbrthe Hamiltonian
densityH = H/T, where T is the size of the numerical tempaiadow (o

= 0.02). The power N of the wave is kept fixed (N¥T1 in normalized
units). (b) Typical space-time intensity patternrowmg an intermittent
quasi-soliton propagating in the midst of turbuln¢tuations forH = 15.5
[see the green square in regime (ii)]. (c) Typsj@dce-time intensity pattern
for H = 19.5 showing the emergence of an extreme eventat441.6 b
[see the green square in regime (iii)]. Black asomdicate the rogue events

studied in the following.



3. Temporal analysisand rational solitons

In this section we investigate the temporal praperpf the extreme events identified in the
regimes (ii) and (iii) of the condensation curvég[FL(a)]. We underline thateveral rogue wave
events identified in regime (ii) and (iii) verifihed standard hydrodynamic criteridB], which
defines a rogue wave as a wave that exhibits ammaxintensity higher than twice the average
intensity among one third of the highest wavesi&nRDF of intensity maxina8]. We start our
analysis by considering the regime (ii), which exacterized by an intermittent-like behavior of
the quasi-soliton structures, in the sense thappears and disappears erratically during the
propagation [28]. Because of its interaction witle turbulent fluctuations, the ‘lifetime’ of the
guasi-soliton fluctuates significantly, so that thdf of the intensity maxima exhibits an L-

shaped distribution reminiscent of typical disttibns characterizing extreme wave events [28].

3.1 Filtering of rogue waves from fluctuations

We identified several extreme events in the higbknsity tail of the pdf distribution. A typical
extreme event is reported in Fig. 2(a). It exhilbitmmaximum intensity of 22.9, which is much
larger than 6.7, i.e., the value of the averagtnefmaximum intensity detected in the long term
evolution of the system (over 50Q)L[28]. In order to further analyze the propertasthis
extreme event, we calculated the correspondingtsmggam of the field at z = 1560.4 [see
Fig. 2(b)]. The spectrogram constitutes a conventenl for the identification of possible
correlations between the spectral and temporal coets of a field (see, e.g., [38]). Here, it
reveals that the extreme event exhibits a highekegif localization in both the temporal and
spectral domains. This allows us to accuratelerfithe extreme event from the surrounding

turbulent fluctuations. The corresponding spedral temporal filters used here are indicated in



Fig. 2(b) by dashed lines. We underline that tmepieral and frequency ranges of the filter do
not affect our results in a significant way. Nobat the spectral filter centered on the pump
frequency also suppresses the dispersive wave teddimom the quasi-soliton, which is

generated in the high-frequency edge of the specfre., in the normal dispersion regime) [33].
This filtering procedure allows us to compare theucture of the extreme event with the

analytical RS solutions of the NLS equation.
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Figure 2: (a) Zoom on the space-time intensitygvatteported in Fig. 1(b)
[H = 15.5, regime (ii)] showing the emergence of attezre event at z =
1560.4 L. (b) Numerical spectrogram of the optical fieldcodated at z =
1560.4 lg revealing the spectro-temporal localization of tbetreme
structure (top window: spectrum profile in logantic scale, right window:
temporal profile in linear scale). Dashed linesigate the spectral and

temporal filters used for subsequent analysis ffse¢ext for details).

3.2 Comparison with RS solutions

The integrable NLS equation exhibits a large vgrit analytical solutions. Among them one

finds the hierarchy of RS solutions recently dettive Ref. [15] by using a modified Darboux



transformation. The hierarchy of the solutions tstdrom the fundamental Peregrine soliton
solution [18]. A remarkable property of RSs is ttiety are characterized by an increasing value
of the central amplitude of the wave. RSs are desdrwith the following basic structure
characterized by the ratio of two polynomials [B48]: y = [ (-1) + ( G +izH ) / D] exp(iz),
where G, H; and § are polynomials of both the spatial (z) and terap{) variables, where j
refers to the order of the solution. Note that exjpforms for the solutions, from the first-order
to the fourth-order, have been given explicitly Refs. [15,39]. Previous theoretical and
numerical studies have also demonstrated that RSsoaust with respect to various types of
perturbations [23,41]. Perturbed solutions thataianm the class of RSs have been also obtained
by using an extended NLS equation with perturbergis frequently encountered in the study of
nonlinear optical waves. In particular, the roleT®D considered here has been analyzed in
[41]. This study revealed that, for the small valwé the TOD parameter considered here, the
TOD term does not qualitatively affect the RS Solut Moreover, these solutions have been
detected as the highest amplitude parts of a ahdéietd by realizing simulations of the NLS
equation starting from a continuous wave with sppsed random fluctuations [12]. More
generally, Calini and Schober have demonstratedhtbraoclinic orbits of the periodic solutions
of the NLS equation persist in the perturbed sysiachsome of their properties can be identified

in the chaotic regime [42].

We now compare the extreme event filtered out ftoenturbulent fluctuations in Fig. 2(b) with
different orders of analytic RSs. In order to congpaem, the filtered field u(t) is normalized in
such a way that the power N contained in the reditemporal window is the same as that of the
analytical RS solution. Figure 3(a) reports the parison between the corresponding extreme

event detected in the simulation and the secondrdR§ solution, which provided the best



agreement with the simulations. The fact that #n@sed order RS provides a better agreement
with respect to the first and third orders RSs stémm the fact that its maximum intensity"{l

= 25) is closer to the maximum intensity of thddidetected in the simulationst™= 22.9),
while the intensity maxima afii® andiusl? are respectively 9 and 49. We remark in Fig. 3(a)
that the intensity profile of the central pulsensggood agreement with the analytic RS solution,
while the presence of turbulent fluctuations leacn appreciable discrepancy in the side-lobes
of the RS solution. Note in particular thagj@antitative agreemertetween the numerics and the
RSis obtained for the value of the pulse peak (I£"" = 25.2, §*° = 25). This good agreement
is not due to the renormalization procedure, whunly affects the integrated value of the wave

amplitude over the numerical time window.

We also analyzed in our simulations an essenti@bgnty of a rogue wave event, namely its
degree of localization in the spatial and tempai@hains [see the space-time profile in Fig.
3(b)]. We obtained a temporal FWHM &t"'™ = 0.231, and a spatial FWHM ofAz™™ = 0.23
Lo, which are in good agreement with the correspandaues of the analytical RS solution,
At™® = 0310, AZ®® = 0.3 Ly. Given the large amount of fluctuations surrougdine extreme

even, we may consider this qualitative agreemesatsfactory.
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Figure 3: (a) Comparison of the filtered rogue wavent detected in regime (ii) in
Fig. 2 (red solid line) with the second order atieéf RS solution (black circles).
(b) Spatio-temporal intensity profile of the fileet rogue wave event detected in the

numerical simulations (see Fig. 2).

We have also performed this analysis for rogue veaants detected in the regime (iii), in which
the system enters into the fully incoherent andklyeaonlinear regime. The spatio-temporal
intensity pattern |u(z,9)feveals that very short-lived rogue wave eventy sidl emerge from
the turbulent field, although these extreme eveetome rare [see Fig. 1(c)]. In the space-time
zoom pattern reported in Fig. 4(a), the extremeneeghibits a maximum intensity of"f™ =
17.1. This value is lower than the previous onesm®red in regime (ii), but it is still much
larger than 6.7, which refers to the average ofmtfagimum intensity detected in the long term
evolution of the system [28]. Proceeding as inmeg(ii), we report the spectrogram of the field
at z = 1441.6 kin Fig. 4(b). We remark that, in spite of the Emount of fluctuations inherent

to the regime (iii), the extreme event can stillidbentified and is characterized by a high degree

of localization in both the temporal and spect@hdins.
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The space-time profile of the filtered field is goaned with the second order analytical RS in
Fig. 5(a). Globally, we may note that the agreenveith the RS is poorer with respect to the
previous analysis in regime (ii), as revealed by ¢bmparison of Fig. 3(a) and Fig. 5(a). This
observation has been confirmed through the anabysiseveral rogue wave events taken in
regimes (i) and (iii), and it can be simply intefed as a consequence of the fact that the
amount of turbulent fluctuations in regime (iii) legher as compared to regime (ii). Note
however in Fig. 5(a) that the central part of thdsp is still in good agreement with the
analytical RS solution. In particular, the valuetloé peak pulse in the simulatiog%'f' = 25.4 is
very close to the corresponding value of the RS’ £ 25. Conversely, the significant
discrepancies in the side-lobes can be ascrib#itettarge amount of incoherent fluctuatiors$ (

~ 20) that characterizes the weakly nonlinear regfinn. We also compared the temporal and
spatial localization of the extreme event deteatedhe simulation with the corresponding

localizations of the RS solution. We obtained atHAWAt™™ = 0.241, andAz™™ = 0.21 L,

which are still in rather good agreement with tberesponding RS’s valueAt’® = 0.31,, AZ™®

= 0.3 Ly).
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Figure 4: (a) Zoom on the space-time intensitygyatteported in Fig. 1(c)
[H = 19.5, regime (iii)] showing the emergence of atreame event at z =

1441.6 L. (b) Numerical spectrogram of the optical fieldcodated at z =
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1441.6 lg revealing the spectro-temporal localization of thetreme
structure (top window: spectrum profile in logantic scale, right window:
temporal profile in linear scale). Dashed linesigate the spectral and

temporal filters used for subsequent analysis ffse¢ext for details).
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Figure 5: (a) Comparison of the filtered rogue waaeent detected in
regime (iii) in Fig. 4 (red solid line) with theitd order analytical RS
solution (black circles). (b) Spatio-temporal irgey profile of the filtered

rogue wave event detected in the numerical sinariat(see Fig. 4).
Finally note that, following the above filtering qmedure, we analyzed several rogue wave

events detected in both regimes (ii) and (iii), e¥hconfirmed the good agreement between their

intensity profiles and the corresponding RS sohgio
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4. Spectral analysisand wave turbulence theory

In the framework of relatively small assumptiore WT theory describes the spectral evolution
of statistically homogeneous random waves in theakly nonlinear regime of interaction,
[Hno/Hi| « 1 [43-45]. This theory has been essentiallyettgyed with the aim of describing fully
developed turbulence in a dissipative system drieerfrom equilibrium by an external source
[24-26], as it occurs, e.g., in some laser systgh8$. However, the kinetic equations also
describe the nonequilibrium evolution of random lmwar waves in a conservative and
reversible (Hamiltonian) system. In analogy witédic gas theory, a closed system of
incoherent nonlinear waves is expected to exhibitharmalization process, which is
characterized by an irreversible evolution of tlgstem towards a thermodynamic equilibrium
state. The WT theory describes the essential ptiepesf this irreversible evolution towards the
Rayleigh-Jeans equilibrium distribution [25]. Thiermalization process has been studied in the
framework of NLS-like equations in various diffeteoptical configurations [47], including
supercontinuum generation [48-49], spontaneouslagpation [50], discrete systems [51], as

well as in various optical media characterized iffgent nonlinearities [52-54].

In the WT theory the system evolves in the weaklglimear regime (|k/H.| « 1), so that linear
dispersive effects dominate the interaction andgbtine random wave amplitude u(z,t) close to a
state of Gaussian statistiddhis is in apparent contradiction with the intugivdea that extreme
wave events are usually associated to a deviatmm fGaussian statistics. Actually, as reported
in our previous worK28], the field amplitude u(z,t) can exhibit a Gaussssatistics, while the
existence of extreme events manifests itself thramgasymmetric long tail distribution in the

pdf of the intensity maximaur aim in this section is to show that the rogueve events

14



analyzed in the previous section can emerge frgbutent fluctuations whose spectral evolution

is accurately described by WT theory.

The long term evolution of the NLS Eq.(1) has beecently shown to exhibit a process of
anomalous thermalization [29-30]. It is characklidy an irreversible evolution of the field
toward an equilibrium state of a fundamental défernature than the usual Rayleigh-Jeans
distribution. Below we briefly sketch the essenpabperties of this anomalous thermalization
and refer the reader to Refs. [29-30] for more nézdl details. In substance, when applied to the

NLS Eq.(1), the WT theory reveals the existenceaolocal invariant in frequency space,
J(w) =n(w,2) -n(g-w,z), where n(w, 2) :<|G|2(a),z)> is the averaged spectrum of the field

amplitude, and q = -168 The invariantJ(«) is ‘local’ in the sense that it is verified for éac

individual frequencyw in frequency space. This local invariant origigata the following
degenerate resonance of the system: the frequefwies-w) resonate with any pair of
frequencies ¥, g-w) because k{) + k(gw) = of/6. Exploiting the existence of the
invariantd(«), one obtains the following WT kinetic equation gavng the evolution of the
averaged spectrum of the field:

2 I F[nJ]
3r0]” |w- @ |w+w —q

0,n(w,z) = day ()

with the functional HnJ]=nn, (n,-J,)Nn, —qu){n;}+(nw—\]w)‘1—n;il—(ncq —Jq)‘l}, where n_’
stands here fon(«,z) . This kinetic equation has been integrated nurallyiand its evolution
has been compared with the simulation of the NLS1BEqWe considered here both regimes (ii

& iii) of interaction previously analyzed for thellowing values ofH = 15.5 andH = 19.5.

The initial condition in the NLS Eq.(1) is a Gawssspectrum with random spectral phases. The

15



same Gaussian spectrum has been considered abdaitdition in the kinetic Eq.(2). We report
in Fig. 6 the NLS spectrum (red dashed line) amdcibrresponding kinetic spectrum (blue solid
line) at the propagation distance in which the guave events have been identified. We
remark that a quantitative agreement is obtaingdden the NLS simulation and the kinetic
simulation, without using any adjustable parameter.

It is interesting to note that the existence of bgue wave event leads to a deviation between
the NLS spectrum and the WT prediction in the varytail of the spectrum (at -80dB). This is
illustrated in Fig. 6(a), which reports the NLS sfpa just before (gray), during (red), and just
after (green) the excitation of the rogue wave. 3imall deviation is only observed during a very
short propagation distance, typically less thanlanés will be discussed in the next Sec. 5 [see
Fig. 7(b)], this small effect is a spectral mani&i®n of the rogue wave event, which, by nature,
cannot be captured by the WT theory.

We finally note that, in its asymptotic evolutidghe spectrum of the field tends to relax toward a
‘local equilibrium state’ of a different nature thahe thermodynamic equilibrium state. In
particular, it violates the property of energy guutition: because of the existence of the local
invariant J(), the local equilibrium spectrum exhibits a higlalsymmetric shape superimposed

on a constant spectral pedestal [30].

16
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Figure 6: (a) Spectrum (in 10xlggscale) obtained by integrating the NLS Eq.(1)
at z = 1560.4 p.for H = 15.5 in regime (ii) (red dashed line), comparéththe
spectrum obtained by integrating the WT kinetic(Eg(blue solid line). Spectra
obtained at z = 1559.9l(gray thin line) and z = 1560.% l(green thin line) are
also reported. (b) Similar comparison at z = 144%.6or H = 19.5 in regime (iii).

A satisfactory agreement is obtained, without using adjustable parameter.

5. Influence of the nonlinearity

In the previous section we have shown that, despgeemergence of rogue wave events, the
spectral evolution of the incoherent wave has Beend in quantitative agreement with the WT
theory. We have also shown in Section 3 that soogrie@ wave events exhibit properties
reminiscent of the RS solutions. In this Sectionshell see thatven if one considers the weakly
nonlinear regime of interaction, the nonlinearityays an important role in the dynamics of

emergence of an individual rogue wave event.

To assess the influence of the nonlinearity onfdnmation of the extreme event, we compare

the NLS simulation of the rogue wave event analyireBlig. 3 with an identical simulation in

17



which the nonlinearity is switched off two nonliméangths before the occurrence of the extreme
event (-2 ). More specifically, the extreme event occurs a ¥560.4 | in Fig. 3, we thus
started the same NLS simulation at z = 1558&4Y¥ removing the nonlinearityy (= 0). The
results are reported in Fig. 7(a). Note that wézed here the same filtering and renormalization
procedures as those discussed in Fig. 3. We claatf/that the nonlinearity plays an important
role in the formation of the extreme event. In atar, contrary to the nonlinear regime (see
Sec. 3), the value of the maximum wave amplitudehesl in the linear regimeqff ~ 11.7
before renormalization) no longer satisfy the stdrogue wave criterion used in the context
of hydrodynamic wave8]. Furthermore, the temporal and spatial loedlons of the detected
‘linear event’ areAt™™ = 0.291o andAz™™ = 0.1 L. These values deviate in a significant way
from the corresponding RS’s values. This reveads the detected rogue wave event does not

result from a simple superposition of linear waves.
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Figure 7: (a) Comparison of the rogue wave eveatyaed previously in Figs. 3
(red solid line, nonlinear regime) with the samergvobtained by simulating the
NLS equation in thelinear’ regime,y = 0 (blue dashed line, see the text for more
details). The plot of the second order RS solutsoalso shown (black circles). (b)

Corresponding wave spectra (in 10xlg@gcale) of the field in the nonlinear regime
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(red solid line) and in the “linear” regime (bluasthed line). Spectrum of the

second order RS solution is also shown (blackesicl

We also report in Fig. 7(b) the corresponding nuca¢rspectra of the fields in the linear and
nonlinear regimes considered in Fig. 7(a). Note these spectra do not account for the filtering
procedure discussed in Sec. 3. We can remark tthtdpectra are almost indistinguishable, so
that they cannot be used to detect easily the emdst of the rogue wave event. This point
deserves to be discussed in relation with thetfeattthe Peregrine soliton and RSs are known to
be characterized by a specific triangular-shapedtspm that appears at an early stage of their
evolution [55], a property that was confirmed exmpentally [19-20]. For this reason, such
triangular-shaped spectra were proposed as a vgasignal for the emergence of extreme wave
events in oceans [55,56]. The analysis reported imglicates that this suggestion is not relevant
when the extreme wave event emerges from a turb@ewironment in a perturbed-NLSE
system. Indeed, the slight difference observechanfar tail of the spectrum foH = 15.5 in
regime (ii) becomes undetectable in the highly imezent regime (iii), as illustrated in Fig. 6(b)

for H = 19.5.

6. Conclusion

In summary, through the analysis of the long tewalgion of the wave system, we investigated
the spectral and temporal properties of the incaftefield in its highly incoherent regime of
interaction. We showed that intermittent-like roggeasi-solitons [regime (ii)] and sporadic
rogue wave events [regime (iii)], both exhibit peojes reminiscent of the hierarchy of the RS

solutions. This coherent and deterministic desionipdf rogue waves coexists with the statistical
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description of the random field, which is founddoantitative agreement with the WT theory
without using adjustable parameters. We also shdheatdthe nonlinearity can play an important
role in the formation of an individual rogue waveest, a feature that should deserve to be
analyzed in further details, in relation with thezent work [57]. The complementary temporal
and spectral analyses of the turbulent field andhef rogue wave events indicate that the
localized RS coherent structures can be observpdriexentally during the natural process of
optical wave thermalization to equilibrium. It wdube interesting to extend this work to the
study of RSs in a forced-dissipative system drife@mfrom thermal equilibrium by an external

source [25,58].
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