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attractor to the system for arbitrary initial conditions [3–5]. Experimental demonstrations

relying on amplification from either rare-earth doping [3, 6] or Raman scattering [7] have

been achieved. The unique properties of parabolic pulses have stimulated numerous appli-

cations. Experimental interest has been strongly driven by the possibility of fully cancelling

the linear chirp and thus generating ultrashort high-power pulses with very low substruc-

tures [3,6,8]. Moreover, recent fiber lasers which use self-similar pulse shaping in the normal

dispersion regime have been demonstrated to achieve high-energy pulses [9–11]. Parabolic

pulses have also enabled new techniques or noticeable improvements of existing techniques

of ultrafast all-optical signal processing for high-bit rate telecommunications based on the

quasi-instantaneous Kerr response of highly nonlinear optical fibers [12–16].

Various techniques for the precise synthesis, control and manipulation of the temporal

shape of optical pulses have become increasingly important for many scientific applications,

including amongst others, ultrahigh-speed optical telecommunications and nonlinear optics.

For instance, various transform-limited pulse shapes were generated by temporal coherent

synthesis using a multi-arm interferometer [17]. Further, the generation of pulses with flat-

top [18], parabolic [8,15] and sawtooth (asymmetric triangular) [19] shapes has been demon-

strated using superstructured fiber Bragg grating technology. Another alternative to achieve

the desired temporal optical pulse shaping is to use nonlinear effects in optical fibers. In

addition to fiber amplifiers and lasers, parabolic pulses can be generated in passive fibers

provided a suitable longitudinal variation of the dispersion is introduced [20,21]. Recently, a

simple approach to the generation of parabolic pulses that uses progressive nonlinear pulse

re-shaping and subsequent pulse stabilization in two carefully chosen normally dispersive

(ND) fiber segments has been demonstrated [22]. Further, the combination of pulse pre-

chirping and nonlinear propagation in a section of ND fiber has been introduced [23] and

demonstrated [24] as a method for passive nonlinear pulse shaping, which provides a sim-

ple way of generating various temporal waveforms including triangular profiles. The simple

intensity profile of triangular pulses is highly desired for a range of photonic applications.
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Sawtooth pulses have been shown to enhance the performance of wavelength converters

based on self-phase modulation (SPM) in fiber and offset filtering [19]. Time-domain add-

drop multiplexing based on cross-phase-modulation (XPM)-induced frequency shifting using

saw tooth control pulses was examined [25]. Novel techniques using XPM with triangular

pump pulses in a nonlinear Kerr medium were introduced to achieve the doubling of optical

pulses in both the frequency and time domains [26] as well as to realize time-to-frequency

mapping of multiplexed signals in high-speed fiber communication systems [27].

One of the most well known examples of pulse re-shaping in the spectral domain is in

supercontinuum (SC) generation [28,29]. Typically the broadest spectra are generated when

pumping occurs in the anomalous dispersion regime of the fiber, where the broadening mech-

anism is strongly influenced by soliton dynamics [29]. However, solitonic effects and modula-

tion instability lead to decreased temporal coherence and spectral flatness of the continuum

generated in the anomalous dispersion regime, especially when picosecond pump pulses are

used [30,31]. Many applications require the conservation of a short pulse in the time domain

while generating a flat and coherent SC spectrum. Previous attempts have been made to

overcome this drawback by using dispersion-flattened photonic crystal fibers (PCFs) con-

tinuously tapered from anomalous to normal dispersion [32, 33]. However, due to limited

availability of such fiber tapers, it is interesting to consider fibers with longitudinally con-

stant dispersion profiles, where a sufficiently broad, stable and flat-top spectrum can still be

achieved [34–36]. Such an approach combined with PCFs has recently stimulated experimen-

tal attention with several results exhibiting the high coherence and flatness (when plotted

on a logarithmic scale) of the resulting supercontinuum.

In this work we qualitatively and numerically show that initially parabolic pulses propa-

gating in a ND fiber with fourth-order dispersion (FOD) can result in temporal triangular

intensity profiles and broad, compact, flat spectral profiles. The performance allowed by

parabolic pulses is shown to be substantially better compared to more conventional input

pulse shapes such as Gaussian or hyperbolic secant pulses. The progressive re-shaping of a
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parabolic pulse driven by the FOD in a ND nonlinear fiber not only provides an alterna-

tive passive method for generating triangular-shaped pulses with respect to that introduced

in [23], but also allows for remarkably flat spectral intensities at a particular point in the

evolution when plotted on a linear scale.

2. Qualitative Analysis

Our efforts are motivated by the progress of all-normal dispersion PCFs with flattened

dispersion characteristics. Indeed, recent theoretical and experimental works have reported

the design and use of fibers with all-normal convex dispersion profiles [35–38]. Specifically,

we will base our discussion on the fiber properties demonstrated in [37] with a dispersion

profile as shown in Fig. 1 and pumping occurring at the extremum of dispersion.

The flattened dispersion characteristics around the pump wavelength are critical in that

the effect of third-order dispersion, which can degrade the self-similar parabolic pulse prop-

agation [39], is significantly reduced below that of FOD. Thus we model pulse propagation

by the normalized generalized nonlinear Schrödinger equation [40]

iuξ −
1

2
uττ +N2|u|2u = − δ

24
uττττ , (1)

where the dimensionless quantities u(ξ, τ) = U/
√
P0, ξ = z/LD and τ = t/T are introduced.

Here, U(z, t) is the electric field envelope in the co-moving system of coordinates, T and P0 are

the characteristic temporal pulse width and the peak power of the initial pulse, respectively,

and LD = T 2/β2 is the dispersion length, with β2 being the SOD coefficient. The two

normalized parameters in Eq. (1) are the energy parameter N2 = LD/LNL, where LNL =

1/(γP0) is the nonlinear length, and the effective FOD strength parameter δ = β4/(β2T
2).

The parameters β4 and γ are the fiber FOD and Kerr nonlinearity coefficients, respectively.

Although microstructured fibers has now enabled FOD coefficients where β4 < 0, in this

work we will restrict our analysis to positive FOD coefficients (δ > 0). Indeed high-power

picosecond pulses propagating in a PCF with negative FOD coefficient (δ < 0) experience
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severe pulse degradation arising from fourth-order scalar modulation instability [41], which

may ultimately lead to the splitting of the pulse into ultrashort solitonic substructures [42].

To get a qualitative understanding of the re-shaping process, we do a standard decompo-

sition by assuming u(ξ, τ) =
√

P (ξ, τ)× eiφ(ξ,τ) in Eq.(1), giving

φξ = −1

2

[

√
P ττ√
P

− Ω2
]

+N2P +
δ

24
R1 (2a)

Pξ =
[

PΩ
]

τ
− δ

12
R2 (2b)

where Ω ≡ φτ is the chirp of the pulse and the FOD contributions are

R1=
1√
P

(√
P ττττ−6

[√
P τΩ

2
]

τ

)

+Ω4−3Ω2
τ−4ΩΩττ (3a)

R2=2
√
P
(

2
[√
P ττΩ

]

τ
+
[√
P τΩτ

]

τ

)

−
[

P (2Ω3−Ωττ )
]

τ
. (3b)

For initial high intensity (N2 ≫ 1) linear chirped parabolic pulses where P (0, τ) =

(1 − τ 2)θ(1 − |τ |) and Ω(0, τ) = 2C0τ with θ(x) being the Heaviside function and C0 the

(normalized) chirp coefficient, the magnitude (in some norm) of each term in Eqs. (2-3) can

be analyzed. We find numerically that only certain terms contribute to the main pulse shap-

ing process. Note that we consider C0 < 0, thus neglecting the transient stage of spectral

compression if C0 > 0 [43]. Taking the leading order gives an approximate coupled system

for the dynamics

φξ =
1

2
Ω2

(

1 +
δ

12
Ω2

)

+N2P (4a)

Pξ = Ω
(

1 +
δ

6
Ω2

)

Pτ + Ωτ

(

1 +
δ

2
Ω2

)

P. (4b)

For small propagation distances from ξ = 0 the chirp profile is approximately given from

Eq. (4a)

Ω(ξ, τ) ∼ 2C0τ − 2N2τ
(

1− 2C2
0

N2
(1+δC2

0τ
2)
)

ξ. (5)
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Since δ/N2 ≪ 1, the chirp maintains a nearly linear profile in time, and initial wave-breaking

is avoided since the chirp is still monotonous. This nearly linear chirp is coupled to the power

evolution in Eq. (4b) and leads to a re-shaping process due to the FOD terms. Specifically,

Eq. (4b) is a partial differential equation where the power P has the characteristic veloc-

ity [44] and power evolution given by

dτ

dξ
= −Ω

(

1 +
δ

6
Ω2

)

(6a)

dP

dξ
= Ωτ

(

1 +
δ

2
Ω2

)

P (6b)

Neglecting the δ/N2 term in Eq.(5) gives Ω ∼ Ω0τ , where Ω0 = 2C0 − 2N2ξ0(1 − 2C2
0/N

2)

(with ξ0 ≪ 1). Without FOD (δ = 0), parabolic self-similar solutions to Eqs. (4) have

been found [2]. In this limit Eq. (6) has solutions ξ(τ) = − log(τ/τ0)/Ω0 and P (ξ, τ0) =

P (0, τ0)×exp(Ω0ξ). For relevant initial conditions, C
2
0 ≪ N2 giving Ω0 < 0 so that the power

P (ξ, τ0) exponentially decays along each characteristic curve. Including FOD in Eq. (6) we

find the solutions

ξ(τ,τ0) =− 1

Ω0
log

( kτ
√

1 + δ
6
Ω2

0τ
2

)

(7a)

P (ξ,τ0) =P (0, τ0)e
Ω0ξ × R(ξ, τ0), (7b)

where

R(ξ, τ0) =
[δ
6
Ω2

0−k2e2Ω0ξ

δ
6
Ω2

0−k2

]3/2

e−3Ω0ξ (8)

and k2 = 1/τ 20 + δΩ2
0/6. Figure 2 shows an example of the characteristic curves with and

without FOD. With FOD the curves deflect away (towards τ = ±∞) from those without

FOD. Note that that this deflection is more extreme in the wings of the pulse for short

propagation distances, leading to a stretching of the pulse (see grey line and dots in Fig. 2).

Further, Eq. (7b) shows that the exponential decay of the power along each characteristic

curve is multiplied by a functional factor R(ξ, τ0) (Eq. (8)) which is shown in Fig. 3 for
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various τ0 values. Since R(ξ) < 1 for |τ0| > 0 the pulse wings undergo an enhanced power

reduction when compared to the evolution without FOD. Thus the overall temporal effect

of FOD on linearly chirped parabolic pulse propagation is to stretch and enhance the power

reduction in the pulse wings, leading to a triangular profile.

In the spectral domain, once the pulse has been stretched towards a triangular shape, the

spectral power evolves towards an M-shape due to the SPM effect (N2 ≫ 1). Indeed, for a

triangular pulse where P (ξ0, τ) ∼ (1− |τ/τT |)θ(τT − |τ |), the nonlinear phase shift acquired

upon propagation φ(τ) = N2P (ξ0, τ)(ξ − ξ0) leads to a constant, distinct (opposite sign)

chirp induced onto the leading (down-shfited) and trailing (up-shifted) edges of the pulse.

As a result of this, the outer parts of the pulse spectrum are enhanced, whereas the central

parts are suppressed and, thus, the spectrum develops an M-shaped structure. An important

point is that in the transition from the initially rounded-top (parabolic) spectral power to an

M-shaped spectral power, the spectral density becomes flat. This flattened spectrum could

be useful in SC generation applications. In the following section, we emphasis the qualitative

findings through numerical simulations.

3. Numerical Simulations

In this section Eq. (1) will be numerically integrated using the standard split-step Fourier

method. Following Ref. [37] (see also Fig. 1), the fiber parameters are given by β2 = 2.5 ×

10−3 ps2 m−1, β4 = 2.0 × 10−7 ps4 m−1 and γ = 40 × 10−3 (Wm)−1. To avoid numerical

artifacts due to the unphysical compact nature of the parabolic pulse, we use here slight

temporal apodization of the intitial condition based on a fifth-order Gaussian shape with

a full-width at half-maximum (FWHM) of 1.6T [8]. The input pulse parameters we use

correspond to typical parabolic pulses output from a ytterbium-doped fiber amplifier [3].

They have energy 12 nJ, FWHM pulse duration 2.6 ps and chirp coefficient −3.35πTHz2.

Both the fiber and initial pulse parameters gives the dispersion length LD = 1.3520× 103m,

energy parameter N2 = 2.6474×105, and FOD parameter δ = 2.3669×10−5. Propagation in
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the fiber is considered up to a maximum length of 4LD×10−3 which is on the order of meters

in physical units (∼ 1000 nonlinear lengths). Note that in this parameter regime N2 ≫ 1,

so that Ω0 ∼ −2N2ξ. Thus we would expect that increasing or decreasing the initial chirp

values will not have a significant effect in the re-shaping process.

During propagation in the fiber, the initial pulse will experience significant re-shaping,

evolving towards a triangular profile in the time domain. Different approaches are possible

to characterize the pulse shape [22,23,45]. Here we choose the parameter of misfitMS between

the pulse intensity profile and a parabolic or triangular fit of the same energy and FWHM

duration:

M2
S =

∫

dt (P − PS)
2

∫

dt P 2
, S = p, T (9)

where Pp(τ) and PT (τ) correspond to the respective intensity profiles Pp(τ) = pp(1 −

τ 2/τ 2p )θ(τp − |τ |) and PT (τ) = pT (1− |τ/τT |)θ(τT − |τ |) with pS being the pulse peak power.

To examine the impact of FOD on the evolution of the initial parabolic pulse, we compare

the evolution obtained with and without FOD. An example of the longitudinal temporal

and spectral pulse evolutions is shown in Fig 4-5. In the absence of FOD, the pulse evolves

self-similarly maintaining its parabolic shape both in the time and frequency domains, while

undergoing temporal and spectral broadening. Due to the high N2 value, these results are

consistent with previously found results [2]. In the presence of FOD, significant temporal

and spectral re-shaping of the parabolic pulse occurs over short propagation distances. In

the temporal domain the wings of the pulse are stretched, generating a triangular shaped

pulse as predicted in the previous section. This shape is maintained over a non-negligible

propagation distance. In the spectral domain, the power goes through a re-shaping lead-

ing to a spectrum with rapidly falling edges and a ripple-free top over a ∆ω ≃ 578 span

(corresponding to approximately 50THz) at propagation distance ξ = 0.0011. The flat-top

spectrum is a transient state and for further propagation distance the spectral power evolves

into an M-shape due to the triangular nature of the temporal intensity profile along with

SPM. As to be expected, the spectral bandwidth approaches a limit as the pulse undergoes
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enhanced temporal broadening and faster peak power reduction [46].

The trends shown in Figs. 4-5 are confirmed in Fig. 6, where the misfit parameter (9) has

been calculated over the propagation distance. In the presence of FOD, the misfit parameter

to a triangular temporal shape reaches a minimum of MT,opt ≃ 0.057 at the distance ξopt =

0.0028, while being below 0.07 over the range ξ = 0.0021 to the maximum propagation

distance considered. Stabilization of the root-mean-square (RMS) pulse spectral bandwidth

after the M-shaping of the spectrum has occurred is also evident from Fig. 6. The RMS

spectral bandwidth is calculated as ωRMS =
[∫

dω ω2|ũ|2/
∫

dω |ũ|2
]1/2

, where ũ is the Fourier

transform of the field. The two red dots in Fig. 6 symbolize the points in propagation where

(Fig. 6a) the temporal profile is most triangular (shown in inset of Fig. 2(b)) and (Fig. 6b) the

spectral profile is most flat with a ripple-free top (shown as the green curve in Fig. 3(b)). Note

that typically the best triangular shapes are obtained at larger propagation distances than

those where the spectrum is maximally flat. Further, the spectrum generated in presence of

FOD saturates earlier and exhibits a lower spectral broadening than the spectrum recorded

without FOD, which is a direct consequence of the increased broadening experienced when

FOD is taken into account.

A. Impact of FOD and energy parameter

As described in Section 2, the overall effect of FOD depends on a term whose coefficient

is δΩ2
0/6, where Ω2

0 ∼ 4(N2)2ξ20 (see Eq. (7)). Thus we expect that increasing either the

FOD strength parameter δ (by increasing the physical FOD β4) or the energy parameter N2

(by increasing the input pulse peak power) will generate a stronger stretching and enhanced

power reduction in the wings of the pulse. Indeed, this will effectively lead to pulse re-shaping

for shorter propagation distances as well as being able to obtain an improved triangular shape

due to a sharpening of the pulse top. This qualitative description is confirmed by numerical

simulations. The influence of the FOD (energy) parameter on the temporal evolution can be

seen in Fig. 7a(b) where the longitudinal evolutions of the misfit parameter to a triangular
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temporal shape are shown. For increasing values of δ or N2, ξopt and MT (ξopt) decrease

showing that the re-shaping process happens at shorter propagation distances and that

more ideal triangular pulse shapes are obtained. In the spectral domain, larger δ and N2

leads to flattening and subsequent M-shaping of the spectral power earlier in propagation

distance, as to be expected. The spectrum settles to a smaller bandwidth at large distances

for increased δ where larger N2 leads to more spectral broadening and larger bandwidths.

Figure 8 illustrates the temporal and spectral power profiles at two significant propagation

distances where there is lowest misfit parameter MT (dots in Fig. 7(b)) and maximally flat

spectrum.

B. Impact of initial pulse shape

We have investigated the effect of FOD on the evolution of an initially linearly chirped

parabolic pulse in a ND fiber. Since in our parameter regime N2 ≫ 1, we would expect

from Eq. (4a) the the initial pulse shape will have a significant effect on propagation. We

consider the evolution of both transform-limited Gaussian pulses u(0, τ) ∼ exp(−τ 2/(2τ 2G))

and a hyperbolic-secant pulses u(0, τ) ∼ sech (τ/τS) and compare to the evolution of a chirp-

free parabolic pulse. For all initial conditions, the same pulse energy and FWHM temporal

duration are used. The spectro-temporal presentation of the pulses obtained at ξ = 0.0013

in Fig. 9 highlights the distinctly different pulse evolutions. For the initial parabolic pulse,

the initial chirp generated is linear (see Eq. (5)). Upon propagation, this chirp deviates from

a strictly linear behavior because the pulse wings evolve at higher velocity than the central

part of the pulse as a result of the FOD. However, the chirp remains monotonic and the

pulse does not undergo wave breaking. For the initial Gaussian and hyperbolic secant pulse

shapes the last term on the right hand side in Eq. (4a) induces a non-monotonic chirp which

leads to wave-breaking. In this case, triangular pulse formation is not observed for such

initial pulses. Figure 10 shows the temporal and spectral profiles at ξ = 0.0013 for the three

different initial conditions. The high oscillations in the spectrum for the initial Gaussian and
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hyperbolic secant are induced by wave-breaking. The specific initial parabolic pulse profile

avoids wave-breaking and generates a flattening of the spectral power and triangular pulse

formation in the temporal domain.

4. Conclusion

In conclusion, we have investigated the propagation of initially parabolic pulses in a ND

fiber in the presence of FOD. For the physical parameter regime explored a qualitative

understanding of the re-shaping was obtained and characterized in terms of the parameter

δΩ2
0 ∼ δN4ξ20. The overall effect of the FOD is to stretch and enhance the power reduction in

the wings of the initial parabolic pulse, leading to a temporal triangular profile. Further, the

spectral power is re-shaped from a rounded top profile into a M-shape. At a certain point

in this re-shaping process, the spectral power has rapidly falling edges and a ripple-free

top over a broad bandwidth. Numerical simulations confirm our qualitative understanding

and show that increasing the strength of the FOD or the energy parameter leads to pulse

re-shaping for shorter propagation distances as well as being able to obtain an improved

temporal triangular profile due to a sharpening of the pulse top. Finally, an initial parabolic

pulse profile was shown to be necessary to avoid wave-breaking for such re-shaping dynamics

to occur. This work could potentially have impact on applications that rely on temporal

triangular pulses as well as those requiring the conservation of a short pulse in the time

domain while generating a flat and coherent SC spectrum.
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9. F. Ö. Ilday, J. Buckley, F. W. Wise, and W. G. Clark, “Self-similar evolution of parabolic

pulses in a laser,” Phys. Rev. Lett. 92, 213902(4) (2004).

10. B. G. Bale and S. Wabnitz, “Strong spectral filtering for a similariton mode-locked fiber

laser,” Opt. Lett, 35, 2466-2468 (2010).

12



11. C. Aguergaray, D. Mechin, V. Kruglov, and J. D. Harvey, “Experimental realizatin of a

mode-locked parabolic Raman fiber oscillator,” Opt. Express, 18, 8680-8687 (2010).

12. C. Finot, S. Pitois, and G. Millot, “Regenerative 40-Gb/s wavelength converter based

on similariton generation,” Opt. Lett. 30, 1776–1778 (2005).

13. S. Boscolo and S. K. Turitsyn, “All-optical signal regeneration by temporal slicing of

nonlinearly flattened optical waveform,” IEEE Photon. Technol. Lett. 17, 1235–1237

(2005).

14. S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Time domain all-optical signal processing

at a RZ optical receiver,” Opt. Express 13, 6217–6227 (2005).

15. F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based

on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photon. Technol.

Lett. 18, 829–831 (2006).

16. T. Hirooka and M. Nakazawa, “All-optical 40-GHz Time-Domain Fourier Transformation

using XPM with a dark parabolic pulse,” IEEE Photon. Technol. Lett. 20, 1869–1871

(2008).

17. Y. Park, M. H. Asghari, T.-J. Ahn, and J. Azaña, “Transform-limited picosecond pulse

shaping based on temporal coherence synthesization,” Opt. Express 15, 9584–9599

(2007).

18. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse gener-

ation based on pulse re-shaping using a superstructured fiber Bragg grating,” IEEE J.

Lightwave Technol. 19, 746–752 (2001).

19. F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson,

“An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper,”

IEEE Photon. Technol. Lett. 20, 1461–1463 (2008).

20. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-

decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29, 498–500 (2004).

21. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic

13



pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Ex-

press 15, 15824–15835 (2007).

22. C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation

through passive nonlinear pulse re-shaping in a normally dispersive two segment fiber

device,” Opt. Express 15, 852–864, 2007.

23. S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “Passive nonlinear pulse shaping in normally

dispersive fiber systems,” IEEE J. Quantum Electron. 44, 1196–1203 (2008).

24. H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, “Generation of

triangular-shaped optical pulses in normally dispersive fibre,” J. Opt. 12, 035205(5)

(2010).

25. J. Li, B. E. Olsson, M. Karlsson, and P. A. Andrekson, “OTDM add-drop multiplexer

based on XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE J. Lightwave

Technol. 23, 2654–2661 (2005).

26. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Doubling of optical signals

using triangular pulses,” J. Opt. Soc. Am. B 26, 1492–1496 (2009).

27. R. S. Bhamber, S. Boscolo, A. I. Latkin, and S. K. Turitsyn, “All-optical TDM to

WDM signal conversion and partial regeneration using XPM with triangular pulses,” in

Proceedings of the 34th European Conference on Optical Communication, paper Th.1.B.2

(2008).

28. R. R. Alfano, The Supercontinuum Laser Source (Springer, 2006).

29. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal

fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).

30. X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler,

“Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt.

Express 11, 2697–2703 (2003).

31. K. L. Corwin, N. L. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and

R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in mi-

14



crostructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).

32. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened su-

percontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion

profile,” Electron. Lett. 33, 1806–1808 (1997).

33. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt.

Soc. Am. B 24, 1771–1785 (2007).

34. K. Chow, Y. Takushima, C. Lin, C. Shu, and A. Bjarklev, “Flat super-continuum gen-

eration based on normal dispersion nonlinear photonic crystal fibre,” Electron. Lett. 42,

989–991 (2006).

35. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H.

Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation

in all-normal dispersion photonic crystal fibers,” Opt. Express 19, 3775–3787 (2011).

36. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coher-

ent supercontinuum generation in photonic crystal fiber with all-normal group velocity

dispersion,” Opt. Express 19, 4902–4907 (2011).

37. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and

D. J. Richardson, “Supercontinuum generation at 1.06µm in holey fibers with dispersion

flattened profiles,” Opt. Express 14, 4445–4451 (2006).

38. A. Hartung, A. M. Heidt, and H. Bartelt, ‘”Design of all-normal dispersion microstruc-

tured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 14,

7742-7749 (2011).

39. B. G. Bale and S. Boscolo, “Impact of third-order fibre dispersion on the evolution of

parabolic optical pulses,” J. Opt. 12, 015202(6) (2010).

40. G. P. Agrawal, Nonlinear Fiber Optics (3rd ed., Academic Press, 2001).

41. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth,

and J. S. Russell, “Scalar modulation instability in the normal dispersion regime by use

of a photonic crystal fiber,” Opt. Lett. 28, 2225-2227 (2003).

15



42. K. Hammani, C. Finot, B. Kibler, and G. Millot, “Soliton generation in a microstructured

fiber by fourth-order scalar modulation instability,” IEEE Photon. J. 1, 205-212 (2009).

43. E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited

spectral compression by self-phase modulation of amplitude shaped pulses with negative

chirp,” Opt. Lett. 36, 707-709 (2011).

44. G. B. Whitham, Linear and Nonlinear Waves (1st ed., Wiley Interscience,1974).

45. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix,

“Dynamics of parabolic pulses in an ultrafast fiber laser,” Opt. Lett. 31, 2734–2736

(2006).

46. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, ”Beneficial impact of wave-breaking or

coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am.

B 25, 1938-1948 (2008).

16



List of Figure Captions

Fig. 1 Convex dispersion profile for PCF under consideration. Pumping occurs at the ex-

tremum of dispersion. This profile is similar to that experimentally realized in Ref. [37].

Fig. 2 Characteristic curves (7a) for |Ω0| ∼ 2N2ξ0 = 400 and δΩ2
0/6 = 0.5 (solid) and δ = 0

(dashed). These values correspond to reasonable values used in simulations of N2 ∼ 2× 105

and δ ∼ 2×10−5. The characteristic curves plotted are for |τ0| = 0 (black) , 1 (blue), 2 (red)

and 3 (green).

Fig. 3 Power reduction factor Eq. (8) for Ω0 ∼ −2N2ξ0 = −400, δΩ2
0/6 = 0.5, and |τ0| = 0

(black) , 0.5 (cyan) , 1 (blue), 2 (red) and 3 (green).

Fig. 4 Temporal power profiles (a) without and (b) with FOD at propagation distances ξ = 0

(red), ξ = 0.0011 (green), ξ = 0.0022 (blue), ξ = 0.0033 (cyan), and ξ = 0.0041 (magenta).

The parameters are N2 = 2.6474×105, (a) δ = 0 and (b) δ = 2.3669×10−5. The inset shown

in (b) is the temporal profile (black) at ξ = 0.0028, and its fit to a triangular function (red

circles).

Fig. 5 Spectral power profiles (a) without and (b) with FOD at propagation distances ξ = 0

(red), ξ = 0.0011 (green), ξ = 0.0022 (blue), ξ = 0.0033 (cyan), and ξ = 0.0041 (magenta).

The parameters are the same as in Fig. 4 and ω is normalized frequency.

Fig. 6 Longitudinal evolutions of (a) The misfit parameter to a parabolic temporal shape

with no FOD (dashed) and a triangular temporal shape with FOD (solid) and (b) the RMS

spectral bandwidth without (dashed) and with (solid) FOD. The parameters are δ = 0 or

δ = 2.3669× 10−5 and N2 = 2.6474× 105.

Fig. 7 Longitudinal evolutions of the misfit parameter to a triangular temporal shape for

varying values of (a) δ and (b) N2. S = S∗/2 (blue), 2S∗/3 (cyan), S∗ (dashed), 3S∗/2

(red), 2S∗ (black), with (a) S∗ = δ∗ = 2.3669 × 10−5 and N2 = 2.6474 × 105 and (b)

S∗=N∗ 2=2.6474× 105 and δ = 2.3669× 10−5.

Fig. 8 (a) Temporal and (b) spectral intensity profiles for N2 = N∗ 2/2, N∗ 2, 2N∗ 2, with

N∗ 2 = 2.6474 × 105. For N2 = 2N∗ 2 a best fit triangular temporal shape is also shown
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(dashed). The temporal profiles shown are taken at the circled points of Fig. 7(b), and the

spectral profiles are shown at points of maximum flatness. The parameter δ = 2.3669×10−5.

Fig. 9 Spectro-temporal plots at propagation distance ξ = 0.0013 for initial chirp-free (a)

parabolic and (b) hyperbolic secant intensity profiles with the same FWHM pulse duration

and energy. Note that the parabolic initial condition keeps a monotonic chirp across the

pulse profile, where the initial hyperbolic secant pulse does not.

Fig. 10 (a) Temporal and (b) spectral powers at ξ = 0.0013 for parabolic (black), Gaussian

(green), and hyperbolic secant (red) initial conditions. Note that the high oscillations induced

for the initial Gaussian and hyperbolic secant pulses.
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Fig. 1. Convex dispersion profile for PCF under consideration. Pumping occurs at the ex-
tremum of dispersion. This profile is similar to that experimentally realized in Ref. [37].
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0/6 = 0.5 (solid) and δ = 0

(dashed). These values correspond to reasonable values used in simulations of N2 ∼ 2× 105

and δ ∼ 2×10−5. The characteristic curves plotted are for |τ0| = 0 (black) , 1 (blue), 2 (red)
and 3 (green).
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Fig. 3. Power reduction factor Eq. (8) for Ω0 ∼ −2N2ξ0 = −400, δΩ2
0/6 = 0.5, and |τ0| = 0

(black) , 0.5 (cyan) , 1 (blue), 2 (red) and 3 (green).
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Fig. 4. Temporal power profiles (a) without and (b) with FOD at propagation distances ξ = 0
(red), ξ = 0.0011 (green), ξ = 0.0022 (blue), ξ = 0.0033 (cyan), and ξ = 0.0041 (magenta).
The parameters are N2 = 2.6474×105, (a) δ = 0 and (b) δ = 2.3669×10−5. The inset shown
in (b) is the temporal profile (black) at ξ = 0.0028, and its fit to a triangular function (red
circles).
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Fig. 5. Spectral power profiles (a) without and (b) with FOD at propagation distances ξ = 0
(red), ξ = 0.0011 (green), ξ = 0.0022 (blue), ξ = 0.0033 (cyan), and ξ = 0.0041 (magenta).
The parameters are the same as in Fig. 4 and ω is normalized frequency.
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Fig. 6. Longitudinal evolutions of (a) The misfit parameter to a parabolic temporal shape
with no FOD (dashed) and a triangular temporal shape with FOD (solid) and (b) the RMS
spectral bandwidth without (dashed) and with (solid) FOD. The parameters are δ = 0 or
δ = 2.3669× 10−5 and N2 = 2.6474× 105.
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Fig. 7. Longitudinal evolutions of the misfit parameter to a triangular temporal shape for
varying values of (a) δ and (b) N2. S = S∗/2 (blue), 2S∗/3 (cyan), S∗ (dashed), 3S∗/2
(red), 2S∗ (black), with (a) S∗ = δ∗ = 2.3669 × 10−5 and N2 = 2.6474 × 105 and (b)
S∗=N∗ 2=2.6474× 105 and δ = 2.3669× 10−5.
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Fig. 8. (a) Temporal and (b) spectral intensity profiles for N2 = N∗ 2/2, N∗ 2, 2N∗ 2, with
N∗ 2 = 2.6474 × 105. For N2 = 2N∗ 2 a best fit triangular temporal shape is also shown
(dashed). The temporal profiles shown are taken at the circled points of Fig. 7(b), and the
spectral profiles are shown at points of maximum flatness. The parameter δ = 2.3669×10−5.
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Fig. 9. Spectro-temporal plots at propagation distance ξ = 0.0013 for initial chirp-free (a)
parabolic and (b) hyperbolic secant intensity profiles with the same FWHM pulse duration
and energy. Note that the parabolic initial condition keeps a monotonic chirp across the
pulse profile, where the initial hyperbolic secant pulse does not.
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Fig. 10. (a) Temporal and (b) spectral powers at ξ = 0.0013 for parabolic (black), Gaussian
(green), and hyperbolic secant (red) initial conditions. Note that the high oscillations induced
for the initial Gaussian and hyperbolic secant pulses.
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