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Abstract

Detecting and locating changes in highly multivariate data is a major concern in several

current statistical applications. In this context, the first contribution of the paper is a novel

non-parametric two-sample homogeneity test for multivariate data based on the well-known

Wilcoxon rank statistic. The proposed two-sample homogeneity test statistic can be extended

to deal with ordinal or censored data as well as to test for the homogeneity of more than

two samples. The second contribution of the paper concerns the use of the proposed test

statistic to perform retrospective change-point analysis. It is first shown that the approach

is computationally feasible even when looking for a large number of change-points thanks

to the use of dynamic programming. Computable asymptotic p-values for the test are then

provided in the case where a single potential change-point is to be detected. Compared to

available alternatives, the proposed approach appears to be very reliable and robust. This

is particularly true in situations where the data is contaminated by outliers or corrupted by

noise and where the potential changes only affect subsets of the coordinates of the data.

1 Introduction

Detection and location of distributional changes in data is a major statistical challenge that

arises in many different contexts. This very general concern can be particularised to more spe-
cific tasks such as segmentation, novelty detection or significance tests. In this contribution, we

focus on two types of problems: homogeneity testing, where the statistician is presented with pre-

specified groupings of the data that are believed to be comparable, and change-point detection,
in which a series –most often, a time series– is to be segmented into homogeneous contiguous

regions. These two tasks are obviously related but the latter is more challenging as the appro-

priate groupings of the data are unknown, although one does have the strong prior assumption
that homogeneous regions of the data are contiguous. Homogeneity testing and/or change-

point detection are instrumental in applications that range from the surveillance of industrial
processes (Basseville and Nikiforov, 1993), to computer security (Tartakovsky et al., 2006; Lévy-

Leduc and Roueff, 2009), processing of audiovisual data (Désobry et al., 2005), financial and

econometric modelling (Bai and Perron, 2003; Talih and Hengartner, 2005), health monitoring
(Brodsky and Darkhovsky, 2000), or bioinformatics (Picard et al., 2005; Vert and Bleakley, 2010).

In light of the important available literature on change-point detection it is important to
make two additional distinctions. First, in many cases the data to be analysed can be assumed

to present some form of global reproducibility and to include several instances of actual changes.

In this case, it seems reasonable to fit a model to the data to profit from the available statistical
information regarding various relevant aspects of the problem such as the distribution of the

data in the absence of change, the typical change-point patterns, etc. In such situations, very
convincing results have been demonstrated using Bayesian approaches due to the existence
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of efficient computational methods to explore the posterior distribution, even when using very

flexible models (Barry and Hartigan, 1992; Fearnhead, 2006). In contrast, in this contribution, we
consider scenarios in which the data are either scarce or very variable or where potential changes

occur somewhat infrequently. In this alternative context, the goal is to develop approaches that

make as few assumptions as possible regarding the underlying distribution of the data or the
nature of the changes and that do not rely on the observation of actual change patterns. The

second important distinction is that many works in the time series literature consider the online
change-point detection framework (Siegmund, 1985) in which the data have to be processed

on-the-fly or with minimal delay using for instance the CUSUM algorithm initially proposed

by Page (1954). In the following, we consider the opposite situation, sometimes referred to as
retrospective analysis, in which all the data to be tested have been recorded and are available for

analysis.
In this context, the first contribution of this work consists in novel homogeneity tests for deal-

ing with possibly high-dimensional multivariate observations. For scalar observations, there are

well-known robust solutions for testing homogeneity such as the Wilcoxon/Mann–Whitney or
Kruskall-Wallis procedures (Lehmann, 1975) to be further discussed below. On the other hand,

for multivariate observations there is no such “natural” candidate. A promising approach in-

vestigated by several recent works consists in addressing this issue using kernel-based methods
(Désobry et al., 2005; Gretton et al., 2006; Harchaoui et al., 2008). In our experience however,

these methods that can achieve impressive results for moderately multidimensional data or in
specific situations (e.g. if the data lie on a low-dimensional manifold) lack robustness when

moving to larger dimensions. In particular, as illustrated in Section 4.1 below, kernel-based

methods are not robust with respect to the presence of contaminating noise and to the fact that
the changes to be detected may only affect a subset of the components of the high-dimensional

data. The latter scenario is of very important practical significance in applications where the
data to be analysed consist in exhaustive recordings of complex situations that are only partly

affected by possible changes (see Lévy-Leduc and Roueff (2009) for an example regarding the

detection of computer attacks). The method proposed in this work is based on a combination of
marginal rank statistics, following the pioneering idea of Wei and Lachin (1984). Compared to

the latter, our contribution is twofold: first, we show how to correct the bias that appears in the
test statistic proposed by Wei and Lachin (1984) whenever the two samples are not balanced in

size; we then show how to extend this idea to the case of more than two groups. The numerical

simulation presented in Section 4 confirms that the proposed test statistic is significantly more
robust than kernel-based methods or approaches based on the least-squares criterion while be-

ing on a par with the latter in cases where these are indeed optimal (for detecting jumps in
additive Gaussian noise).

We then consider the use of the proposed approach for change-point detection by optimis-

ing the test statistic over the –now considered unknown– positions of the segment boundaries.
Although simple this idea raises two type of difficulties. The first one is computational as

the resulting optimisation task is combinatorial and cannot be solved by brute force enumera-

tion when there are more than one change-point (that is, two segments). In the literature this
issue has been previously tackled either using dynamic programming (Bai and Perron, 2003;

Harchaoui and Cappé, 2007) or more recently using Lasso-type penalties (Harchaoui and Lévy-
Leduc, 2010; Vert and Bleakley, 2010). We show that the generic dynamic programming strategy

is applicable to the proposed test statistic making it practically suitable for retrospective de-

tection of multiple change-points. The second difficulty is statistical as the optimisation with
respect to the change-point locations modifies the distribution of the test statistics. Thus, the de-

sign of quantitative criterions for assessing the significance of the test is a challenging problem in
this context. This issue has been considered before, mostly in the case of a single change-point,

for various test statistics (Csörgő and Horváth, 1997; Chen and Gupta, 2000). In many cases the

asymptotic distribution of the test remains hard to characterise and must be calibrated using
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Monte Carlo simulations. We show that for a simple modification of the proposed rank-based

statistic, one can indeed obtain computable asymptotic p-values that can be used to assess the
significance of the test when looking for a single change-point.

The paper is organised as follows. Section 2 is devoted to homogeneity testing, starting

first with the two-sample case and then considering the more general situation where several
predefined groups are available. In Section 3, the proposed test statistic is modified to provide a

method for detecting and locating change-points. The results of numerical experiments carried
out both on simulated and on real data are then reported in Section 4.

2 Testing for Homogeneity

We first tackle in this Section the so-called two-sample problem, that is testing the homogeneity
between two partitions of data. The proposed test statistic is then extended in Section 2.2 to

deal with more than two groups of data.

2.1 Two-sample homogeneity test

Consider n K-dimensional multivariate observations (X1, . . . , Xn) and denote by Xi,k the kth
coordinate of Xi, such that Xi = (Xi,1, . . . , Xi,K)

′, where the prime is used to denote transpo-

sition. We consider the classical statistic test framework with the null (or baseline) hypothesis
(H0) being defined as “(X1, . . . , Xn) are identically distributed random vectors”. The alter-

native hypothesis is (H1): “(X1, . . . , Xn1) are distributed under P1 and (Xn1+1, . . . , Xn) under

P2, with P1 6= P2”. In this setting, the potential change point n1 is assumed to be given
but the data distributions are fully unspecified both under (H0) and (H1). The proposed test

statistic extends the well-known Wilcoxon/Mann–Whitney rank-based criterion to multivariate
data by considering the asymptotic joint behaviour of the rank statistics that can be computed

from each coordinate of the observations. For k in {1, . . . , K}, define the vector-valued statistic

Un(n1) = (Un,1(n1), . . . , Un,K(n1))
′ by

Un,k(n1) =
1

√

nn1(n − n1)

n1

∑
i=1

n

∑
j=n1+1

{

1(Xi,k ≤ Xj,k)− 1(Xj,k ≤ Xi,k)
}

. (1)

Although the form of the statistic given above is more appropriate for mathematical analysis
as well as for discussing possible generalisations of the approach (see Section 2.1.2 below), it is

important to realize that Un,k(n1) is related to the classical Wilcoxon/Mann–Whitney statistic

computed from the series X1,k, . . . , Xn,k. Assuming that there are no ties in the data, let R
(k)
j

denote the rank of Xj,k among (X1,k, . . . , Xn,k), that is, R
(k)
j = ∑

n
i=1 1(Xi,k ≤ Xj,k). Noticing that

∑
n
j=1 R

(k)
j = n(n + 1)/2, it is then easily verified that Un,k(n1) can be equivalently defined as

Un,k(n1) =
2

√

nn1(n − n1)

n1

∑
i=1

(

n + 1

2
− R

(k)
i

)

=
2

√

nn1(n − n1)

n

∑
j=n1+1

(

R
(k)
j − n + 1

2

)

. (2)

This alternative form of Un,k(n1) is more appropriate for computational purposes as discussed in
Section 2.1.1 below. For convenience, we will rather work in the following with the normalised

ranks, denoting by F̂n,k(t) = n−1 ∑
n
j=1 1(Xj,k ≤ t) the empirical cumulative distribution function

(c.d.f. in short) of the kth coordinate, so that F̂n,k(Xi,k) = R
(k)
i /n. Now, define the empirical

covariance matrix Σ̂n such that

Σ̂n,kk′ =
4

n

n

∑
i=1

{F̂n,k(Xi,k)− 1/2}{F̂n,k′(Xi,k′)− 1/2}, 1 ≤ k, k′ ≤ K . (3)
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The test statistic that we propose for assessing the presence of a potential change in n1 is then

defined as
Sn(n1) = Un(n1)

′Σ̂−1
n Un(n1) . (4)

Theorem 1 below (proved in Appendix A) gives the limiting behaviour of the test statistic Sn(n1)
under the null hypothesis.

Theorem 1 Let X1, . . . , Xn1 , Xn1+1, . . . , Xn be R
K-valued i.i.d. random vectors, such that for all k in

{1, . . . , K}, the cumulative distribution function Fk of X1,k is a continuous function. Assume that

n1/n → t1 in (0,1) as n tends to infinity, and that the K × K covariance matrix Σ defined by

Σkk′ = 4 Cov
(

Fk(X1,k); Fk′(X1,k′)
)

, 1 ≤ k, k′ ≤ K , (5)

is positive definite. Then, the test statistic Sn(n1) defined in (4) converges in distribution to a χ2 distri-

bution with K degrees of freedom.

Theorem 1 shows that the proposed test is well normalised with respect to the dimension

K, the length n of the data and the postulated change-point location n1. It is asymptotically
distribution-free in the sense that its limiting behaviour under (H0) does not depend on the

distribution of the data. By construction, it is also invariant under any monotonic transformation
of the coordinates of Xi.

The matrix Σ, which corresponds to the asymptotic covariance matrix of the vector Un(n1)
is equal, up to a multiplicative constant, to the Spearman correlation matrix of Xi (Lehmann,
1975; van der Vaart, 1998). This is a well-known robust measure of dependence that appears in

particular when using copula models. A sufficient condition for ensuring the invertibility of Σ

is thus that no linear combination of the Fk(X1,k)’s should be almost surely equal to a constant,

which is arguably a very weak condition. It is easily checked that the diagonal elements of Σ

are all equal to 1/3 and that Σkℓ = Σℓk = 0 whenever the k-th and ℓ-th coordinates of Xi are
independent. It appears, in practice, that the diagonal elements of Σ̂n converge very rapidly to

1/3 value and we did not observe any significant improvement when trying to take into account
this fact when estimating Σ.

Theorem 1 defines the asymptotic false alarm rate associated to the test statistic Sn(n1).
In addition, the test is consistent (i.e., its power tends to 1) for all alternatives such that the
condition ensuring the consistency of the standard Wilcoxon/Mann–Whitney two-sample test

holds true for at least one coordinate. More formally, the proposed test is consistent when there

exists k in {1, . . . , K} such that P(Xk,1 ≤ Xk,n) 6= 1/2. This condition is known to hold for
general classes of changes such as shift (change-in-the-mean) models or scale (multiplicative)

change for positive variables. Importantly, it suffices that this condition holds for a subset of the
coordinates (at least one) for the change to be detectable, as illustrated in Section 4.1 below.

As Theorem 1 is an asymptotic result, we have carried out Monte Carlo simulations to

asses the accuracy of the approximation for finite sample sizes. Using data with independent
coordinates1 we found that the distribution of Sn(n1) defined in (4) can be considered close

enough to the limiting distribution, as measured by the Kolmogorov-Smirnov at level 1%, when
n is at least 8 times larger than K. For instance, for K = 20, a value of n = 210 was sufficient;

K = 100 required n = 840 samples, etc. The empirical distribution of the test statistics is

illustrated in the upper part of Figure 1 when K = 10 and n = 200.
The pioneering work of Wei and Lachin (1984) describes a result analogous to that of Theo-

rem 1 in the case of possibly upper-censored data. However, the proof technique used by Wei
and Lachin (1984) relies on a different interpretation of Σ which is used to derive a weighting

matrix that is not equal to Σ̂n as defined in (3). In contrast, our proof (see Appendix A) is based

on a standard argument for U-statistics (the Hoeffding decomposition) that directly returns an

1Note that by construction, the test statistic is then fully invariant with respect to the precise distribution used for
the Monte Carlo simulations.
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Figure 1: Histograms of the statistics Sn(n1) (top) and Wei and Lachin’s (bottom) compared

to the χ2
K p.d.f., as a function of the ratio n1/n. Data corresponds to n = 200 samples of a

ten-dimensional standard Gaussian distribution.

expression of Σ in terms of covariances, for which usual estimators, such as Σ̂n, may be used.

The test statistics of Wei and Lachin (1984) thus differs from Sn(n1) and turns out to be biased

in cases where n1 6= n/2, i.e., when the change does not occur in the centre of the observation
frame, as shown by the bottom part of Figure 1. This bias becomes problematic when the po-

tential change location n1 is unknown because the values of Sn(n1) for different values of n1

cannot be validly compared.

2.1.1 Implementation Issues

As noted above, the vector (Un,k(n1))1≤k≤K should be computed from the marginal rank statis-

tics in the form given in (2). Σ̂n also is a simple function of those marginal ranks. Thus,
(Un,k(n1))1≤k≤K can be computed in O(Kn log(n)) operations using a sort for computing the

ranks. The computation of Σ̂n then requires O(K2n) operations and its inversion O(K3) opera-
tions. Note that if the test statistic needs to be recomputed at a neighbouring index, say n1 + 1,

neither the ranks nor Σ̂n and its inverse need to be recomputed. Hence the number of additional

operations required to compute Ŝn(n1 + 1) is indeed very limited.
In some situations, it may happen that the empirical estimate Σ̂n becomes ill-conditioned

rendering its inversion numerically unstable. Wei and Lachin (1984) suggested to circumvent
the problem by adding some small positive value to the diagonal elements of Σ̂n. It is important

to realize however that a particular case where Σ itself can be ill-conditioned is when coordinates

of X1 are strongly dependent. In the limiting case where coordinates of X1, say two of them for
illustration, are duplicated, Σ becomes a matrix of rank K − 1. In such a case, the correct statistic

is obtained by simply discarding one of the coordinates that are duplicated. Hence, to regularise
Σ̂n in such cases, we suggest inverting it using its Moore-Penrose pseudo inverse: if Σ̂n = USU′

denotes the singular value decomposition of Σ̂n, with S = diag(s1, . . . , sK) being the diagonal

matrix of eigenvalues of Σ, then the pseudo inverse Σ†
n is defined as U′ diag(s†

1, . . . , s†
K)U where

s†
i = s−1

i 1(si > ǫ) and ǫ is a fixed positive threshold. Instead of relying on the asymptotic result

of Theorem 1, it is suggested to compare Sn(n1) to the quantiles of the χ2
K′ distribution, where

K′ is the number of non-null values among the s†
i ’s. As already mentioned however, some terms

of Σ̂n appear to converge very rapidly and the matrix is only very rarely ill-conditioned, even

when n is only slightly larger than K. On the other hand, the regularised variant described
above was found to be effective for dealing with signals whose coordinates can be extremely
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dependent, e.g., if there is a quasi-deterministic relationship between two coordinates.

2.1.2 Discrete, missing or censored data

Theorem 1 requires the continuity of the c.d.f. Fk of each coordinate; hence it is not directly
applicable, for instance, to discrete variables. In such cases however, Theorem 1 is still valid

upon redefining Σ as

Σkk′ = E

[

{Fk(X−
1,k) + Fk(X1,k)− 1}{Fk′(X−

1,k′) + Fk′(X1,k′)− 1}
]

, (6)

where Fk(x−) denotes the left-limit of the c.d.f. in x. In this case, (2) has to be replaced by

Un,k(n1) =
2

√

nn1(n − n1)

n

∑
j=n1+1

{

R
(k)
j − n + ∑

n
i=1 1(Xi,k = Xj,k)

2

}

.

Another useful extension concerns the case of censored or missing data that can be dealt
with in great generality by introducing lower Xi,k and upper Xi,k censoring values such that

Xi,k ≤ Xi,k ≤ Xi,k, where a strict inequality indicates censoring (for missing values, simply set

Xi,k = −∞ and Xi,k = +∞). In this case, define

Un,k(n1) =
1

√

nn1(n − n1)

n1

∑
i=1

n

∑
j=n1+1

{

1(Xi,k ≤ X j,k)− 1(Xj,k ≤ Xi,k)
}

. (7)

Then, Theorem 1 holds with

Σkk′ = E

[

{Fk(X1,k) + Fk(X
−
1,k)− 1}{Fk′(X1,k′) + Fk′(X

−
1,k′)− 1}

]

, (8)

where Fk and Fk denote the c.d.f.’s of X1,k and X1,k, respectively.

2.2 Testing homogeneity within several groups of data

In this section, the procedure presented so far is extended to deal with more than two groups of
multivariate data. The resulting test statistic is again based on a proper combination of marginal

statistics involved in the Kruskal-Wallis procedure that generalises the classical Wilcoxon-rank

test when there are more than two groups of data.
Consider the null hypothesis that L given groups, X1, . . . , Xn1 ; Xn1+1, . . . , Xn2 ; . . . ; XnL−1+1, . . . , XnL ,

share the same distribution, where we shall use the convention that n0 = 0 and nL = n.

For j in {1, . . . , n} and k in {1, . . . , K}, denote as previously by R
(k)
j the rank of Xj,k among

(X1,k, . . . , Xn,k) that is, R
(k)
j = ∑

n
i=1 1{Xi,ℓ≤Xj,ℓ}. For ℓ in {0, . . . , L − 1}, define the average rank in

group ℓ for the kth coordinate by R̄
(k)
ℓ

= (nℓ+1 − nℓ)
−1 ∑

nℓ+1
j=nℓ+1 R

(k)
j . Consider the following test

statistic:

T(n1, . . . , nL−1) =
4

n2

L−1

∑
ℓ=0

(nℓ+1 − nℓ)R̄′
ℓ

Σ̂−1
n R̄ℓ , (9)

where the vector R̄ℓ is defined as R̄ℓ = (R̄
(1)
ℓ

− (n+ 1)/2, . . . , R̄
(K)
ℓ

− (n+ 1)/2)′, and Σ̂n is again

the matrix defined in (3). Theorem 2, proved in Appendix B, describes the limiting behaviour of

the test statistic T(n1, . . . , nL−1) under the null hypothesis.

Theorem 2 Assume that (Xi)1≤i≤n are R
K-valued i.i.d. random vectors such that, for all k, the c.d.f. Fk

of X1,k is a continuous function. Assume also that for ℓ = 0, . . . , L − 1, there exists tℓ in (0, 1) such that

(nℓ+1 − nℓ)/n → tℓ+1, as n tends to infinity. Then, T(n1, . . . , nL−1) defined in (9) satisfies

T(n1, . . . , nL−1)
d−→ χ2 ((L − 1)K) , as n → ∞ , (10)
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where d denotes convergence in distribution and χ2((L − 1)K) is the chi-square distribution with (L −
1)K degrees of freedom.

Observe that (9) extends the classical Kruskal-Wallis test used for univariate observations to
the multivariate setting. Indeed, when K = 1, (9) is equivalent to

T(n1, . . . , nL−1) =
12

n2

L−1

∑
ℓ=0

(nℓ+1 − nℓ)
(

R̄
(1)
ℓ

− (n + 1)/2
)2

, (11)

where we have replaced Σ̂n,11 by Σ11 = 4 Var(F1(X1,1)) = 4 Var(U) = 1/3 (U denoting a uniform

random variable on [0, 1]). In the case where there is only one change-point, i.e., when L = 2,
(9) reduces to the test statistic proposed in Section 2.1. Indeed, using (2), T(n1) can be rewritten

as follows

T(n1) =
nn1(n − n1)

n2n1
Un(n1)

′Σ̂nUn(n1) +
nn1(n − n1)

n2(n − n1)
Un(n1)

′Σ̂nUn(n1)

= Un(n1)
′Σ̂nUn(n1) = Sn(n1) ,

where Sn(n1) is defined in (4).

3 Change-point estimation and detection

We now consider the more challenging setting in which the position of the potential change-

points are unknown (still assuming that their number is known). Our proposal is to consider
the statistic T(n1, . . . , nL−1) described in the previous section and to optimise it over all the

possible change point locations. This proposal is however faced with two serious difficulties.
The first one, which is of computational nature is related to the feasibility of the maximisation

when there are more than a single change-point. We start by showing that the maximisation of

T(n1, . . . , nL−1) is amenable to dynamic programming and stays feasible even when L is large.
The second difficulty, to which a partial answer is provided in Section 3.2, is statistical and

concerns the interpretation of the value of T(n1, . . . , nL−1) as optimising with respect to the
change-point location obviously modifies the distribution of the values of the test statistic. This

is a difficult issue in general, but we show how to obtain meaningful and simple-to-compute

p-values for a variant of the test in the case of a single change-point.

3.1 Multiple change-point estimation

Assuming a known number of change-points L, we propose to use the test statistic described in

Section 2.2 to determine the positions of the segment boundaries n1, . . . , nL−1. These unknown
change-point locations are estimated by maximising the statistic T(n1, . . . , nL−1) defined in (9)

with respect to n1, . . . , nL−1:

(n̂1, . . . , n̂L−1) = argmax
1≤n1<···<nL−1≤n

T(n1, . . . , nL−1) . (12)

In practice, direct maximisation by enumeration in (12) is computationally prohibitive as it

corresponds to a combinatorial task whose complexity grows exponentially with L. However,
due to the fact that the matrix Σ̂n is common to all segments, the statistic T(n1, . . . , nL−1) defined

in (9) has an additive structure which makes it possible to adopt a dynamic programming
strategy. We refer here to the classical dynamic programming approach to the segmentation

task which is described in Kay (1993) used by, among others, Bai and Perron (2003) and can be

traced back to the note by Bellman (1961). More precisely, using the notations

∆(nℓ + 1 : nℓ+1) = (nℓ+1 − nℓ)R̄′
ℓ

Σ̂−1
n R̄ℓ ,
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and

IL(p) = max
1<n1<···<nL−1<nL=p

L−1

∑
ℓ=0

∆(nℓ + 1 : nℓ+1) ,

we have
IL(p) = max

nL−1

{IL−1(nL−1) + ∆(nL−1 + 1 : p)} . (13)

Thus, for solving the optimisation problem (12), we proceed as follows. We start by computing

the ∆(i : j) for all (i, j) such that 1 ≤ i < j ≤ n. All the I1(E) are thus available for E = 2, . . . , n.
Then I2(E) is computed by using the recursion (13) and so on. The overall numerical complexity

of the procedure is thus proportional to L × n2 only.

3.2 Assessing the significance of the test in the single change-point case

In addition to practical algorithms for estimating change-point locations, one needs tools to
assess the plausibility of the obtained change-point configuration. An important step in that

direction is to characterise the behaviour of T(n̂1, . . . , n̂L−1) under the null hypothesis that the
data are indeed fully homogeneous. This is a difficult issue in general due to the optimisation

over all possible change-point configurations. A possible calibration approach consists in run-

ning Monte Carlo experiments, possibly using bootstrap techniques if a representative sample
of the baseline data of interest is available. We show below that in the case where L = 2, i.e.,

when looking for a single potential change-point, it is possible to obtain a simple computable
approximation to the asymptotic p-value of the test.

To do so, we consider in the rest of this section a modification of the test statistic used in

(12). The practical consequences of using this variant rather than the statistic T(n̂1) when L = 2
will be discussed after Theorem 3 which states the main result of this section.

Let Vn(n1) = (Vn,1(n1), . . . , Vn,K(n1))
′ denote the vector such that

Vn,k(n1) =
1

n3/2

n1

∑
i=1

n

∑
j=n1+1

{

1(Xi,k ≤ Xj,k)− 1(Xj,k ≤ Xi,k)
}

, k = 1, . . . , K , (14)

and define

S̃n(n1) = Vn(n1)
′Σ̂−1

n Vn(n1) . (15)

Note that Vn only differs from Un by the normalisation, which is now independent of n1. We

now consider the statistic

Wn = max
1≤n1≤n−1

S̃n(n1) . (16)

The following theorem, proved in Appendix C, gives the asymptotic p-values of Wn under
the null hypothesis that no change in distribution occurs within the observation data.

Theorem 3 Assume that (Xi)1≤i≤n are R
K-valued i.i.d. random vectors such that, for all k, the c.d.f. Fk

of X1,k is a continuous function. Further assume that the K × K matrix Σ defined in (5) is invertible.

Then,

Wn
d−→ sup

0<t<1

(

K

∑
k=1

B2
k(t)

)

, as n → ∞ , (17)

where d denotes convergence in distribution and {Bk(t), t ∈ (0, 1)}1≤k≤K are independent Brownian
bridges.
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To determine the p-value Pval(Wn) associated to (17), one can use the following result due to

Kiefer (1959):

Pval(b) = P

(

sup
0<t<1

(

K

∑
k=1

B2
k(t)

)

> b

)

= 1 − 4

Γ(K
2 )2

K
2 b

K
2

∞

∑
m=1

(γ(K−2)/2,m)
K−2 exp[−(γ(K−2)/2,m)

2]/2b

[JK/2(γ(K−2)/2,m)]
2

, (18)

where Jν is the Bessel function of the first kind, γν,m is the m-th nonnegative zero of Jν and Γ

is the Gamma function. In practice, only a few terms of the series have to be computed. For
instance, for K = 40, we computed the p-values from the thirty first terms of the series.

We have empirically explored the convergence of the statistic Wn to its limiting distribu-
tion. The distribution of the statistic Wn can be considered as “close enough” to the limiting

distribution given in the r.h.s of (17) (as measured by a the Kolmogorov-Smirnov test at a 5 %

level applied to 1000 replications of the test statistic) when the sample size n is about 8 times
larger than the dimension K. This fact is illustrated in Figure 2 where we display the cumu-

lative histograms of 1000 values of the statistic Wn in the case where the observations are i.i.d
K-dimensional Gaussian vectors compared to the theoretical c.d.f. computed from (18).

0 1 2 3 4 5 6 70.0

0.2

0.4

0.6

0.8

1.0
K=10

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0
K=25

Figure 2: Cumulative histograms of 1000 values of the statistic Wn under H0 compared to the

theoretical c.d.f. computed with (18), when the dimension of the data is K = 10 (left) and K = 25
(right).

As noted at the beginning of Section 3.2, the normalisation of Vn differs from that of Un,
resulting in a statistic Wn that does not coincide with T(n̂1). From our practical experience, re-

placing Vn by Un in the definition of Wn, that is using T(n̂1) instead of Wn, produces a statistic

that has the same detection and localisation capacities when the potential change occurs in the
central region of the observation window, say between n/4 and 3n/4 observations. For potential

changes occurring closer to the beginning or to the end of the observation window, T(n̂1) has an
enhanced detection power at the expense of a slight increase in the rate of false alarms, with cor-

responding spurious detections occurring mostly near the borders of the observation window.

Proceeding as in Appendix C, one can prove a result related to Theorem 3 for T(n̂1) (used when
L = 2) by imposing some additional conditions on the admissible values of n1 (namely, that the

maximum is searched only for value of n1 such that n1/n is bounded from above and below).

The resulting limit, expressed in terms of Bessel processes, does not yield easily computable
asymptotic p-values, although approximations such as those studied by Estrella (2003) could be

used for approximating extreme quantiles (that is, very low p-values).
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4 Numerical Experiments

In this section, we report numerical experiments that illustrate different aspects of the methods
proposed in Sections 2 and 3. A software implementing these methods in Python is available as a

supplementary material of the paper. For easy reference, the two- or multi-sample homogeneity

test defined by (9) is referred to as MultiRank-H in the following; the change point estimation
criterion defined in (12) as well as its variant Wn (Eq. (16)) for the case of a single change-point

are referred to as MultiRank.

4.1 Illustration of the two-sample homogeneity test

We start by considering the basic two-sample homogeneity test first introduced in Section 2.1.

For this, we generate baseline observations distributed as a mixture of two two-dimensional

Gaussian densities with common mean (0, 0) and diagonal covariance matrices with diagonal
terms equal to (4, 0.2) and (0.2, 4), respectively. For the alternative distribution, we generate

observations having the same characteristics except that the mean is now equal to (0.5, 0.5). In
this case, n = 100 and the two groups (baseline and alternative data) are of length n/2 = 50.

Figure 3 (a) shows a typical example of the data, represented as a two-dimensional scatter plot.

MultiRank-H is compared with three other approaches. The first is the the Maximum Mean
Discrepancy (MMD) statistics proposed by Gretton et al. (2006), which is a kernel-based test

here used with a Gaussian kernel having a bandwidth given by the median distance between
the samples as suggested by Gretton et al. (2006), Désobry et al. (2005) and Harchaoui et al.

(2008). The second approach is the classical Hotelling’s T2-test (Chen and Gupta, 2000, p. 67)

which is optimal in the multivariate Gaussian case. The third method is to use the likelihood
ratio (LR) test assuming a known structure for the model whose parameters (mean vectors and

diagonal terms of the covariance matrices) are estimated using the Expectation-Maximisation
algorithm. This latter approach is optimal in this context but is the only one that uses some

knowledge about the distribution of the data. These methods are compared through their ROC

(Receiver Operating Characteristic) curves, averaged over 1000 Monte Carlo replications of the
data. The results displayed in Figure 3(b) show that MultiRank-H is on a par with the LR and

outperforms the other two approaches. MMD performs somewhat better than Hotelling’s T2 in

this context due to the non-Gaussian nature of the data. Figure 3(c) corresponds to the more
difficult setup in which eight-dimensional i.i.d. Gaussian random vectors of variance 2.52 are

appended to the data described previously. In this case, the data are thus ten-dimensional but
the change only affects two coordinates. MultiRank-H is again comparable to the LR, which is

still optimal in this case. Note the lack of robustness of MMD which is distinctly dominated by

Hotelling’s T2 in this second scenario.

4.2 Properties of the change-point detection test

In this section, we investigate the properties of the change-point detection test based on the

statistic Wn defined in (16), referred to as MultiRank in the following. The simulations reported
in this section are based on the following common benchmark scenario: under (H0), that is,

in the absence of change, we generate 500 samples from a five-dimensional standard Gaussian

distribution. Under (H1), the observations are similar, except that the common mean of the
Gaussian vector changes to 0.2 at a location which is either equal to 1/4 or 1/2 of the observation

window, that is, at indices 125 or 250. This scenario corresponds to a simple situation where
all coordinates of the data possibly undergo similar upward shifts. The ROC curves that are

plotted in the following are based on 2000 replications of the simulated data.
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Figure 3: (a) Example of observations under baseline and alternative distributions, (b) ROC

curves for MultiRank-H, MMD, Hotelling’s T2 and LR, (c) Same as (b) with eight-dimensional
Gaussian noise padding.

4.2.1 Comparison with marginal decisions

The MultiRank test statistic is obviously based on a combination of marginal rank statistics.
Nevertheless, it incorporates two important aspects of the multivariate change-point detection

problem: first, detection of simultaneous changes in multiple coordinates should make the pres-

ence of an actual change-point more likely, and, second, the existence of dependence between
the coordinates should influence the decision. To illustrate these observations, we compare

MultiRank with a simpler heuristic approach that combines marginal decisions based on Bon-
ferroni bound, using as test statistic max1≤k≤K max1≤n1≤n−1 Vn,k(n1). The results obtained with

the data-generating mechanism described at the beginning of Section 4.2 are displayed in the

leftmost plot of Figure 4. We also compare both approaches in a setting where the covari-
ance matrix of the Gaussian vector is not the identity matrix anymore but a tridiagonal matrix

with a common value of 0.45 (positive correlation) or −0.45 (negative correlation) on the sub-
and super-diagonal. The resulting ROC curves are displayed in the middle and right plots of

Figure 4, respectively.

The leftmost plot of Figure 4 shows that the approach that combines the marginal statistics
by taking into account their correlation, that is MultiRank, outperforms the Bonferroni-type

approach. Furthermore, when the coordinates are positively correlated, the rate of detection of
the MultiRank method decreases for a given false alarm rate and when negatively correlated,

the rate of detection increases. The performance of the Bonferroni-type approach on the other

hand does not improve for the negatively correlated data. The MultiRank method captures
an important feature of the problem that fails to be exploited by the mere marginal decisions:

negative correlations in the data make the detection of simultaneous upward jumps easier and
positive correlations more difficult.
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4.2.2 Robustness with respect to additive outliers

Here we illustrate the robustness of the MultiRank approach. We consider the scenario in

which the data considered previously are progressively contaminated by large additive outliers.
The outlier distribution is the multivariate Gaussian distribution with covariance matrix 10 Id5,

instead of Id5 for the baseline distribution (where Id5 refers to the five by five identity matrix).

The fraction of outliers is varied between 0, 5 and 20%. The MultiRank approach is compared
to the parametric likelihood-ratio based change-point detection test described by Srivastava

and Worsley (1986). This latter method, which is itself based on Hotelling’s T2-test statistic, is
optimal in the absence of outliers as the baseline and alternative distributions are both Gaussian.

As shown in the leftmost plot of Figure 5, MultiRank has comparable performance with the

parametric approach in the case where there are no outliers in the data. However, as shown in
the middle and rightmost plots of Figure 5, MultiRank demonstrates its robustness with respect

to the presence of additive outliers as it barely suffers from the presence of additive outliers

contrary to the parametric approach.
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Figure 4: ROC curves for the MultiRank and the Bonferroni-type approaches when the coordinates are independent (left), positively correlated
(middle) and negatively correlated (right). The change-point instant is located at 1/4 and 1/2 of the observations window of length 500.
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Figure 5: ROC curves for the MultiRank approach and the likelihood-ratio procedure (LR) for three different proportions of outliers (from left to

right: 0, 5 and 20%) when the change-point instant is located at 1/4 and 1/2 of the window of length 500.
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4.2.3 Robustness with respect to different types of changes

We examine here the robustness of the MultiRank approach with respect to the assumptions

that the changes occur simultaneously and abruptly. The basic data-generating mechanism is
as described at the beginning of Section 4.2 except that we now consider two new different

profiles of changes. In the first situation, the locations of the change-points in the different

coordinates span uniformly the interval [n1 − δ, n1 + δ]. In the second situation, the data present
a deterministic trend that linearly increases from 0 at index n1 − ∆ to 0.2 at index n1 + ∆ (rather

than jumping abruptly in n1). The MultiRank method is again compared with the likelihood-
ratio test of Srivastava and Worsley (1986).

In these experiments, MultiRank and the likelihood-ratio procedure performed similarly

and their performance was almost unaffected by the presence of non-synchronised or gradual
changes. For δ = ∆ = 1, Areas Under the ROC Curves (AUC) are equal to 0.99 when n1/n = 1/2

and to 0.94 when n1/n = 1/4 respectively for both algorithms. In both cases and for both

methods, the AUC was decreased only by 0.02 when considering non-synchronised or gradual
changes with values of δ or ∆ as high as 100. The degradation only becomes significant when

some changes start to occur very close to the beginning or the end of the observation window.

4.3 Application to genomic hybridisation data

To illustrate the potential of the approach, we consider its application to the segmentation of
multiple individual genomic data. We consider the bladder cancer micro-array aCGH dataset

studied by Vert and Bleakley (2010) which consists of records of copy-number variations, i.e.
abnormal alteration of the quantity of DNA sections.

The objective here is to jointly segment data recorded from different subjects so as to robustly

detect regions of frequent deletions or additions of DNA which could be characteristic of cancer.
Each of the 57 profiles provides the relative quantity of DNA for 2143 probes measured on

22 chromosomes. We ran the change-point estimation algorithm on each of 22 chromosomes
separately, thus processing 22 different 9- to 57-dimensional signals (depending on the selected

groups of patients at different stages of cancer) of length 50 to 200 (the number of probes varies

for each chromosome).
In this paper, we have not considered principled methods for inferring the number of change-

points from the data. We describe below an heuristic approach to determine the number of
change-points which, despite its simplicity, performs in our experience much better than the

use of generic penalties such as AIC or BIC. Values of the statistics IL(n), for L = 0, . . . , Lmax,

are first computed using the procedure described in Section 3.1. The algorithm is based on the
principle that in the presence of L⋆ ≥ 1 change-points, if IL(n) is plotted against L, the resulting

graph can be decomposed into two distinct regions: the first one, for L = 0, . . . , L⋆ where the
criterion is growing rapidly; and the second one, for L = L⋆, . . . , Lmax, where the criterion is

barely increasing (Lavielle, 2005). Hence, for each possible value of L in L = 1, . . . , Lmax, we

compute least square linear regressions for both parts of the graph (before and after L); the
estimated number of change-points is the value of L that yields the best fit, that is, the value for

which the sum of the residual sums of squares computed on both parts of the graph is minimal.

For an illustration of this methodology, see Figure 6. The case L = 0 is treated separately and the
procedure described above is used only when the value of the test statistic Wn for the presence

of a single change-point (see Section 3.2) is significant (p-value smaller than 0.1%) based on
Theorem 3.

Results are shown for a group of 32 profiles corresponding to Stage T2 of a tumour. In Fig-

ure 7 the copy-number data and the segmentation of the whole set of chromosomes is displayed
for two particular individuals, together with the corresponding stepwise constant approxima-

tions of the data for the 32 individuals (in the bottom of the Figure). Figure 8 details the results
pertaining to the 7th chromosome. In both cases, the segmentation result is represented by a
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Figure 6: Determining the optimal number of change-points. Here, the actual number of change-
points is L⋆ = 4; the optimal regression is displayed in solid lines, while a non-optimal alterna-

tive (for L = 6) is displayed in dashed lines.

signal which is constant (and equal to the mean of the data) within the detected segments. The

bottom plot in Figure 7 particularly highlights the fact that several coordinates indeed jump

at the same time, suggesting that the joint segmentation model is appropriate. On the other
hand, it is also obvious that one cannot assume (see, e.g., the third change-point at index 64 in

Figure 8) that all coordinates undergo similar changes. Note also that in this application, the
fact that the MultiRank test statistic is properly normalised with respect to the length n of the

data and their dimension K is particularly important: n corresponds to the number of probes

and varies with each chromosome, K represents the number of individuals and varies when
considering different groups of subjects.

As a reference, the group fused Lasso algorithm by Bleakley and Vert (2011) outputs similar

results. In particular, on the 7th chromosome, change-points are found at positions 21, 44, 65,
102, 107, 112, 124, 132, 156 and 166. On the whole set of chromosomes, 96 change-points are

found while the MultiRank estimation procedure outputs 98.

5 Conclusion

We proposed an approach for retrospective detection of multiple changes in multivariate data.

The basic idea, used for homogeneity testing when the data groupings are known, is an exten-
sion of well-known marginal rank based tests (Wilcoxon/Mann-Whitney and Kruskal-Wallis)

based on the idea originally proposed by Wei and Lachin (1984). The use of this approach for

change-point detection (when the segments boundaries are unknown) was shown to be compu-
tationally feasible. In addition, it incorporates important aspects of the problem, in particular

the fact that simultaneous detections in different coordinates make the presence of an actual
change more likely. The method was shown to be robust against various alternatives and on a

par with optimal methods in simpler cases. The approach can also be straightforwardly modi-

fied to deal with ordinal data, missing or censored values.
To improve the method, it would be desirable to provide significance levels for the change-

point detection test when used to detect more than a single potential change-point. We believe
that by considering the normalisation used to define the statistic Wn in Section 3.2, it is possi-

ble to study the asymptotic behaviour of the change-point detection statistic in the general case.

This being said, the difference between the two forms of normalisation could be more significant
when applied to more than two segments. On a different level, one should obviously consider
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Figure 7: First and second row: copy number data for two different individuals with super-

imposition of the segmentation. Third row: superimposition of the smoothed bladder tumour
aCGH data for 32 individuals in Stage T2 cancer that result from the segmentation. Vertical

dashed lines represent the separation between the different chromosomes.

more principled approaches for selecting the number of change-points. General-purpose penal-

isation schemes could be used but we feel that novel ideas need to be developed specifically for
the change-point problem given the specific nature of over- and under-estimating the number of

change-points. For instance, in many practical applications the significance of over-estimating

the number of change-points depends not only on the number of spurious segments but also
on their locations. Traditional approaches based on complexity penalties (Bai and Perron, 2003),

Bayesian methods (Fearnhead, 2006) and sparsity-based criterions (Harchaoui and Lévy-Leduc,
2010; Vert and Bleakley, 2010) are already available but there is certainly room for new develop-

ments in these fields.

A Appendix: Proof of Theorem 1

The proof is based on the Hoeffding decomposition of Un,k(n1) for each k in {1, . . . , K}. For

further details on the Hoeffding decomposition, we refer the reader to Chapters 11 and 12

of van der Vaart (1998). For each k in {1, . . . , K}, let h1,k(y) =
∫

h(x, y)dFk(x) and h̃1,k(x) =
∫

h(x, y)dFk(y), where h is defined by h(x, y) = 1(x ≤ y)− 1(y ≤ x). By the continuity of Fk,

h1,k(y) = 2Fk(y)− 1 and h̃1,k(x) = 1 − 2Fk(x). The Hoeffding decomposition of Un,k(n1) can
thus be written as Un,k(n1) = Ûn,k(n1) + Rn,k(n1), where

Ûn,k(n1) =
n1

√

nn1(n − n1)

n

∑
j=n1+1

h1,k(Xj,k) +
n − n1

√

nn1(n − n1)

n1

∑
i=1

h̃1,k(Xi,k) , (19)

Rn,k(n1) =
1

√

nn1(n − n1)

n1

∑
i=1

n

∑
j=n1+1

[h(Xi,k, Xj,k)− h̃1,k(Xi,k)− h1,k(Xj,k)] . (20)

We first prove that Un,k(n1) = Ûn,k(n1) + op(1) by showing that Var[Rn,k(n1)] → 0, as n
tends to infinity. Using that E[Un,k(n1)] = E[Ûn,k(n1)] = 0, we obtain that Var[Rn,k(n1)] =
Var[Un,k(n1)− Ûn,k(n1)] = E[U2

n,k(n1)] + E[Û2
n,k(n1)]− 2E[Un,k(n1)Ûn,k(n1)]. By independence
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Figure 8: Data for 32 individuals in Stage T2 bladder cancer with superimposed segmentation

for chromosome 7. 10 change-points were estimated and the dashed vertical lines correspond
to the estimated segment boundaries.

of the (Xi,k)1≤i≤n, we obtain that

E[Û2
n,k(n1)] =

n2
1

nn1(n − n1)

n

∑
j=n1+1

E[h1,k(Xj,k)
2] +

(n − n1)
2

nn1(n − n1)

n1

∑
i=1

E[h̃1,k(Xi,k)
2]. (21)

Using that

E[h1,k(Xi,k)
2] = 4E[(Fk(X1,k)− 1/2)2] = 4 Var(U ) = 1/3 , (22)

where U has a uniform distribution on [0, 1], we get, on the one hand, that

E[Û2
n,k(n1)] =

n2
1(n − n1)

3nn1(n − n1)
+

(n − n1)
2n1

3nn1(n − n1)
= 1/3 . (23)
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On the other hand

E[U2
n,k(n1)] =

1

nn1(n − n1)

n1

∑
i=1

n

∑
j=n1+1

E[h(Xi,k, Xj,k)
2]

+
1

nn1(n − n1)
∑

1≤i 6=i′≤n1

n

∑
j=n1+1

E[h(Xi,k, Xj,k)h(Xi′,k, Xj,k)]

+
1

nn1(n − n1)

n1

∑
i=1

∑
n1+1≤j 6=j′≤n

E[h(Xi,k, Xj,k)h(Xi,k, Xj′,k)] . (24)

We separately study the three terms of the r.h.s of (24). Using that (Xi,k)1≤i≤n are i.i.d. , we get

1

nn1(n − n1)

n1

∑
i=1

n

∑
j=n1+1

E[h(Xi,k, Xj,k)
2] =

n1(n − n1)

nn1(n − n1)
E[h(X1,k, Xn1+1,k)

2] → 0, as n → ∞ .

(25)

Then, by continuity of Fk, we have

1

nn1(n − n1)
∑

1≤i 6=i′≤n1

n

∑
j=n1+1

E[h(Xi,k, Xj,k)h(Xi′,k, Xj,k)]

=
(n2

1 − n1)(n − n1)

nn1(n − n1)

∫

(2Fk(y)− 1)(2Fk(y)− 1)dFk(y) =
n1(n1 − 1)(n − n1)

3nn1(n − n1)
. (26)

Using similar arguments, the last term of the r.h.s of (24) is equal to n1(n − n1)(n − n1 −
1)/(3nn1(n − n1)). With (25) and (26), we obtain

E[U2
n,k(n1)] → 1/3, as n → ∞. (27)

Since E[Un,k(n1)Ûn,k(n1)] → 1/3, as n → ∞, (23) and (27) lead to Var[Rn,k(n1)] → 0 and
thus Un,k(n1) = Ûn,k(n1) + op(1), as n tends to infinity. The multivariate central limit theorem

then yields (Un,1(n1), . . . , Un,K(n1))
′ → N (0, Σ) , where the (k, k′)th entry of Σ is given by

Σkk′ = limn→∞ E[Ûn,k(n1)Ûn,k′(n1)]. Using that the (Xi,k)1≤i≤n are i.i.d., we obtain that

E[Ûn,k(n1)Ûn,k′(n1)] =
4n2

1

nn1(n − n1)

n

∑
j=n1+1

E[{Fk(Xj,k)− 1/2}{Fk′(Xj,k′)− 1/2}]

+
4(n − n1)

2

nn1(n − n1)

n1

∑
i=1

E[{Fk(Xi,k)− 1/2}{Fk′(Xi,k′)− 1/2}]

= 4 Cov
(

Fk(X1,k), Fk′(X1,k′)
)

.

Thus, Σ−1/2(Un,1(n1), . . . , Un,K(n1))
′ d−→ N (0, IdK). Since Σ̂n

p−→ Σ, we deduce from Slutsky’s

Theorem that Σ̂−1/2
n (Un,1(n1), . . . , Un,K(n1))

′ d−→ N (0, IdK), which concludes the proof.

B Appendix: Proof of Theorem 2

Using that R
(k)
j = ∑

n
i=1 1(Xi,k ≤ Xj,k), we obtain that

R̄
(k)
ℓ

− n + 1

2
=

1

nℓ+1 − nℓ

(

nℓ+1

∑
j=nℓ+1

n

∑
i=1

1(Xi,k ≤ Xj,k)

)

− n + 1

2

=
1

nℓ+1 − nℓ

nℓ+1

∑
j=nℓ+1

n

∑
i=1
i 6=j

[

1(Xi,k ≤ Xj,k)− 1/2
]

. (28)
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Let h(x, y) = 1(x ≤ y), h1,k(y) =
∫

1(x ≤ y)dFk(x) and h2,k(x) =
∫

1(x ≤ y)dFk(y). By

continuity of Fk: h1,k(y) = Fk(y) and h2,k(x) = 1 − Fk(x). Using the notation:

R(k)
ℓ

= (nℓ+1 − nℓ)
1/2/n(R̄

(k)
ℓ

− (n + 1)/2) ,

the Hoeffding decomposition yields

R(k)
ℓ

=
(nℓ+1 − nℓ)

1/2

n

[

n − 1

nℓ+1 − nℓ

nℓ+1

∑
j=nℓ+1

(h1,k(Xj,k)− 1/2) +
nℓ+1 − nℓ − 1

nℓ+1 − nℓ

n

∑
i=1

(h2,k(Xi,k)− 1/2)

]

+
(nℓ+1 − nℓ)

1/2

n







1

nℓ+1 − nℓ

nℓ+1

∑
j=nℓ+1

n

∑
i=1
i 6=j

{

h(Xi,k, Xj,k)− h1,k(Xj,k)− h2,k(Xi,k) + 1/2
}







def
= R(k)

ℓ,1 +R(k)
ℓ,2 +R(k)

ℓ,3 . (29)

Note that R(k)
ℓ,3 = op(1), as n tends to infinity, since it can be proved that Var(R(k)

ℓ,3 ) = Var[R(k)
ℓ

−
(R(k)

ℓ,1 +R(k)
ℓ,2 )] → 0, as n tends to infinity. Thus, (29) can be rewritten as

R(k)
ℓ

=
n − 1

n(nℓ+1 − nℓ)1/2

nℓ+1

∑
j=nℓ+1

(Fk(Xj,k)− 1/2)+
nℓ+1 − nℓ − 1

n(nℓ+1 − nℓ)1/2

n

∑
i=1

(1/2− Fk(Xi,k))+ op(1) .

Since ∑
n
i=1(1/2 − Fk(Xi,k)) = ∑

L−1
p=0 ∑

np+1

j=np+1(1/2 − Fk(Xj,k)),

R(k)
ℓ

=
n − (nℓ+1 − nℓ)

n(nℓ+1 − nℓ)1/2

nℓ+1

∑
j=nℓ+1

(Fk(Xj,k)− 1/2)− nℓ+1 − nℓ − 1

n(nℓ+1 − nℓ)1/2

L−1

∑
p=0

p 6=ℓ

np+1

∑
j=np+1

(Fk(Xj,k − 1/2))+ op(1)

def
= Uk(nℓ, nℓ+1) + op(1) .

Observe that, for a fixed ℓ in {0, . . . , L − 1} and k, k′ in {1, . . . , K}, we get, as n tends to infinity,

4 Cov(Uk(nℓ, nℓ+1), Uk′(nℓ, nℓ+1)) =

Σkk′









(

1 − (nℓ+1 − nℓ)

n

)2

+
L−1

∑
p=0

p 6=ℓ

(nℓ+1 − nℓ − 1)2(np+1 − np)

n2(nℓ+1 − nℓ)









→ (1 − tℓ+1)Σkk′ , (30)

where we have used that ∑
L−1
p=0

p 6=ℓ

(np+1 − np) = n − (nℓ+1 − nℓ). In the same way, for fixed k, k′ in

{1, . . . , K} and ℓ 6= ℓ′ in {0, . . . , L − 1}, we obtain, as n tends to infinity,

4 Cov(Uk(nℓ, nℓ+1), Uk′(nℓ′ , nℓ′+1)) → −
√

tℓ+1tℓ′+1Σkk′ . (31)

Let

R̄n = 2

(

(n1 − n0)
1/2

n
R̄′

0, . . . ,
(nL − nL−1)

1/2

n
R̄′

L−1

)′
.

We deduce from (30), (31) and the multivariate central limit theorem that

R̄n
d−→ N (0, Θ ⊗ Σ) , n → ∞ ,
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where Σ is the K × K matrix defined in (5), ⊗ denotes the Kronecker product, Θ = IdL −
√

t

√

t
′

with
√

t = (
√

t1, . . . ,
√

tL)
′. Thus,

R̄Σ
n

d−→ N (0, Θ⊗ IdK) , n → ∞ ,

where

R̄Σ
n = 2

(

(n1 − n0)
1/2

n
Σ−1/2R̄′

0, . . . ,
(nL − nL−1)

1/2

n
Σ−1/2R̄′

L−1

)′
.

Since Σ̂n
p−→ Σ, as n tends to infinity, the same convergence holds when Σ is replaced by Σ̂n.

Since ∑
L−1
ℓ=0 (nℓ+1 − nℓ)/n = 1, ∑

L
ℓ=1 tℓ = 1 and the matrix t has eigenvalue 0 of multiplicity 1

(with eigenspace spanned by
√

t), and eigenvalue 1 of multiplicity L− 1. Hence, the eigenvalues
of Θ ⊗ IdK are 0, with multiplicity K, and 1, with multiplicity (L − 1)K, which concludes the

proof using Cochran’s theorem.

C Appendix: Proof of Theorem 3

We start by proving (17) when Σ̂n is replaced by Σ in (15). For this, we shall verify the assump-
tions of (Billingsley, 1968, Theorem 15.6): the convergence of the finite-dimensional distributions:

(

Vn(⌊nt1⌋)′Σ−1Vn(⌊nt1⌋), . . . , Vn(⌊ntp⌋)′Σ−1Vn(⌊ntp⌋)
)

d−→
(

K

∑
k=1

B2
k(t1), . . . ,

K

∑
k=1

B2
k(tp)

)

, for 0 < t1 < . . . < tp < 1 , n → ∞ , (32)

and the tightness criterion for the process:

{

Vn(⌊nt⌋)′Σ−1
n Vn(⌊nt⌋); 0 < t < 1

}

,

where ⌊x⌋ denotes the integer part of x. Let n1 = ⌊nt1⌋, with t1 in (0, 1). In the same way as

in Appendix A, as Vn,k(·) only differs from Un,k(·) by a normalising factor, we can prove that
Vn,k(n1) = V̂n,k(n1) + op(1), with 0 < n1 < n and

V̂n,k(n1) =
n1

n3/2

n

∑
j=n1+1

h1,k(Xj,k)−
n − n1

n3/2

n1

∑
i=1

h1,k(Xi,k) ,

where h1,k(x) = 2Fk(x)− 1 and that

E[V̂n,k(n1)V̂n,k′(n1)] → 4t1(1 − t1)Cov
(

Fk(X1,k), Fk′(X1,k′)
)

, as n → ∞ . (33)

Let n2 = ⌊nt2⌋. Since 1 < n1 < n2 < n, n1/n → t1 ∈ (0, 1), and n2/n → t2 ∈ (0, 1) we get

E[V̂n,k(n1)V̂n,k′(n2)] = E

[{

n1

n3/2

n

∑
j=n1+1

h1,k(Xj,k)−
n − n1

n3/2

n1

∑
i=1

h1,k(Xi,k)

}

×
{

n2

n3/2

n

∑
j=n2+1

h1,k′(Xj,k′)−
n − n2

n3/2

n2

∑
i=1

h1,k′(Xi,k′)

}]

. (34)
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By decomposing the interval [n1 + 1, n] (resp. [1, n2]) into [n1 + 1, n2] and [n2 + 1, n] (resp. [1, n1]
and [n1 + 1, n2]) and developing the expression, we obtain

E[V̂n,k(n1)V̂n,k′(n2)] =

E

[

(n − n1)(n − n2)

n3

n1

∑
i=1

h1,k(Xi,k)h1,k′(Xi,k′)−
n1(n − n2)

n3

n2

∑
j=n1+1

h1,k(Xi,k)h1,k′(Xi,k′)

+
n1n2

n3

n

∑
j=n2+1

h1,k(Xi,k)h1,k′(Xi,k′)

]

=
n1(n − n2)

n2
Σkk′ −→ t1(1 − t2)Σkk′ , as n → ∞ . (35)

With (33) and (35), we obtain

(

V̂n(n1)
V̂n(n2)

)

d−→ N
(

0;

(

t1(1 − t1)Σ t1(1 − t2)Σ
t1(1 − t2)Σ t2(1 − t2)Σ

))

, (36)

which is equivalent to
(

V̂n(n1)
V̂n(n2)

)

d−→
(

Σ
1
2 0

0 Σ
1
2

)

(

B(t1)
B(t2)

)

, (37)

where B(t) = (B1(t), . . . , BK(t)), 0 ≤ t ≤ 1. For the sake of clarity and without loss of generality,

(32) is thus proved in the case p = 2 by applying the continuous function

(

x1

x2

)

7−→
(

x′1x1

x′2x2

)

, where x1, x2 ∈ R
K. (38)

In the following, we check the tightness condition, that is, for 0 < t1 < t < t2 < 1, we show that

E

[

|V̂n(⌊nt⌋)Σ−1V̂n(⌊nt⌋)− V̂n(⌊nt1⌋)Σ−1V̂n(⌊nt1⌋)|2

×|V̂n(⌊nt2⌋)Σ−1V̂n(⌊nt2⌋)− V̂n(⌊nt⌋)Σ−1V̂n(⌊nt⌋)|2
]

≤ C|t2 − t1|2, (39)

where C is a positive constant. Let xn(t) = (xn,1(t), . . . , xn,K(t))
′ = AV̂n(⌊nt⌋), where A = Σ− 1

2 ,
whose (p, q)th entry is denoted by ap,q. The l.h.s. of (39) can thus be rewritten as

E

[

|x′n(t)xn(t)− x′n(t1)xn(t1)|2|x′n(t2)xn(t2)− x′n(t)xn(t)|2
]

= E





∣

∣

∣

∣

∣

K

∑
k=1

{x2
n,k(t)− x2

n,k(t1)}
∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

K

∑
k′=1

{x2
n,k′(t2)− x2

n,k′(t)}
∣

∣

∣

∣

∣

2


 . (40)

Note that

K

∑
k=1

{x2
n,k(t)− x2

n,k(t1)} =
K

∑
k=1

(xn,k(t)− xn,k(t1))(xn,k(t) + xn,k(t1))

=
K

∑
k=1

(

K

∑
p=1

ak,p[V̂n,p(⌊nt⌋)− V̂n,p(⌊nt1⌋)]
)





K

∑
p′=1

ak,p′ [V̂n,p′(⌊nt⌋) + V̂n,p′(⌊nt1⌋)]




=
K

∑
p,p′=1

bp,p′
[

V̂n,p(⌊nt⌋)− V̂n,p(⌊nt1⌋)
]

[

V̂n,p′(⌊nt⌋) + V̂n,p′(⌊nt1⌋)
]

, (41)
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where bp,p′ = ∑
K
k=1 ak,pak,p′ is the (p, p′)th element of the matrix B = A2 = Σ−1. Similarly

K

∑
k′=1

{x2
n,k′(t2)− x2

n,k′(t)} =
K

∑
q,q′=1

bq,q′
[

V̂n,q(⌊nt2⌋)− V̂n,q(⌊nt⌋)
]

[

V̂n,q′(⌊nt2⌋) + V̂n,q′(⌊nt⌋)
]

.

(42)

Using the notations ℓ = ⌊nt⌋, ℓ1 = ⌊nt1⌋ and ℓ2 = ⌊nt2⌋, and decomposing the interval [1, n]
into [1, ℓ1], [ℓ1 + 1, ℓ], [ℓ+ 1, ℓ2] and [ℓ2 + 1, n], we get

V̂n,p(ℓ)− V̂n,p(ℓ1) =
ℓ− ℓ1

n3/2

(

ℓ1

∑
i=1

h1,p(Xi,p)

)

− n − (ℓ− ℓ1)

n3/2

(

ℓ

∑
i=ℓ1+1

h1,p(Xi,p)

)

+
ℓ− ℓ1

n3/2

(

ℓ2

∑
i=ℓ+1

h1,p(Xi,p)

)

+
ℓ− ℓ1

n3/2

(

n

∑
i=ℓ2+1

h1,p(Xi,p)

)

, (43)

and

V̂n,p(ℓ) + V̂n,p(ℓ1) =
ℓ+ ℓ1

n3/2

(

ℓ1

∑
i=1

h1,p(Xi,p)

)

− n − (ℓ+ ℓ1)

n3/2

(

ℓ

∑
i=ℓ1+1

h1,p(Xi,p)

)

+
ℓ+ ℓ1

n3/2

(

ℓ2

∑
i=ℓ+1

h1,p(Xi,p)

)

+
ℓ+ ℓ1

n3/2

(

n

∑
i=ℓ2+1

h1,p(Xi,p)

)

, (44)

with similar results for the terms of (42). Equation (40) is the expected value of the product of

the squares of (41) and (42). Using Cauchy-Schwarz inequality, (40) is bounded above by the
sum of several terms, obtained by inserting (43) and (44) in (41) and (42), respectively. Among

these terms, we consider the case of:

C1

K

∑
p,p′=1

K

∑
q,q′=1

b2
p,p′b

2
q,q′

(n − (ℓ− ℓ1))
2(ℓ+ ℓ1)

2(n − (ℓ2 − ℓ))2(ℓ2 + ℓ)2

n12

× E





∣

∣

∣

∣

∣

ℓ

∑
i=ℓ1+1

h1,p(Xi,p)

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

ℓ1

∑
i=1

h1,p(Xi,p)

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

ℓ2

∑
i=ℓ+1

h1,p(Xi,p)

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

n

∑
i=ℓ2+1

h1,p(Xi,p)

∣

∣

∣

∣

∣

2


 . (45)

Using the independence of (Xi,k)1≤i≤n, the expected value in (45) can be separated into the
product of four expected values, and thus can be bounded by

(ℓ− ℓ1)ℓ1(ℓ2 − ℓ)(n − ℓ2)/34 ≤ n2(ℓ2 − ℓ1)
2/34. (46)

Equation (45) is thus bounded above by a quantity proportional to (ℓ2 − ℓ1)
2/n2 = (⌊nt2⌋ −

⌊nt1⌋)2/n2. All the terms appearing in the expansion of (40) can be treated similarly. This

completes the proof of (39) and thus ensures that

sup
0<t<1

Vn(⌊nt⌋)′Σ−1Vn(⌊nt⌋) d−→ sup
0<t<1

K

∑
k=1

B2
k(t), n → ∞ . (47)

In order to prove (47) when Σ is replaced by Σ̂n, it enough to prove that sup0<t<1 |Vn(⌊nt⌋)′(Σ−1 −
Σ̂−1

n )Vn(⌊nt⌋)| = op(1). Note that

|Vn(⌊nt⌋)′(Σ−1 − Σ̂−1
n )Vn(⌊nt⌋)| ≤ ‖Σ̂−1

n − Σ−1‖ sup
0<t<1

‖Vn(⌊nt⌋)‖2 ,

where Σ̂−1
n

p−→ Σ−1 and sup0<t<1 ‖Vn(⌊nt⌋)‖2 = Op(1), by (47), which concludes the proof.
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