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Abstract: This paper presents a method for enabling the relational learning or inductive logic programming (ILP) frame-

work to deal with quantitative information from experimental data in systems biology. The study of systems

biology through ILP aims at improving the understanding of the physiological state of the cell and the interpre-

tation of the interactions between metabolites and signaling networks. A logical model of the glycolysis and

pentose phosphate pathways of E. Coli is proposed to support our method description. We explain our original

approach to building a symbolic model applied to kinetics based on Michaelis-Menten equation, starting with

the discretization of the changes in concentration of some of the metabolites over time into relevant levels. We

can then use them in our ILP-based model. Logical formulae on concentrations of some metabolites, which

could not be measured during the dynamic state, are produced through logical abduction. Finally, as this re-

sults in a large number of hypotheses, they are ranked with an expectation maximization algorithm working

on binary decision diagrams.

INTRODUCTION

Nowadays, systems biology represents the key field

to explain the functionality of life science. To ana-

lyze a biological system it is necessary to find out new

mathematical models allowing to explain the evolu-

tion of the system in a dynamic context or to deal in a

simple manner with the complex situations where the

human experience overtakes mathematical reasoning

(Kitano, 2002). Many physical and biological phe-

nomena may be represented on an analytical form us-

ing dynamical system. Our case study is based on

wet biology experiment consisting in applying a pulse

of glucose in a small bio-reactor containing E.Coli

that led to building an ordinary differential equations

(ODEs) based simulator. We used high performance

liquid chromatography to measure some metabolites

concentrations and some others had to be estimated,

using a simulated annealing algorithm, since no ex-

perimental results were available. So, knowing com-

pletely the evolutions of metabolites concentrations of

this system, we applied our approach to show its cor-

rectness. For that, we took only steady-state values of

metabolites concentrations and ran our model.

Several attemps have been done for logic-based

approaches to analyze biochemical pathways in Sys-

tems Biology. They use action languages (Baral et al.,

2004), abduction (Juvan et al., 2005; King et al.,

2004; King et al., 2005; Tamaddoni-Nezhad et al.,

2006), SAT (Tiwari et al., 2007), inductive logic pro-

gramming (Doncescu et al., 2007) or answer set pro-

gramming (Dworschak et al., 2008). All these pre-

vious approaches are based on qualitative modeling,

and none of them can handle continuous domains ap-

propriately. Temporal logic combined with the rep-

resentation of kinetic models in stochastic logic pro-

gramming (SLP) (Fages et al., 2008) have a simi-

lar goal using different means: the authors modeled

the kinetics of biochemical systems by continuous

time Markov chains as input to SLP where we took

an approach to discretize (through continuous HMM)

concentrations of metabolites first and then use them

combined with a logical translation of ODEs-based

kinetics as input to ILP. The goal of this research is

to incorporate continuous values and kinetics within

the logic-based approach to metabolic pathways. In



particular, we enhance an abductive framework pro-

posed in (Inoue et al., 2009), which consists of ab-

ductive hypothesis generation and statistical hypoth-

esis evaluation, by enabling us to handle real-valued

data obtained from measurement in observations.

For that, we now propose a loop for learning

about a metabolic pathway from experiments in which

we have to (each step corresponds to a section, as in

Fig. 1):

1. clusterize continuous concentrations of metabo-

lites over time into discrete levels and discrete

timesteps.

2. use them in an ILP-based model of the pathway,

in conjunction with a set of knowledge-generating

rules, here in the example describing Michaelis-

Menten kinetics.

3. sort the resulting abduced facts or inducted rules

with our defined metrics.

4. use this ranking for enhancing our knowledge

base and goto the beginning of this process.
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Figure 1: Overview of the complete process

In this paper, we show how this “closed loop”

architecture can be applied to an inverse problem:

given the measured concentrations of some metabo-

lites in a steady state, we compute the concentra-

tions of metabolites before the dynamic transition to

this steady state based on the kinetic modeling. We

worked with the beginning of an automated frame-

work (see Fig. 2 for a practical data-centric circuit)

to deal with different real world pathways and exper-

iments. It is mainly composed of four tools:

• The combination of an implementation of contin-

uous HMMs (Gauvain and Lee, 1994; Ji et al.,

2006) with PY-TSDISC to discretize experimental

values.

• KEGG2SYMB, using the KEGG API, that trans-

form pathways from KEGG (Kanehisa and Goto,

2000; Kanehisa et al., 2008) into symbolic mod-

els.

• SOLAR, a consequence finding system working

on Skipping Ordered Linear tableaux (Nabeshima

et al., 2003), which is complete for finding mini-

mal explanations, to conduct abduction or induc-

tion.

• BDD-EM, an implementation of the expectation-

maximization algorithm on binary decision dia-

grams (Ishihata et al., 2008; Inoue et al., 2009)

to rank hypotheses.

We chose to illustrate this method on the conjunc-

tion of glycolysis and pentose phosphate pathways for

E.Coli, simplified the model by keeping 16 relevant

reactions and discretized experimental values (16 val-

ues) as in section 1. We added the three Michaelis-

Menten based rules and the three constraints of unic-

ity for the levels as in section 2. We had 15 un-

known levels of concentrations of metabolites before

the transition to the steady state (yielding 15×3 levels

= 45 abducibles). SOLAR, used for abduction, outputs

98 hypotheses that cover all these metabolites. With

such a number, picking the right hypotheses should

be done in an automated way as we did in section 3.
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Figure 2: Data-centric schema of the process

1 DISCRETIZATION OF TIME

SERIES FROM EXPERIMENTS

In our modeling, we first introduce discrete concen-

tration levels to filter what are the relevant changes

of concentration of the metabolites, in regard to hy-

potheses generation from ILP. We need to be able to

infer hypotheses that have a certain level of generality

and, for that, we should use intervals instead of single

real values. This could have been done with an inter-

val constraints approach (Benhamou, 1994), but we

currently choose a discretization approach. Although

this gives us less freedom in the logic part as levels



are fixed (as if we have fixed intervals), levels can be

handled just as symbols in a logical model of path-

ways.

Discretizing time series is a research field in which

many works (Geurts, 2001; Keogh et al., 2005) have

been conducted recently. Our practical problem is that

we want to have a statistically relevant (unsupervised)

discretization for N metabolites concentrations over

time. We also discretize the values of Km (Michaelis-

Menten constants, see (1)), for each reaction, with the

same levels. For that purpose, we use a probabilis-

tic model, used in speech recognition and time series

analysis: continuous hidden Markov model (HMMs)

(Rabiner, 1989). We can therefore compute an ap-

propriate number of levels (that was three for E.Coli)

in regard to a Bayesian score such as Bayesian In-

formation Criterion (BIC) (Schwarz, 1978) or as the

Cheeseman-Stutz score (Cheeseman and Stutz, 1995)

or as the variational free energy. This process can

be achieved through the following methods all de-

scribed in (Beal, 2003), respectively: maximum like-

lihood estimation or maximum a posteriori estimation

or through a variational Bayesian method.

We use continuous (Gaussian) HMMs with pa-

rameter tying1. This is a solution to the problem of

sharing the same symbolic levels in all the logic mod-

els in order to be able to assign the level of a com-

pound to another and be dealing with the same real

values behind the scene. We first prepare N contin-

uous HMMs (one for each metabolite), where each

state variable takes a concentration level, and each

output variable takes a measurement of concentration

and follows a univariate Gaussian distribution. All the

HMMs share a state space as well as the parameters

in the output variables (i.e. means and variances), so

that they produce discrete levels that are correspond-

ing. These relevant discretized levels of concentration

are computed through the expectation-maximisation

(EM) algorithm with maximum a posteriori (MAP)

estimation (Gauvain and Lee, 1994) or through the

variational Bayes EM (VB-EM) (Beal, 2003; Ji et al.,

2006). We prefer this last method as it is shown (Beal,

2003) that variational free energy provides a more ac-

curate approximation of the marginal log-likelihood

than BIC or the Cheeseman-Stutz score.

Then, we use a simple round-mean aggregation of

them for time-sampling. We set a maximal number

1Parameter tying is a notion often used in HMMs for
speech recognition (Rabiner, 1989) and recently in statisti-
cal relational learning (De Raedt, 2008). In our case, the

mean and the variance for X
(n)
t , the output variable at time

t in the HMM for the n-th metabolite (n = 1, . . . ,N), are

tied with the mean and the variance for X
(n′)
t ′ , respectively

(n 6= n′ and t 6= t ′).

Figure 3: 3-state continuous HMM discretizing one experi-
mental time series, where Xt is the measurement of concen-
tration at time t and St is the hidden state that indicates the
corresponding discretized level.

of time steps and look for the better fitting width and

alignment for equal-width time intervals. We are cur-

rently developping a different process in the direction

of discretization of our time series from molecular bi-

ology experiments that will discretize time and levels

simultaneously but current results are already useable

(see Table 1 and Fig. 5 ) and that is what we based the

work presented here on.

2 MODELING OF THE

PATHWAYS OF E.COLI

To obtain an understanding of the central metabolism,

a logical model has been developed according to a

kinetic model including the glycolysis and the pen-

tose phosphate pathway for Escherichia coli (Chas-

sagnole et al., 2006). The Fig.4 shows the simplified

pathway that we modelized logically with relations

reaction(Substrate, Enzyme, Product, Km).

pg6 ribu5p rib5p

glucose g6p xyl5p sed7p

f6p

dhap fdp pep pyr

gap pg3 accoa

cell membrane

Figure 4: Simplified glycolysis and pentose phosphate path-
ways for E.Coli

The metabolic networks dynamics are in their en-

zymatic part ruled by the combination of classical

kinetics: essentially Michaelis-Menten, Hill and al-

losteric ones. If we limit our modeling to these kinet-

ics, we can highly simplify their mathematical han-



dling, and that is what we did. We chose to use only

Michaelis-Menten kinetics, because we had a path-

way simple enough and that it is the more general rep-

resentation for a non-linear allosteric regulation sys-

tem. It assumes that the two enzyme binding equi-

libria are fast when compared to the interconversion

of enzyme + substrate (ES) and enzyme + product

(EP) compounds. That assumption appears reason-

able considering that the dynamics of the experiment

were happening in less that a minute: this implies that

the effects of genetic regulation of the enzymes in-

cluded are negligible and so the maximum reaction

rates represent the amount and catalytic activity of en-

zymes.

E +S ⇋
k1
k−1

ES→k2 E +P

Michaelis−Menten eq. :
d[P]

dt
=Vm

[S]

[S]+Km

(1)

If both the substrate (S) and the product (P) are

present, neither can saturate the enzyme. For any

given concentration of S the fraction of S bound to

the enzyme is reduced by increasing the concentra-

tion of P and vice versa. For any concentration of P,

the fraction of P bound to the enzyme is reduced by

increasing concentration of S. When we have S ⇆ P,

we just have to consider reactions for both directions.

We consider a time discretization of the chemical rate

equation for a reation between a substrate and a prod-

uct with respective stoechiometric coefficient s and p:

s.S→ p.P : rate=
1

p
×

d[P]

dt
−→disc.time

1

p
×

∆[P]

∆T
(2)

(1) and (2) =⇒ p× rate =Vm

[S]T
[S]T +Km

≈
[P]T+timestep− [P]T
(T + timestep)−T

We chose to work with a constant timestep :

=⇒ [P]T+1 =Vm

[S]T
[S]T +Km

+[P]T (3)

We can note that the Michaelis-Menten constants

(Km) are homogenous to a concentration. We can

then state conc(Km, Level, Time) in our modeling

to set them, where conc stands for concentration.

The experimental response observations of intra-

cellular metabolites to a pulse of glucose were

measured in continuous culture employing automatic

stopped flow and manual fast sampling techniques

in the time-span of seconds and milliseconds af-

ter the stimulus with glucose. The extracellular

glucose, the intracellular metabolites: glucose-

6-phosphate (g6p), fructose-6-phosphate (f6p),

fructose1-6bisphosphate (fdp), glyceralde-

hyde3phosphate (gap), phospho-enolpyruvate (pep),

pyruvate (pyr), 6phosphate-gluconate (6pg), glucose-

1-phosphate (g1p) as well as the cometabolites: atp,

adp, amp, nad, nadh, nadp, nadph were measured

using enzymatic methods or high performance liquid

chromatography. All the steady-state concentrations

measurements of the E.Coli experiment and their

corresponding discrete levels are summarized in

Table 1.
# Metab. Conc. Lvl # Metab. Conc. Lvl

1 glucose 0.055 0 2 g6p 3.480 2

3 f6p 0.600 0 4 fdp 0.272 0

5 gap 0.218 0 6 pep 2.670 2

7 pyr 2.670 2 8 6pg 0.808 1

9 g1p 0.653 0 10 amp 0.955 1

11 adp 0.595 0 12 atp 4.270 2

13 nadp 0.195 0 14 nadph 0.062 0

15 nad 1.470 1 16 nadh 0.100 0

Table 1.Concentrations (mM/L) of the Metabolites

and their discretized levels for steady states

Inductive Logic Programming, used for induction

or abduction (Mooney, 1997), allows to deal with dis-

crete levels (symbols) and qualitative rules (Doncescu

et al., 2007). Given the background knowledge B and

an observation E (example), the task of ILP is to find

an hypothesis H such that:

• B∧H |= E and

• B∧H is consistent

Inverse entailment (Inoue, 1992; Muggleton, 1995;

Inoue, 2004) enables us to compute H through de-

duction by using:

• B∧¬E |= ¬H and

• B 2 ¬H

We are here interested in abducing what happens

during the dynamical transition based on observations

from Table 1. Inverse entailment for abduction is

studied in (Inoue, 1992) in which abductive computa-

tion can be realized by the consequence finding pro-

cedure SOL. In this case, both E and H are sets of lit-

erals, so both ¬E and ¬H are clauses. This approach

can be further extended for inducing general hypothe-

ses in (Inoue, 2004), which is generalized from (Mug-

gleton, 1995), to allow B, E and H for full clausal

theories.

SOLAR can be used as an abductive procedure to

infer a hypothesis H in the form of a set of liter-

als. Our logical model is based on the simplified

Michaelis-Menten equation (3) which has here been

represented by three background clauses using the

conc(Compound, Level, Time) predicate. If we

make the approximations for extreme values in:

[P]T+1 =Vm

[S]T
[S]T +Km

+[P]T (3)



With only 3 levels, as we have in our discretization of

E.Coli experiments, we will get the following simple

rules:

• [S]≪ Km⇒
∆[P]
∆T = Vm

KM
⇒ [P]T+1 = [P]T reaction(S,

P, Km) ∧ conc(S, 0, T) ∧ conc(Km, 2, T) ∧

conc(P, L, T)

→ conc(P, L, T+1)

The concentration of the product will not change

between T and T+1 if the reaction is very slow.

• [S]≃ Km ⇒
∆[P]
∆T = Vm

2 ⇒ [P]T+1 = Vm/2 + [P]T
reaction(S, P, Km) ∧ conc(S, L, T) ∧

conc(Km, L, T) ∧ conc(P, L2, T)

→ conc(P, L2, T+1)

The concentration change of the product between

T and T+1 is not big enough to switch from one

level to another. This is an approximation and a

handy consequence of our discretization (using a

log-scale on real values).

• [S]≫ Km ⇒
∆[P]
∆T = Vm ⇒ [P]T+1 = Vm + [P]T

reaction(S, P, Km) ∧ conc(S, 2, T) ∧

conc(Km, 0, T) ∧ conc(P, L, T)

→ conc(P, 2, T+1)

If the reaction is very quick, it will result in trans-

forming all the substrate into product in one time

step.

If we had more than three levels, we would either

need more rules (they can be automatically generated)

or a general procedure for handling our kinetic model.

This last one is a current implementation issue related

to SOLAR. Another way to deal with more levels be-

ing currently explored consist in the automated gen-

eration of kinetics rules w.r.t. the discretization. Fur-

thermore, we made some simplifications in the path-

ways to be able to use only Michaelis-Menten kinet-

ics, another research topic is to extend our modeling

to reactions ruled by other types of kinetics.

We also added constraints about the unicity of lev-

els at a given time to reduce the number of hypotheses

while keeping consistency:

• ¬conc(S, 0, T) ∨ ¬conc(S, 1, T)

• ¬conc(S, 0, T) ∨ ¬conc(S, 2, T)

• ¬conc(S, 1, T) ∨ ¬conc(S, 2, T)

Now we set the observations for the 6 metabo-

lites (#2 - #7) from Table 1, which have been

possibly affected by the stimulus with glucose,

and the abducibles as those literals of the form

conc( , ,0). Using SOLAR, we get 98 hypothe-

ses as: H76 = conc(g6p,2,0) ∧ conc(adp,2,0)

∧ conc(fdp,0,0) ∧ conc(dhap,0,0) ∧

conc(gap,0,0) ∧ conc(glucose,2,0) ∧

conc(pg3,2,0) ∧ conc(pep,2,0) ∧ conc(atp,0,0)

∧ conc(pyr,2,0)

3 RANKING HYPOTHESES

(Ishihata et al., 2008) (Ishihata et al., 2008) pro-

posed the BDD-EM algorithm that is an implementa-

tion of the expectation maximization algorithm work-

ing on binary decision diagram, allowing it to deal

with boolean functions. (Inoue et al., 2009) (Inoue

et al., 2009) have applied the BDD-EM algorithm to

rank hypotheses obtained through abduction. To rank

our H1, . . . ,Hn hypotheses by probability, we consider

the finite set of ground atoms A that contains all the

values that can take our conc(Compound, Level,

Time) and reaction(Substrate, Product, Km).

Each of the elements of A is a boolean variable.

One of its subsets is the subset of abducibles Γ com-

posed of all the possible values of conc(Compounds,

Level, 0). With θi = P(Ai) f or Ai ∈ A , we have

to maximize the probability of the disjunction of hy-

potheses helped with the background knowledge B:

F = (H1∨·· ·∨Hn)∧ground(B) to set the good θ pa-

rameters (by the BDD-EM algorithm). F can still be

too big to be retained as a BDD, so an optimisation F ′

of its size is obtained through the use of the minimal

proofs for B and each Hi. Then, the BDD-EM algo-

rithm computes the probabilities of ground atoms in

A that maximizes the probability of F ′. Finally, the

probabilities of each hypotheses used for the ranking

are computed as the products of the probabilities of

literals appearing in each Hi.

To sort our 98 abduced hypotheses, we ran the EM

algorithm on the BDDs corresponding to our hypothe-

ses 10,000 times with random initializations. Note

that if the comparison of these probabilities with each

other is relevant, they should not be taken as abso-

lute probabilities. The 10 most probable abduced hy-

potheses are the following:

Hyp. # Probability Abduced conc. levels at T=0

H76 ≈ 1.000 g6p: 2, adp: 2, f6p: 0, fdp: 0,
dhap: 0, gap: 0, glucose: 2,
pg3: 2, pep: 2, atp: 0, pyr: 2

H41 0.822 the same as H76 except pg3: 0
H56 0.625 the same as H76 except g6p: 0
H70 0.553 the same as H76 except atp: 2
H13 0.515 the same as H56 except adp: 0
H90 0.455 the same as H70 except pg3: 0
H82 0.442 the same as H76 except dhap: 2
H43 0.369 the same as H76 except pyr: 1
H9 0.364 the same as H41 except dhap: 2
H68 0.346 g6p: 0, adp: 0, f6p: 0, fdp: 0,

dhap: 0, gap: 0, glucose: 2,
pg3: 2, pep: 2, atp: 2

Table 2. 10 most probable hypotheses

These hypotheses are corresponding to our biolog-

ical knowledge that pyruvate is a bottleneck (Peters-

Wendisch et al., 2001) and that the glucose that is to-



Figure 5: Top: Discretization of the concentration of glu-
cose in the Glycolysis Pathway of E.Coli after an initial
pulse. Bottom: Simulated evolution of the concentration
of fructose-6-phosphate during the whole experiment.

tally consumed (e.g. top plot of Fig. 5 from simula-

tion) was in high concentration at the beginning of the

experiment (pulse). It goes along with the very gen-

eral reaction of glycolysis: glucose+ 2ADP+ 2P+
2NAD+ → 2 pyruvate + 2ATP + 2(NADH,H+) +
2H2O. Also, for some metabolites, such as fructose-

6-phosphate, the levels found through abduction are

corresponding to the output of the simulation (e.g bot-

tom plot of Fig.5) with the same low level (0) before

and after the dynamic transition.

4 ENHANCING THE

KNOWLEDGE BASE

Increasing our knowledge about a system is consid-

ered as an iterative process: at first, we consider the

background knowledge combined with the observa-

tions as our knowledge base. Then we produce hy-

potheses and we need to use an algorithm to enhance

(update) our knowledge base with some of the discov-

ered hypotheses, here: abducibles. Ideally, we would

re-run the hypothesis finding process until we can-

not find anything new. This is particularly important

when working with complex chained reactions and

multiple time steps as it can enable deeper learning.

This idea of revising the knowledge base is already

found in (Ray et al., 2009) with a nonmonotonic ap-

proach, but their revision method stays in a qualitative

modeling and do not take quantitative aspects into ac-

count.

Here, it is needed to pick hypotheses that are con-

sistent with the background knowledge and with each

others. For example, if we apply a greedy algorithm

(as Algorithm 1) that picks hypothesis in decreasing

probability order such that the hypothesis add some

knowledge and that our enhanced knowledge stays

consistent, it prevents from abducing other discover-

ables than the ones contained in H76. For instance we

cannot find concentrations at T=0 for ribu5p, rib5p,

sed7p, xyl5p, because if they were abduced, the re-

sulting hypotheses would become inconsistent with

H76. Note also that the abducibles added into the

knowledge base may reduce the computational cost of

later iterations of abduction/induction, but it is com-

parable to discard some branches of exploration.

Algorithm 1 An algorithm to enhance the knowledge

base: most probables firsts

knowledge← knowledge base
sorted hypotheses← sort(hypotheses)
while length(discoverable) > 0 &&
length(sorted hypotheses) > 0 do

tmp← sorted hypotheses.pop()
if contains(tmp, discoverable) && consistent(tmp,
knowledge) then

knowledge.enhance(tmp)
discoverable.remove(tmp)

end if
end while

With the explicit functions length, pop (destructive), and:

• sort sorts the hypotheses by decreasing probability.

• contains is a function that returns statements of first ar-
gument contained in the second.

• consistent performs consistency checking of two theo-
ries and return True if they are consistent.

• enhance adds statements that are not yet present in the
considered (“self”, “this”) knowledge.

• remove deletes statements from argument present in the
considered (“self”, “this”) object (could make use of
contains).

We could have chosen to pick a combination of

hypotheses that discovers more abducibles by penal-

izing the solutions including too few different ab-

ducibles with a scoring function inspired by the BIC

(Schwarz, 1978): score = −2ln(error) + λ · f (k,n)
with k being the number of chosen hypotheses, n the

number of abducibles, f a function that indicates the

structural complexity of the combination of hypothe-

ses (decreasing with the increase of n and increasing

with the increase of k) and error the product of the



probabilities of chosen hypotheses. We assume here

that we can use their relative significations in error

by unbiasing the score with a λ parameter. So that

the goal of such an algorithm would be to discover all

abducibles while minimizing this score.

CONCLUSION

As we found that our results (for time T=0) agreed

with existing background knowledge in biology and

our ODEs-based simulator, this paper showed a

method to deal with the kinetics of metabolic path-

ways with a symbolic model (i.e. Fig 1). We ex-

plained how to discretize biology experiments into

relevant levels to be used with ILP and logic programs

in the large. Moreover, based on these discretization

of concentration into levels, we explained our pro-

cess to transform Michaelis-Menten analytical kinet-

ics equation into logic rules, the authors are not aware

of any previous work in this direction. Therefore the

originality of the work is given by the capacity of a

logical model to find the dynamic response of micro-

organism when a pulse of glucose has been made. We

think that this approach improves the accuracy of the

metabolic flux analysis. Allowing for other kinds of

kinetic modeling (two substrate and/or two products

reactions) would enable us to work with more com-

plete models.

As in (King et al., 2005), this approach tries to

study the behaviour of many ordinary differential

equations while considering a symbolic model with

its advantages whereof the statistical evaluation of hy-

potheses. The process of statistically evaluating hy-

potheses, thanks to BDD-EM (Inoue et al., 2009), is

seen as a good method to find relevant knowledge

among the large quantity of processed data. The prac-

tical validity of this full process (including discretiza-

tion) has been shown by the results of this paper while

working in a well-known theoretical framework (In-

oue, 2004; Mooney, 1997). We strongly believe that

the use of time series discretization and a kinetic mod-

eling to enable ILP to deal with ODE will yield great

results. We also prefer to consider knowledge dis-

covery as an iterative loop where one must review his

knowledge base in the light of new findings (i.e. add

“New KB” next turn in Fig. 2).

Still, our modeling can be improved, and time and

concentration discretization could be finer. Experi-

ments dealing with more than 3 levels and many time

steps will be lead on the Glycolysis and Pentose Phos-

phate pathways of another bacteria, Saccharomyces

Cerevisiae (yeast), with both real world data from

experiments and simulated data. More experiments

with enhancing and updating the knowledge base on

this dataset is necessary to get more accurate results.

A more global approach of discretizing experimental

data and using it in conjunction with automatically

generated symbolic pathways extracted from KEGG

(Kanehisa and Goto, 2000; Kanehisa et al., 2008) can

be applied regardless of the model chosen for infering

new knowledge. This approach can be generically ap-

plied to turn quantitative results from systems biology

into qualitative (symbolic) ones.
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