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A Bayesian Model for RTS Units Control applied to StarCraft

Gabriel Synnaeve (gabriel.synnaeve@gmail.com) Pierre Bessière (pierre.bessiere@imag.fr)

Abstract—In real-time strategy games (RTS), the player must
reason about high-level strategy and planning while having
effective tactics and even individual units micro-management.
Enabling an artificial agent to deal with such a task entails
breaking down the complexity of this environment. For that, we
propose to control units locally in the Bayesian sensory motor
robot fashion, with higher level orders integrated as perceptions.
As complete inference encompassing global strategy down to
individual unit needs is intractable, we embrace incompleteness
through a hierarchical model able to deal with uncertainty. We
developed and applied our approach on a StarCraft1 AI.

I. INTRODUCTION

In video games, AI is an increasingly central part of

the gameplay: foes in every single player game of course,

but also assisting squads in first person shooters (FPS),

neutral and assisting non-playing characters (NPC) in role

playing games (RPG and MMORPG), and autonomy of units

controlled by the player in real-time strategy (RTS), so that

he can focus more on strategy and less on control. Multi-

player is not going to end video games need for intelligent

behavior of NPC. Even for gameplay oriented or training

purposes, “bots” have a great future and room to improve.

RTS gameplay consist in gathering resources, building

up an economic and military power through growth and

technology, to defeat your opponent by destroying his base,

army and economy. It requires dealing with strategy, tactics,

and units management (often called micro-management) in

real-time. Strategy consist in what will be done in the long

term as well as predicting what the enemy is doing. It par-

ticularly deals with the economy/army trade-off estimation,

army composition, long-term planning. The three aggregate

indicators for strategy are aggression, production, and tech-

nology. The tactical aspect of the gameplay is dominated by

military moves: when, where (with regard to topography and

weak points), how to attack or defend. This implies dealing

with extensional (what the invisible units under “fog of war”

are doing) and intentional (what will the visible enemy units

do) uncertainty.

In this paper, we focus on micro-management, which is

the art of maximizing the effectiveness of the units i.e. the

damages given/damages received ratio. For instance: retreat

and save a wounded unit so that the enemy units would

have to chase it either boosts your firepower or weakens the

opponent’s. In the field of units control, the dimension of the

set of possible actions each micro-turn (for instance: 1/24th

of a second in StarCraft) constrains reasoning about the

state of the game to be hierarchical, with different levels of

granularity. In most RTS games, a unit can go (at least) in its

1StarCraft and its expansion StarCraft: Brood War are trademarks of
Blizzard EntertainmentTM

24 surrounding tiles (see Figure 3, combination of N, S, E, W

up to the 2nd order), stay where it is, attack, and sometimes

cast different spells: more than 26 possible actions each turn.

Even if we consider only 8 possible directions, stay, and

attack, with N units, there are 10N possible combinations

each turn (all units make a move each turn). As large battles

in StarCraft account for at least 20 units on each side,

optimal units control hides in too big a search space to be

fully explored in real-time (sub-second reaction at least) on

normal hardware, even if we take only one decision per unit

per second.

We present a distributed sensory-motor model for micro-

management, able to handle both the complexity of unit

control and the need of hierarchy (see Figure 1). This paper

focuses on the part inside the dotted line. We treat the units

independently, thus reducing the complexity (no communi-

cation between “Bayesian units”), and allows to take higher-

level orders into account along with local situation handling.

For instance: the tactical planner may decide to retreat, or go

through a choke under enemy fire, each Bayesian unit will

have the higher-level order as a sensory input, along with

topography, foes and allies positions. From its perception,

our Bayesian robot [1] can compute the distribution over its

motor control. The sensory inputs given to a “Bayesian unit”

controls its objective(s) or goal(s) and the parametrization of

his probabilistic model controls its behavior and degree of

freedom. As an illustration (only), two of the extreme cases

are P (Direction = x|Objective = x) = 1: no freedom,

P (Direction = x|Objective = y) = P (Direction = x):
no influence of the objective. The performances of our

models are evaluated against the original StarCraft AI and

a reference AI and have proved excellent in this benchmark

setup.

II. RELATED WORK

Video games AI research is yielding new approaches to

a wide range of problems, for instance in RTS: pathfinding,

multiple agents coordination, collaboration, prediction, plan-

ning and (multi-scale) reasoning under uncertainty. These

problems are particularly interesting in the RTS framework

because the solutions have to deal with many objects,

imperfect information and micro-actions while running in

real-time on desktop hardware. Technical solutions include

finite states machines (FSM) [2], genetic algorithms (GA)

[3], [4], reinforcement learning (RL) [5], [6], case-based

reasoning (CBR) [7], [8], continuous action models [9],

reactive planning [10], upper confidence bounds tree (UCT)

[11], potential fields [12], influence maps[4], and cognitive

human-inspired models [13].
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Fig. 1. Data centric overview of the StarCraft bot player, the part presented
in this paper is the one of the “BayesianUnit” (inside dotted lines).

FSM are well-known and widely used for control tasks due

to their efficiency and implementation simplicity. However,

they don’t allow for state sharing, which increases the

number of transitions to manage, and state storing, which

makes collaborative behavior hard to code [14]. Hierarchical

FSM (HFSM) solve some of this problems (state sharing)

and evolved into behavior trees (BT, hybrids HFSM) [15]

and behavior multi-queues (resumable, better for animation)

[14] that conserved high performances. However, adaptivity

of behavior by parameters learning is not the main focus of

these models, and unit control is a task that would require

a huge amount of hand tuning of the behaviors to be really

efficient. Also, these architectures does not allow reasoning

under uncertainty, which helps dealing with local enemy and

even allied units. Our agents see local enemy (and allied)

units but do not know what action they are going to do.

They could have perfect information about the allied units

intentions, but this would need extensive communication

between all the units.

Some interesting uses of RL [16] to RTS research are con-

current hierarchical (units Q-functions are combined higher

up) RL [5] to efficiently control units in a multi-effector

system fashion, and large-scale strategy games [6]. In real

game setups, RL models have to deal with the fact that

the state spaces to explore is enormous, so learning will

be slow or shallow. It also requires the structure of the

game to be described in a partial program (or often a partial

Markov decision process) and a shape function [5]. RL is

a transversal technique to learn parameters of an underlying

model, and this underlying behavioral model matters. The

same problems arise with evolutionary learning techniques

[3].

Case-based reasoning (CBR) allows for learning against

dynamic opponents [7] and has been applied successfully

to strategic and tactical planning down to execution through

behavior reasoning rules [17]. CBR limitations (as well as

RL) include the necessary approximation of the world and

the difficulty to work with multi-scale goals and plans. These

problems led respectively to continuous action models [9], an

integrated RL/CBR algorithm using continuous models, and

reactive planning [10], a decompositional planning similar to

hierarchical task networks in that sub-plans can be changed

at different granularity levels. Reactive planning allows for

multi-scale (hierarchical) goals/actions integration and has

been reported working on StarCraft, the main drawback is

that it does not address uncertainty and so can not simply deal

with hidden information (both extensional and intentional).

Fully integrated FSM, BT, RL and CBR models all need

vertical integration of goals, which is not very flexible

(except in reactive planning).

Monte-Carlo planning [18] and upper Upper confidence

bounds tree (UCT) planning (coming from Go AI) [11]

samples through the (rigorously intractable) plans space by

incrementally building the actions tree through Monte-Carlo

sampling. UCT for tactical assault planning [11] in RTS

does not require to encode human knowledge (by opposition

to Monte-Carlo planning) but it is very costly, both in

learning and running time, to go down to units control on

RTS problems. Our model subsumes potential fields [12],

which are powerful and used in new generation RTS AI to

handle threat, as some of our Bayesian unit sensory inputs

are potential damages and tactical goodness (height for the

moment) of positions. Our model provides flocking and local

(subjective to the unit) influences on the pathfinding as in [4].

In their paper, Preuss et al. are driven by the same quest for a

more natural and efficient behavior for units in RTS. Finally,

there are some cognitive approaches to RTS AI [13], and we

particularly agree with Wintermute et al. analysis of RTS

AI problems. Our model has some similarities: separate and

different agents for different levels of abstraction/reasoning

and also a perception-action approach (see Figure 1).

III. BAYESIAN PROGRAMMING

We introduce Bayesian programs (BP), a formalism that

can be used to describe entirely any kind of Bayesian model,

subsuming Bayesian networks and Bayesian maps, equiva-

lent to probabilistic factor graphs [19]. There are mainly two

parts in a BP, the description of how to compute the joint

distribution, and the question(s) that it will be asked.

The description consists in explaining the relevant vari-

ables {X1, . . . , Xn} and explain their dependencies by

decomposing the joint distribution P (X1 . . . Xn|δ, π) with

existing preliminary knowledge π and data δ. The forms

of each term of the product specify how to compute their

distributions: either parametric forms (laws or probability

tables, with free parameters that can be learned from data

δ) or recursive questions to other Bayesian programs.

Answering a question is computing the distribution

P (Searched|Known), with Searched and Known two

disjoint subsets of the variables. P (Searched|Known)

=

∑

Free P (Searched, Free, Known)

P (Known)

=
1

Z
×

∑

Free

P (Searched, Free, Known)



General Bayesian inference is practically intractable, but

conditional independence hypotheses and constraints (stated

in the description) often simplify the model. Also, there are

different well-known approximation techniques, for instance

Monte Carlo methods [20] and variational Bayes [21]. In this

paper, we will use a specific fusion model (inverse program-

ming) that allows for complete inference to be computed in

real-time.

BP
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For the use of Bayesian programming in sensory-motor

systems, see [22]. For its use in cognitive modeling, see

[23]. For its first use in video games (first person shooter

gameplay, Unreal Tournament), see [24].

IV. A MODEL FOR UNIT CONTROL

A. A Simple Top-Down Solution

How do we set the reward or value function for micro-

management: is staying alive better than killing an enemy

unit? Even if we could compute to the end of the fight and/or

apply the same approach that we have for board games, how

do we infer the best “set of next moves” for the enemy when

the space of possible moves is so huge and the number of

possible reasoning methods (sacrifices and influences of other

parts of the game for instance) is bigger than for Chess? As

complete search through the min/max tree, if there exists

such thing in a RTS, is intractable, we propose a greedy

target selection heuristic leading the movements of units

to benchmark our Bayesian model against. In this solution,

each unit can be viewed as an effector, part of a multi-body

(multi-effector) agent. Let U be the set of the m units to

control, A = D ∪ S be the set of possible actions (all n

possible Directions, standing ground included, and Skills,

firing included), and E the set of enemies. As |U| = m, we

have |A|m possible combinations each turn, and the enemy

has |A||E|.

The idea behind the heuristic used for target selection is

that units need to focus fire (less incoming damages if enemy

units die faster) on units that do the most damages, have

the less hit points, and take the most damages from their

attack type. This can be achieved by using a data structure,

shared by all our units engaged in the battle, that stores

the damages corresponding to future allied attacks for each

enemy units. Whenever a unit will fire on a enemy unit, it

registers there the future damages on the enemy unit. We

also need a set of priority targets for each of our unit types

that can be drawn from expert knowledge or learned from

reinforcement learning battling all unit types. A unit select its

target among the most focus fired units with positive future

hit point (current hit points minus registered damages), while

prioritizing units from the priority set of its type. The units

group can also impose its own priorities on enemy units (for

instance to achieve a goal).

The only degenerated case would be if all our units register

their targets at once (and all the enemy units have the same

priority) and it never happens (plus, units fire rates have a

randomness factor). Indeed, our Bayesian model uses this

target selection heuristic, but that is all both models have

in common. From there, units are controlled with a very

simple FSM: fire when possible (weapon reloaded and target

in range), move towards target when out of range.

B. Our Model: a Bayesian Bottom-Up Solution

We use Bayesian programming as an alternative to logic,

transforming incompleteness of knowledge about the world

into uncertainty. In the case of units management, we have

mainly intensional uncertainty. Instead of asking questions

like: where are other units going to be next frame? 10 frames

later? Our model is based on rough estimations that are not

taken as ground facts. Knowing the answer to these questions

would require for our own (allied) units to communicate a

lot and to stick to their plan (which does not allow for quick

reaction nor adaptation). For enemy units, it would require

exploring the tree of possible plans (intractable) whose we

can only draw samples from [11]. Even so, taking enemy

minimax (to which depth?) moves for facts would assume

that the enemy is also playing minimax (to the same depth)

following exactly the same valuation rules as ours. Clearly,

RTS micro-management is more inclined to reactive planning

than board games reasoning. That does not exclude having

higher level (strategic and tactic) goals. In our model, they

are fed to the unit as sensory inputs, that will have an

influence on its behavior depending on the situation/state the

unit is in.

FireFight Reload

Flee

Move

Scout

Move

Fig. 2. Bayesian unit modal FSM, detail on the fight mode. Stripped modes
are Bayesian.

We propose to model units as sensory-motor robots de-

scribed within the Bayesian robot programming framework

[1]. A Bayesian model uses and reasons on distributions

instead of predicates, which deals directly with uncertainty.

Our Bayesian units are simple hierarchical finite states

machines (states can be seen as modes) that can scout,

fight and move (see Figure 2). Each unit type has a

reload rate and attack duration, so their fight mode will be

like:

if canFire ∧ t = selectTarget() ∧ inRange(t) then

attack(t)
else if needF lee() then



flee()
else

fightMove()
end if

The unit needs to determine where to go when fleeing and

moving during a fight, optimally with regard to its target

and the attacking enemies, while avoiding collisions (which

results in blocked units and time lost) as much as possible.

flee() and fightMove() call the Bayesian model (expressed

in Bayesian programming, see section 3.) that follows:

1) Variables:

• Diri∈J0...nK ∈ {True, False}: at least one variable for

each atomic direction the unit can go to. P (Diri =
True) = 1 (also noted P (Diri) = 1) means that the

unit will certainly go in direction i (⇔ D[i]). For ex-

ample, in StarCraft we use the 24 atomic directions (48

for the smallest and fast units as we use a proportional

scale) plus the current unit position (stay where it is) as

shown in Figure 3. We could use one variable with 24

directions, the approach would be the same.

• Obji∈J0...nK ∈ {True, False}: direction of the objec-

tive (given by a higher rank model). P (Obji) = 1 means

that the direction i is totally in the direction of the

objective (move, retreat or offensive position computed

by the strategic or tactical manager). In our StarCraft AI,

we use the scalar product between the direction i and

the objective vector (output of the pathfinding) with a

minimum value of 0.01 so that the probability to go in a

given direction is proportional to its alignment with the

objective. Note that some situation have a null objective

(the unit is free to move).

• Dmgi∈J0...nK ∈ [DamageV alues] for instance, with

ubhp standing as unit base hit points, Dmgi ∈
{

0, J0 . . . ubhp

2 K, Kubhp

2 . . . ubhpJ, Jubhp · · ·+ infJ
}

.

This will act as subjective potential fields [12] in which

the (repulsive) influence of the potential damages map

depends on the unit type. In our StarCraft AI, this is

directly drawn from two constantly updated potential

damage maps (air, ground). For instance, it allows our

scouting units to avoid potential attacks as much as

possible.

• Ai∈J0...nK ∈ {None, Small, Big}: occupation of the

direction i by a allied unit. The model can effectively

use many values (other than “occupied/free”) because

directions may be multi-scale (for instance we indexed

the scale on the size of the unit) and, in the end,

small and/or fast units have a much smaller footprint,

collision wise, than big and/or slow. In our AI, instead

of direct positions of allied units, we used their (linear)

interpolation
|unit,D[i]|
unit speed

frames later (to avoid squeez-

ing/expansion).

• Ei∈J0...nK ∈ {None, Small, Big}: occupation of the

direction i by a enemy unit. As above.

• Occi∈J0...nK ∈ {None,Building, StaticTerrain}
(this could have been 2 variables or we could omit static

terrain but we stay as general as possible): repulsive

effect of buildings and terrain (cliffs, water, walls).

There is basically one set of (sensory) variables per effect

in addition to the Diri values. In general, if one decides to

cover a lot of space with directions (i.e. have more than just

atomic directions, i.e. use this model for planning), one needs

to consider directions whose paths collide with each others.

For instance, a D[i] far from the unit can force the unit to

go through a wall of allied units (Aj = Big) or potential

damages.

2) Decomposition: The joint distribution (JD) over these

variables is a specific kind of fusion called inverse program-

ming [24]. The sensory variables are considered independent

knowing the actions, contrary to standard naive Bayesian

fusion, in which the sensory variables are considered inde-

pendent knowing the phenomenon.

P (Dir1:n, Obj1:n, Dmg1:n, A1:n, E1:n, Occ1:n)

= JD =

n
∏

i=1

P (Diri)

P (Obji|Diri)

P (Dmgi|Diri)

P (Ai|Diri)

P (Ei|Diri)

P (Occi|Diri)

We assume that the i directions are independent depending

on the action because dependency is already encoded in (all)

sensory inputs. We do not have P (Obji) = 1, P (Objj 6=i) =
0 but a “continuous” function on i for instance.

3) Forms:

• P (Diri) prior on directions, unknown, so unspeci-

fied/uniform over all i. P (Diri) = 0.5.

• P (Obji|Diri) for instance, “probability that this di-

rection is the objective knowing that we go there”

P (Obji = T |Diri = T ) is very high (close to

one) when rushing towards an objective, whereas it

is far less important when fleeing. Probability table:

P (Obji|Diri) = table[obj, dir]
• P (Dmgi|Diri) probability of damages values in some

direction knowing this is the unit direction. P (Dmgi ∈
[ubhp,+ inf[|Diri = T ) has to be small in many cases.

Probability table.

• P (Ai|Diri) probability table that there is an ally in

some direction knowing this is the unit direction. Used

to avoid collisions.

• P (Ei|Diri) probability table, same as above with en-

emy units, different parameters as we may want to be

stucking enemy units, or avoid them.

• P (Occi|Diri) probability table that there is a blocking

building or terrain element is some direction, knowing

this is the unit direction, P (Occi = Static|Diri =
T ) will be very low (0), whereas P (Occi =
Building|Diri = T ) will also be very low but triggers

building attack (and destruction) when there are no other

issues.



4) Additional variables: There are additional variables for

specific modes/behaviors:

• Prioi∈J0...nK ∈ {True, False}: combined effect of

the priority targets that attract the unit while in

fight (fightMove()). The JD is modified as JD ×
Πn

i=1P (Prioi|Diri), where P (Prioi|Diri) is a prob-

ability table, that corresponds to the attraction of a

priority (maybe out of range) target in this direction.

This is efficient to be able to target casters or long range

units for instance.

• Atti∈J0...nK,j∈J0...mK: allied units attractions and re-

pulsions to produce a flocking behavior while mov-

ing. Different than Ai, the JD would become JD ×
Πn

i=1Π
m
j=1P (Atti,j |Diri), where P (Atti,j |Diri) is a

probability table for flocking: a too close unit j will

repel the Bayesian unit (P (Atti,j |Diri) < mean)

whereas another unit j will attract depending on its

distance (and possibly, leadership).

• Dirt−1
i∈J0...nK ∈ {True, False}: the previous selected

direction, Dirt−1
i = T iff the unit went to the direction

i, else False for a steering (smooth) behavior. The

JD would then be JD × Πn
i=1P (Dirt−1

i |Diri), with

P (Dirt−1
i |Diri) the influence of the last direction,

either a table or a parametrized Bell shape over all the

i.

• One can have a distribution over a n valued variable

Dir ∈ {D}. (Each set of boolean random variable can

be seen as a |D| valued variable.) The JD would then

be JD × P (Dir).Πn
i=1P (Diri|Dir).

5) Identification: Parameters and probability tables can be

learned through reinforcement learning [16], [25] by setting

up different and pertinent scenarii and search for the set of

parameters that maximizes a reward function. In our current

implementation, the parameters and probability table values

are mainly hand specified.
6) Question: When in fightMove(), the unit asks:

P (Dir1:n|Obj1:n, Dmg1:n, A1:n, E1:n, Occ1:n, P rio1:n)

When in flee() or while moving or scouting (different

balance/parameters), the unit asks:

P (Dir1:n|Obj1:n, Dmg1:n, A1:n, E1:n, Occ1:n)

When flocking, the unit asks:

P (Dir1:n|Obj1:n, Dmg1:n, A1:n, E1:n, Occ1:n, Att1:n,1:m)

From there, the unit can either go in the most probable Diri
or sample through them. We describe the effect of this choice

in the next section.

V. RESULTS: BROODWARBOTQ

A. StarCraft

StarCraft is a canonical RTS game, as Chess is to board

games, because it had been around since 1998, it sold 10

millions licenses and was the best competitive RTS. There are

numerous international competitions (World Cyber Games,

Electronic Sports World Cup, BlizzCon, IeSF Invitational,

Fig. 3. Screen capture of a fight in which our bot controls the bottom-left
units in StarCraft. The 24 possible directions are represented for a unit with
white and grey arrows.

OSL, MSL). In South Korea, 4.5 millions of licenses have

been sold and the average salary of a pro-gamer was up to 4

times the average salary. StarCraft helped define a particular

genre of RTS gameplay, based as much on the strategy than

the tactics. As a result of that, StarCraft human players are

among the best human players, there are a lot of replays

available (enabling data-mining and machine learning), and

there are tournaments between AIs.

StarCraft micro-management involves ground, flying,

ranged, contact, static, moving (at different speeds), small

and big units (see Figure 3). Units may also have splash

damage, spells, and different types of damages whose amount

will depend on the target size. It yields a rich states space and

needs control to be very fast: human progamers can perform

up to 400 “actions per minute” in intense fights. The problem

for them is to know which actions are effective and the most

rewarding to spend their actions efficiently. A robot does not

have such physical limitations, but yet, badly chosen actions

have negative influence on the issue of fights.

B. Our Robot Architecture

Our full robot has separate agents types for separate

tasks (strategy, tactics, economy, army, as well as enemy

estimations and predictions): the part that interests us here,

the unit control, is managed by Bayesian units directly.

They take their orders from tactical goals indirectly by

units groups (see Figure 1), which ares the military goal-

wise atomic entity regrouping several Bayesian units, tuning

their modes (scout, fight, move) and giving them Obji as

sensory inputs. The Bayesian unit is the smallest entity and

controls individual units as sensory-motor robots according

to the model described above. The only inter Bayesian units

communication about attack targets is handled by a structure

shared at the units group level.



C. Experiments

Our implementation2 (BSD licensed) uses BWAPI3 to get

information from and to control StarCraft. We produced three

different AI to run experiments with, along with the original

AI (OAI) from StarCraft:

• Heuristic only AI (HOAI), section 4.1: this AI shares

the target selection heuristic with our other AI and will

be used as a dummy reference (in addition to StarCraft

original AI) to avoid bias due to the target selection

heuristic.

• Bayesian AI picking best (BAIPB): this AI follows the

model of section 4.2 and selects the most probable Diri
as movement.

• Bayesian AI sampling (BAIS): this AI follows the

model of section 4.2 and samples through Diri accord-

ing to their probability (⇔ according to Dir distribu-

tion).

The experiments consisted in having the AIs fight against

each others on a micro-management scenario with mirror

matches of 12 and 36 ranged ground units (Dragoons). In

the 12 units setup, the unit movements during the battle

is easier (less collision probability) than in the 36 units

setup. We instantiate only the army manager (no economy

in this special maps), one units group manager and as many

Bayesian units as there are units provided to us in the

scenario. The results are presented in Figure 3.

OAI HOAI BAIPB BAIS

OAI (50%) 64% 9% 3%

HOAI 59% (50%) 11% 6%

BAIPB 93% 97% (50%) 3%

BAIS 93% 95% 76% (50%)

Fig. 4. Win ratios over at least 200 battles of OAI, HOAI, BAIPB and
BAIS in two mirror setups: 12 and 36 ranged units. Read line vs column:
for instance HOAI won 59% of its matches against OAI in the 12 units
setup. Note: The average amount of units left at the end of battles is grossly
proportional to the percentage of wins.

These results show that our heuristic (HAOI) is compara-

ble to the original AI (OAI), perhaps a little better, but in-

duces more collisions. For Bayesian units however, the “pick

best” (BAIPB) direction policy is very effective when battling

with few units (and few movements because of static enemy

units) as proved against OAI and HOAI, but its effectiveness

decreases when the number of units increases: all units are

competing for the best directions (to flee() or fightMove()
in) and they collide. The sampling policy (BAIS) has way

better results in large armies, and significantly better results

in the 12 units vs BAIPB, supposedly because BAIPB moves

a lot (to chase wounded units) and collide with BAIS units.

Sampling entails that the competition for the best directions

is distributed among all the “bests to good” wells of well-

being, from the units point of view. We also ran tests in

2BROODWARBOTQ, code and releases: http://github.com/SnippyHolloW/
BroodwarBotQ

3BWAPI: http://code.google.com/p/bwapi/

setups with flying units in which BAIPB fared as good as

BAIS (no collision for flying units) and way better than OAI.

D. Uses and extensions

This model is currently at the core of the micro-

management of our StarCraft bot. We use it mainly with

four modes corresponding to four behaviors (four sets of

parameters):

• Scout: in this mode, the (often quick and low hit points)

unit avoids danger by modifying locally its pathfinding-

based, objectives oriented route to avoid damages ac-

cording to P (Dmgi|Diri).
• In position: in this mode, the unit try to keep its ground

but can be “pushed” by other units wanting to pass

through with P (Ai|Diri). This is useful at a tactical

level to do a wall of units that our units can traverse but

the opponent’s cannot. Basically, there is an attraction

to the position of the unit and a stronger repulsion of

the interpolation of movements of allied units.

• Flock: in this mode, our unit moves influenced by

other allied units through P (Atti∈J0...nK,j∈J0...mK) that

repulse or attract it depending on its distance to the

interpolation of the allied unit j. It allows our units to

move more efficiently by not splitting around obstacles

and colliding less.

• Fight: in this mode, our unit will follow the damages

gradient to smart positions, for instance close to tanks

(they cannot fire too close to their position) or far

from too much contact units if our unit can attack with

range. Our unit moves are also influenced by its priority

targets, its goal (go through a choke, flee, etc.) and other

units.

This model can be used to specify the behavior of units

in RTS games. Instead of relying on a “units push each

other” physics model for handling dynamic collision of units,

this model makes the units react themselves to collision in

a more realistic fashion (a marine cannot push a tank, the

tank will move). The realism of units movements can also

be augmented with a simple-to-set P (Dirt−1|Dirt) steering

parameter, although we do not use it in the competitive setup.

If we learn the parameters of such a model to mimic

existing data (data mining) or to maximize a reward function

(reinforcement learning), we can interpret the parameters that

will be obtained more easily than parameters of an artificial

neural network for instance. Parameters learned in one setup

can be reused in another if they are understood.

Finally, we claim that specifying or changing the behavior

of this model is much easier than changing the behavior

generated by a FSM, and game developers can have a fine

control over it. Dynamic switches of behavior (as we do

between the scout/flock/inposition/fight modes) are just one

probability tables switch away. In fact, probability tables for

each sensory input (or group of sensory inputs) can be linked

to sliders in a “behavior editor” and game makers can specify

the behavior of their units by specifying the degree of effect

of each perception (sensory input) on the behavior of the unit



and see the effect in real time. This is not restricted to RTS

and could be applied to RPG and even FPS gameplays.

VI. CONCLUSION

In this paper, we have presented a Bayesian model for

controlling RTS units locally. We have implemented this

model in StarCraft, and it outperforms the original AI as

well as other bots (we had a tie with the winner of AIIDE

2010 StarCraft competition, winning with ranged units and

losing with contact units). Our approach does not require

vertical integration of higher level goals, as opposed to CBR

and planning [17], [10], it can have a completely different

model above feeding sensory inputs like Obji. It scales well

with the number of units to control thanks to the absence

of communication at the unit level, and is more robust and

maintainable than a FSM [2].

Future work will consist in using reinforcement learning

to learn the probability tables [16]. It should enhance the

performance of our Bayesian units in specific setups. It

implies making up challenging scenarii and dealing with

huge sampling spaces [25]. We could use multi-modality [23]

and inverse programming [24] to get rid of the remaining

(small: fire-retreat-move) FSM. Finally, there are yet many

collision cases that remain unsolved (particularly visible with

contact units like Zealots and Zerglings), so we could also

try:

• adding local priority rules to solve collisions (for in-

stance through an asymmetrical P (Dirt−1
i |Diri)) that

would entails units crossing lines with a preferred side

(some kind of “social rule”),

• use a units group level supervision using Bayesian units’

distributions over Dir as preferences or constraints (for

a solver),

• use P (Dir) as an input to another Bayesian model at

the units group level of reasoning.
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[17] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Case-based
planning and execution for real-time strategy games,” in ICCBR ’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 164–178.

[18] M. Chung, M. Buro, and J. Schaeffer, “Monte carlo planning in
rts games,” in IEEE Symposium on Computational Intelligence and

Games (CIG), 2005.
[19] J. Diard, P. Bessière, and E. Mazer, “A survey of probabilistic

models using the bayesian programming methodology as a unifying
framework,” in Conference on Computational Intelligence, Robotics

and Autonomous Systems, CIRAS, 2003.
[20] D. J. C. MacKay, Information Theory, Inference, and Learning Algo-

rithms. Cambridge University Press, 2003.
[21] M. J. Beal, “Variational algorithms for approximate bayesian infer-

ence,” PhD. Thesis, 2003.
[22] P. Bessière, C. Laugier, and R. Siegwart, Probabilistic Reasoning

and Decision Making in Sensory-Motor Systems, 1st ed. Springer
Publishing Company, Incorporated, 2008.

[23] F. Colas, J. Diard, and P. Bessire, “Common bayesian models for
common cognitive issues,” Acta Biotheoretica, vol. 58, pp. 191–216,
2010.

[24] R. Le Hy, A. Arrigoni, P. Bessiere, and O. Lebeltel, “Teaching bayesian
behaviours to video game characters,” Robotics and Autonomous

Systems, vol. 47, pp. 177–185, 2004.
[25] J. Asmuth, L. Li, M. Littman, A. Nouri, and D. Wingate, “A bayesian

sampling approach to exploration in reinforcement learning,” in Un-

certainty in Artificial Intelligence, UAI. AUAI Press, 2009, pp. 19–26.


