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A REGRESSION MONTE-CARLO METHOD FOR BACKWARD
DOUBLY STOCHASTIC DIFFERENTIAL EQUATIONS

OMAR ABOURA

ABSTRACT. This paper extends the idea of E.Gobet, J.P.Lemor and X.Warin from the
setting of Backward Stochastic Differential Equations to that of Backward Doubly Sto-
chastic Differential equations. We propose some numerical approximation scheme of
these equations introduced by E.Pardoux and S.Peng.

1. INTRODUCTION

Since the pioneering work of E. Pardoux and S. Peng [11], backward stochastic dif-
ferential equations (BSDEs) have been intensively studied during the two last decades.
Indeed, this notion has been a very useful tool to study problems in many areas, such as
mathematical finance, stochastic control, partial differential equations; see e.g. [9] where
many applications are described. Discretization schemes for BSDEs have been studied by
several authors. The first papers on this topic are that of V.Bally [4] and D.Chevance
[6]. In his thesis, J.Zhang made an interesting contribution which was the starting point
of intense study among, which the works of B. Bouchard and N.Touzi [5], E.Gobet, J.P.
Lemor and X. Warin|[7],... The notion of BSDE has been generalized by E. Pardoux and
S. Peng [12] to that of Backward Doubly Stochastic Differential Equation (BDSDE) as
follows. Let (2, F,IP) be a probability space, T" denote some fixed terminal time which
will be used throughout the paper, (W;)<;<p and (By) <<y be two independent standard
Brownian motions defined on (2, F,P) and with values in R. On this space we will deal
with the following families of o-algebras:

ft;:fg};\/ffT\/N, ﬁttzfé/}i\/f(fT\/N, %t:f(%’\/ffT\/Na (11)

where .FET =0 (B, — Bt <r<T), .7-"8/}2 =0 (W,;0 <r <t)and N denotes the class of

P null sets. We remark that (.7?,5) is a filtration, (#;) is a decreasing family of o-albegras,
while (F) is neither increasing nor decreasing. Given an initial condition € R, let (X;)
be the diffusion process defined by

Xt:x+/tb(Xs)ds+/t0(Xs)dWs. (1.2)
0 0

Let &£ € L?(Q) be an R-valued, Fr-measurable random variable, f and g be regular enough
coefficients; consider the BDSDE defined as follows:

T T T
Y, — §+/ f(s,Xs,Ys,Zs)dH/ g(s,Xs,Ys,Zs)dE—/ Zaw,  (13)
t t t

In this equation, dW is the forward stochastic integral and d% is the backward stochastic
integral (we send the reader to [10] for more details on backward integration). A solution
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2 OMAR ABOURA

to (1.3) is a pair of real-valued process (Y3, Z;), such that Y; and Z; are F;-measurable for
every t € [0,7T], such that (1.3) is satisfied and

T

IE( sup |Ys|2) +E/ |Z,|2ds < +oc. (1.4)
0<s<T 0

In [12] Pardoux and Peng have proved that under some Lipschitz property on f and g

which will be stated later, (1.3) has a unique solution (Y, Z). They also proved that

Y; =u <t)Xta <ZBS) > ; Zt =v <t)Xta <ZBS> ) )
t<s<T t<s<T

for some Borel functions u and v.

The time discretization of BDSDEs has been addressed in [2] when the coefficient g does
not depend on Z; see also [1] in the more general setting for g which may also depend on Z
as in [12]. Both papers follow Zhang’s approach and provide a theoretical approximation
only using a constant time mesh.

In order to obtain a more tractable discretization which could be implemented, a natural
idea is to see whether the methods introduced in [7] can be extended from the framework
of BSDEs to that more involved of BDSDESs ; this is the aim of this paper.

We use three consecutive steps, and each time we give a precise estimate of the corre-
sponding error. Thus, we start with a time discretization (Y}iv , Zt]Z ) with a constant time
mesh T'/N. We can prove that

— —
Y'tiV:uN <tk, tk’ABN 1y ,ABk>, ZtJZ (tk,th,ABNfl,...,ABk),

%
where for k =1,...,N — 1, ), = KT/N and ABy = By, ,, — By, . Furthermore, if either
f =0 or if the scheme is not implicit as in [1] then we have the more precise description:
N—-1
— — —
VN = ul (b, X)) + Z u)' (1, X ABy-1,... ABy11) AB;,

N-1
b e
ZtJZ tk’ +Zv <tk;a tkaABN 1. ’ABJHLI) ABja
J_

— —
with the convention that if j +1 > N — 1, <ABN,1,...,AB]'+1> = (). The main

time discretization result in this direction is Theorem 3.4. In order to have a numeri-
cal scheme, we use this decomposition and the ideas of E.Gobet, J.P.Lemor and X.Warin
[7]. Thus we introduce the following hypercubes, that is approximate random variables

o s o
uév <tk, Xt]Z, ABN_1,..., ABJ-H) A B; by their orthogonal projection on some finite vec-

tor space generated by some bases (u;) and (v;) defined below. For k =1,..., N we have

YNNZE Nuiy (X)) iy (X7)

_ A
Yy E(YN (68 iy (BB) iy (BBya) ﬁ)

J=K ININ 1,005
— AB
Uj (Xg:) Vin_1 <ABN,1) ...’Uik“ (ABJJrl) \/E

We use a linear regression operator of the approximate solution. Thus, we at first use
an orthogonal projection on a finite dimensional space Pi. This space consists in linear
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combinations of an orthonormal family of properly renormalized indicator functions of
disjoint intervals composed either with the diffusion X or with increments of the Brownian
motion B. As in [7], in order not to introduce error terms worse that those due to the
time discretization, we furtherore have to use a Picard iteration scheme. The error due to
this regression operator is estimated in Theorem 4.1.

Then the coefficients (e, 8) of the decomposition of the projection of (Y, Z]) are
shown to solve a regression minimization problem and are expressed in terms of expected
values. Note that a general regression approach has also been used by Bouchard and
Touzi for BSDEs in [5]. Finally, the last step consists in replacing the minimization
problem for the pair («, ) in terms of expectations by similar expressions described in
terms of an average over a sample of size M of the Brownian motions W and B. Then,
a proper localization is needed to get an L? bound of the last error term. This requires
another Picard iteration and the error term due to this Monte Carlo method is described
in Theorem 5.8.

A motivation to study BSDEs is that these equations are widely used in financial models,
so that having an efficient and fast numerical methods is important. As noted in [12],
BDSDEs are connected with stochastic partial differential equations and the discretization
of (2.2) is motivated by its link with the following SPDE:

T
u(t,z) = ¢(x) —i—/t (Eu(s,x) +f(s,x,u(s,m),Vu(s,x)a(m)))ds
T
= [ g u(s.2), Vuls.a)o(w) dB. (1.5

Discretizations of SPDEs are mainly based on PDE techniques, such as finite differences
or finite elements methods. Another approach for special equations is given by particle
systems. We believe that this paper gives a third way to deal with this problem. As usual,
the presence of the gradient in the diffusion coefficient is the most difficult part to handle
when dealing with SPDEs. Only few results are obtained in the classical discretization
framework when PDE methods are extended to the stochastic case.

Despite the fact that references [2] and [3] deal with a problem similar to that we
address in section 3, we have kept the results and proofs of this section. Indeed, on
one hand we study here an implicit scheme as in [7] and wanted the paper to be self
contained. Furthermore, because of measurability properties of Y;y and Y, the statements
and proofs of Theorem 3.6 in [2] and Theorem 4.6 in [3] are unclear and there is a gap in
the corresponding proofs because of similar measurability issues for (Y;) and (Y;7).

The paper is organized as follows. Section 2 gives the main notations concerning the
time discretization and the function basis. Section 3 describes the time discretization and
results similar to those in [2] are proved in a more general framwork. The fourth section
describes the projection error. Finally section 5 studies the regression technique and the
corresponding Monte Carlo method. Note that the presence of increments of the Brownian
motion B, which drives the backward stochastic integrals, requires some new arguments
such as Lemma 5.16 which is a key ingredient of the last error estimates. As usual C
denotes a constant which can change from line to line.

2. NOTATIONS

Let (W, t > 0) and (B,t > 0) be two mutually independent standard Brownian mo-
tions. For each x € R, let (X,Y;, Zy,t € [0,T]) denote the solution of the following
Backward Doubly Stochastic Differential Equation (BDSDE) introduced by E.Pardoux
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and S.Peng in [12]:
t t
X, =z +/ b (X ds +/ o (X,) dW,, 2.1)
0 0

¥ =0 <XT>+/ff(xs,ys,zs)ds+/tTg<Xs,Ys>d§s—/thdes. (2.2)

Assumption. We suppose that the coefficients f and g satisfy the following:

® (X7) eL?,
2
|flxoy,2) = f@' 2 <Ly (lz — 2P+ ly =y + |2 = 2']), (2.3)
2
lg(@.y) — g2’ y)|” <Lg (lo — 2P + |y — /?) , (2.4)

Note that (2.3) and (2.4) yield that f and g have linear growth in their arguments. We use
two approximations. We at first discretize in time with a constant time mesh h = T'/N,
which yields the processes (XN, YN, ZN). We then approximate the pair (YN, ZN) by
some kind of Picard iteration scheme with I steps (YN’i’I, ZN’I) fori=1,...,1.

In order to be as clear as possible, we introduce below all the definitions used in the
paper. Most of them are same as in [7].

(NO) For 0 <t <t <T, set F; =F VFE and
FV=c(Wg0<s<t)VN, Fly=0(Bs—Byit<s<t)VN.

Ej is the conditionnal expectation with respect to Fy, .

(N1) N is the number of steps of the time discretization, the integer I corresponds to the
number of steps of the Picard iteration, h := T /N 1is the size of the time mesh and
fork=0,1,...,N we setty := kh and ZBk =By, — By, AW =Wy —W;
Let m = tg,t1,...,txy =T denote the corresponding subdivision on [0,T].

(N2) The function basis for thk\f is defined as follows: let aj < bp be two reals and
(Xik)izl___L denote a partition of [ay,b|; fori=1,... L set

ke

i (X7)) =Law (X)) [\ P (X € XF) (2.5)

(N3) The function basis for N ~ N(0,h) is defined as follows: let a < b two reals and
(B;)i=1..L. denote a partition of [a,b]. Fori=1,...,L set

U; (N) ::1[51. (N) /\/P(N S Bz) (2.6)

(N4) For firedk =1,...,N, let py denote the following vector whose components belong
to L? (Q). It is defined blockwise as follows:

- .
ABn_1 — ABN_»
(uiN (thkv))m, <uiN (X{Z) 7\/5 )iN, <uz‘N (Xg:) Vin_y <ABN71> 7\/5 )iN - )

INVIN—15eeoybh41

where iy, ... igt1 € {1,...,L}. Note that py is Fy, -measurable and Epyp; = Id
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3. APPROXIMATION RESULT: STEP 1

We first consider a time discretization of equations (2.1) and (2.2). The forward equation
(2.1) is approximated using the Euler scheme: th(\)f =z and for k=0,..., N — 1,

XN

tet+1

= XY+ hb(X]) + o (X ) AWy 1. (3.1)
The following result is well know: (see e.g. [8])

Theorem 3.1. There exists a constant C such that for every N

max sup E ‘Xr — ngvil
k=1,...N ¢, <r<t;

2 N2
< Ch, max E‘Xt‘ =(C < 0.
k=0,...,N k
The following time regularity is proved in [2] (see also Theorem 2.3 in [1]), it extends
the original result of Zhang [13].
Lemma 3.2. There exists a constant C' such that for every integer N > 1, s,t € [0,T],
173
ZE/ <|Zr ~ Zy |+ 120 - Zt,f) dr <Ch, E|Y;~Y,><Clt—s]|.
k=1 “Ytk—1

The backward equation (2.2) is approximated by backward induction as follows:

v =oX]),  z) =0, (3.2)
1 14
2 =By (YN, AWiin ) + T ABE (9 (X0, YY) AWis) . (33)
<_
Y;fiv ::Ekyéi\il +hf (Xt]Z’Kfiv’ Zlgkv) + AByErg (Xlgkvﬂ’y;fivﬂ) ) (3-4)

Note that as in [2], [3] and [7] we have introduced an implicit scheme, thus different from
that in [1]. However, it differs from that in [2] and [3] since the conditional expectation
we use is taken with respect to F3, which is different from o (Xt];[ < k:) Vo (Btj7 j < k:)
used in [3].

Proposition 3.3 (Existence of the scheme). For sufficiently large N, the above scheme
has a unique solution. Moreover, for all k =0,..., N, we have Y;iv, Zt]Z e L? (Ft,)-

The following theorem is the main result of this section.

Theorem 3.4. There exists a constant C' > 0 such that for h small enough

N—-1 g1
2 2 2
Jmax E Y, — Y| +k§0/tk E|Z, — ZY|"dr < Ch+ CE|¢ (X)) — ¢ (X7)]

The rest of this section is devoted to the proof of this theorem; it requires several steps.
First of all, we define a process (Y™, Z[ )te[O,T] such that Y7 and Z] are Fy, measurable,

and a family of F;, measurable random variables ZZ; ’1, k=0,...,N as follows. Fort =T,

set
Vi =0 (X)), 27 =0, Z[)' == 0. (3.5)

Suppose that the scheme (Y™, Z]) is defined for all ¢ € [t;,T] and that ZZ;’I has been
defined for j = N, ..., k. Then for h small enough the following equation

%
ME =By (Y (XN ME 2N ) A+ g (XY YD) BB ) (36)
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has a unique solution.
Using Proposition 3.3 and the linear growth of f, we deduce that the map F¢ defined by

Fe(Y) =By (5 +hf <X§Z71,Y, ZfL)) (3.7)

is such that F¢ (L2 (‘Ftk—l)) c L? (‘Ftk—l)' Futhermore, given Y,Y’ € L? (]:tka)’ the L2
contraction property of E,_; and the Lipschitz condition (2.3) imply E |F¢(Y') — F¢ (Y’ )P <
R’L{E|Y —Y' . Then F¢ is a contraction for h small enough and the fixed point theorem
concludes the proof.
We can extend M* to the interval ¢ € [t;_1,1;] letting
%
ME =B (YT (X0, M ZY ) Aty + g (XN Y BB | FYVFE 1),

which is consistent at time ¢;_.
By an extension of the martingale representation theorem (see e.g. [12] p.212), there exists
a <]:tW \% }}f_hT) tk_lgtgk—adapted and square integrable process (Nf)te[tk,l,tk} such that
for any t € [tp_1,t3], M = Mt’fﬂ + fttk,l NEaW, and hence M} = Mi - ftt’“ NEaw;.
Since,

te—1

<_
ME = Y7 (XN ME 2 ) Aty + g (XYY BBy,

we deduce that for ¢t € [t;_1, tx]

Mtk:Yt:+f<XN ME ZN

lp—1? " t—1? Tt

« b
) Aty 149 (XN, YT) AByy — / Nkaw,.  (3.8)
t

For t € [tx_1,tx), we set

1 &
Y?r = Mtk, ZZT = Ntk, ZZ;}1 = EEk_l </t Zfdr) . (39)
k-1

Lemma 3.5. Forall k=0,...,N,
vr=YN, z0' =z) (3.10)
and hence fork=1,...,N

th tp (23
o = y;;g+/ F(x vzt dr+/ g (XN, Y1) dB,— | z7aw, (3.11)
th_1 te—1 lg—1
Proof. We proceed by backward induction. For k = N, (3.10) is true by (3.2) and (3.5).
Suppose that (3.10) holds for I = N, N —1,... k, so that YT = YN ZZ;’I = ZtJZ. Then

tr

(3.10) holds for [ = k — 1; indeed, for & := Y;iv + ZBk_lg (ngv, Ytiv) we deduce from (3.4)
and (3.6) that ME_, = Fe (ME_ ), VA, = Fe (Vi) and ¥i7_ = ME | = Fe (M}

te—1 te—1 te—1 te—1 tp—1 )
where F¢ is defined by (3.7). So using the uniqueness of the fixed point of the map F¢, we
can conclude that Y7 =V (= M} ). Therefore, (3.8) and (3.9) imply (3.11). Ito’s
formula yields

tg tg

tg
AWk/ Zrdw, =

te—1 te—1

T tr
(W, — Wy ) ZFdW, + / / ZT AW, dW, + / Z7dr,

te—1 Jtp—1 te—1

7 lg—1"
(3.11) by AW}, and taking conditional expectation with respect to F;, | = ft‘;c[il \/]:tf,l,T'
We deduce

so that Ex_1 <AWk k ) Z;TdWr) = E,_ <ftik4 Z;Tdr) = hZ"' . Hence multiplying

hZ™t =E, (YN AWy) + ZBk—lEk—l (9 (x)Y

th—1 >

Yy) AW
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Comparing this with (3.3) concludes the proof of (3.10) for [ = k — 1. O

Lemma 3.5 shows that for r € [tg, ;1] one can upper estimate the L? norm of Z, — Zt]Z
by that of Z, — Z" and increments of Z. Indeed, using (3.10) we have for k =0,...,N —1
and r € [tg, tgy1]

2 2
E|Z -z =E SQE]ZT—Ztk\Z—i—QE‘Ztk—ZZ:l

m,1
Z, — 7]

Furthermore, (3.9) and Cauchy-Schwarz’s inequality yield for £k =0,...,N —1

12 1 bt 2
E ‘Ztk -z < |24, — 27| dr
tg
9 Tt 2 tht+1
gﬁﬂ«:/ | Zs, —ZT|2dr+EE/ | Z, — ZT | dr-.
tE ty

Hence we deduce

N-1 g, N-1 ity N—-1 oty
Z/ E‘ZT—ngVfdrgGZ/ E\ZT—Ztk\zdr+4Z/ E|Z. — ZT dr.
=0 “tk k=0 1tk k=0 1tk

(3.12)

Using Lemma 3.2 and (3.12) we see that Theorem 3.4 is a straightforward consequence of
the following:

Theorem 3.6. There exists a constant C such that for h small enough,

2 T 2
Og}%XNE\Y;k—nZ\ +/0 E|Z, — ZF)?dr < Ch+ CE|® (X)) — @ (X7)|".

Proof. For any k=1,..., N set

Iy :=E ‘Ytk*l v

th—1

2 2 9
+E/ |Z, — ZT|” dr. (3.13)

th—1

Since Yy, _, — Y7 | is F3,_,-measurable while for r € [tk, tg+1] the random variable

Z, — ZF is F)V v ff_l’T—measurable, we deduce that Yy , — Y7 |

fti’il (Z, — ZT)dW,. Therefore, the identities (2.2) and (3.11) imply that

is orthogonal to

2

i1 =E|Y;,_, — Y[

th—1

ty
+/ (Z, — ZT)dW,

th—1

tg
=EY;, — Y;Z +/ <f (XT,YT,ZT) —f <X5Z_1,Y;Z_NZ§€’:)> dr

tp—1

2

[ o) - g (X, ¥0) dB,

te—1

Notice that for t;_1 < r < #;, the random variable g (X,,Y;) — g (XN, Y[T) is F}V v FB/-
measurable. Hence Yy, —Y;7, which is F;, -measurable, and f;f_l (g (X, Y,)—g (Xt]Z, Y;:)) d%r

are orthogonal. The inequality (a + b+ ¢)? < (1+ 1) (a® + %) + (1 +2X) b + 2ac valid
for A > 0, Cauchy-Schwarz’s inequality and the isometry of backward stochastic integrals
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yield for X := 7, € > 0:

2

IN

I

[ ey~ () dB,

tp—1

h
<1+;> E[Y, — Y[ +E

2

i
/ (f (XT,}/?“’ Z?“) - f (Xlgkvfl’Y;;r—l’ ZZ:;}l)) dr

te—1

+(1+2%>E

§<1+§)

+(h+26)E/tk

le—1

i
E(Yk_n’;\erE/ \g(Xr,E)—g(XfZ,Y%:)\QdT]
k—1

2
s 71
PV 2) — 1 (X vzt )|

The Lipschitz properties (2.3) and (2.4) of f and g imply

I 1 < (1 + ﬁ)
€

tg
+(h—|—26)LfIE/

tp—1

i
E|Y;, — Y]]’ +L9E/ (1% = X5 + v, - v ") dr]
te—1

2 2 _
+ Y -yr |z -2

tp—1

2) dr. (3.14)

(‘Xr _xN

th—1

Using the definition of ZZ; 1 in (3.9), the L? contraction property of E; and Cauchy-

Schwarz’s inequality, we have
tet1
Ey (/ (Zy, — Z7T) dr)
173

Thus, by Young’s inequality, we deduce for Kk =1,..., N

tg
),
tk—1

2 tet1 9
gE/ \Z,, — Z7|? dr.

173

2
SlE

hE |2y, - 27| <5

m,1 2 b 2 m,1 2
z, - zp! [ar §2E/ |2 = 2y, | dr + 20E | 24, , - 27,

th—1

tL ty
§2E/ |Zr—Ztk_1‘2dr+4E/ \ZT — Z, |2 dr

te—1 te—1
+4E/ | Zy — Zy,_, | dr
te—1
tr 9 tr 9
§6E/ |2 — Z4,_,| dr+4E/ \Z] — Z,|* dr.
te—1 te—1

We now deal with increments of Y. Using Lemma 3.2, we have
173
‘)
le—1

while a similar argument yields

2
dr

}Qk—l -Yy

te—1

) tk 9 tg
YT—S/;’;I‘ dr §2E/ Y, — Vi, | dr—i—QE/

te—1 le—1

te—1|

<Ch? + 2hF. ‘Ytk_l — Y7

t
E/k Y, — Y72 dr <Ch? + 2hE Y, — Y|

le—1
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Using Theorem 3.1 and the previous upper estimates in (3.14), we deduce

h 2
Tp—1 = (1 + ;) = |K5k - YZHQ + Ly (h+ 2€) |:Ch2 + 2hE ‘nkfl - Y,

tk ty
+ GE/ ‘ZT—Ztk_lfdr—i—zlE/ \ZT — Z,* dr

te—1 te—1

h 12
+ L, (1 + ;> on? + 2B |y;, - Y]
Thus, (3.13) implies that for any € > 0

2
[1- 2Ly (h+2¢) h] E ‘nkfl - }/;:71

i
+[1—4L; (h+ 26)]E/ \Z, — ZT |2 dr

le—1
h h 12 h 2
S{t+—+2L (1+—)h E|Y, —Y7|"+ (Lf(h+2¢)+ L, 1+—))Ch

tg
+6Ls (h+ 26)1@/ |2, — Ziy, |

th—1

Now we choose € such that 8eL; = % Then we have for C' = 4Ly, h small enough and
some positive constant C' depending on L ¢ and Lyg:

2 1 ~ 2 9
+<§—Ch>E/ \Z, — Z7 | dr

tp—1

(1-Cn)E ‘Ytk_l — Y

th—1

t
<(1+Ch)E|Y, —Ytﬂ2+6h2+5E/k 2, — Zy, | dr. (3.15)

le—1

We need the following

Lemma 3.7. Let L > 0; then for h* small enough (more precisely Lh* < 1) there exists
.= ﬁ > 0 such that for all h € (0,h*) we have ﬁ <1+4+Th

Proof. Let h € (0,h*); then we have 1 — Lh > 1 — Lh* > 0. Hence 12+ < —%~ =T, so

that Lh < Th(1 — Lh), which yields 1 +Th — Lh — TLh? = (1 +Th)(1 — Lh) > 1. This
concludes the proof. O

Lemma 3.7 and (3.15) imply the existence of a constant C' > 0 such that for i small
enough and kK =1,2,..., N we have

E|Y;,_, - Y[

th—1

2 23
§(1+Ch)E{}Qk—SQ”{2+Ch2+CE/ | Z, — Zy_[Pdr. (3.16)

k
tp—1
The final step relies on the following discrete version of Gronwall’s lemma (see [7]).

Lemma 3.8 (Gronwall’s Lemma). Let (ax), (bx), (ck) be nonnegative sequences such that
for some K > 0 we have for allk =1,...,N—1, ag_1+cx_1 < (1+ Kh)ay +bx_1. Then,

forallk =0,...,N —1, ak—l—zg\;zl ¢; < eB(T—tr) (aN—i—zg\;;l bi)
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2
Use Lemma 3.8 with ¢z = 0, a_; = E ‘Ytk_l ~Yr | andbe = CE fj* |2, — Z, '+

th—1
Ch?; this yields

N iy
2 2 2
OSSEENE\Ytk -Y7|" <C <E\YT—Y£V{ +,;:1E/tk_1 \Zy — Zy,_, | dr+Ch>

< (B|vr - v +cn), (3.17)

where the last upper estimate is deduced from Lemma 3.2. We sum (3.15) from k =1 to
k = N; using (3.17) we deduce that for some constant C' depending on Ly and L, we have

T N-1
(% —5h> IE/ |2, — ZFPdr <Ch > E|Yy, — Y| + Ch + CE |v7 — Y[, |*
0 k=1
<Ch+CE|Yr - Y7 |* + Ch (T + NE |vp - Y )
<Ch+CE|Yr - Y[ |*.

The definitions of Y7 and Y, from (2.2) and (3.2) conclude the proof of Theorem 3.6. [

4. APPROXIMATION RESULTS: STEP 2

In order to approximate (Ytiv, thl\c[)kzo n We use the idea of E.Gobet, J.P. Lemor and
X.Warin [7], that is a projection on the function basis and a Picard iteration scheme. In this

section, N and [ are fixed positive integers. We define the sequences (y;i\’ zI) )
i=0,...,] k=0,....N

and <Zt]Z ’I> i using backward induction on &, and for fixed k forward induction on
:07"'7 -1

1 for Ytiv’i’l as follows: For k = NN, Zt]yv’l =0and fort=0,...,1, set }/t]]:,[’i’l = Py® (ng)

Assume that Y;ivi’l has been defined and set

N1 1 N.II 1 < N N.II
Zy =P [Y;M AWkH} +5 P [ABkg <th+l,Ytk+l )AW;CH} L @)
Let Y;i\f,o,l := 0 and for ¢ = 1,..., I define inductively by the following Picard iteration
scheme:
N _ N,I,I N vN,i—1,I NI N N N,I,I

V=R e np | (XN 20| P BB (X0, v ] (@2)
where Py, is the orthogonal projection on the Hilbert space P, C L? (Ft,) generated by the
function py defined by (N4). Set Ry := I — P;. Note that P is a contraction of L? (F,).
Furthermore, given Y € L% (Q),

E.PY = PE.Y = P,Y. (4.3)

Indeed, since P C L? (F,), ExPY = PY. Let Y € L?; for every, Uy € Py, since Uy
is Fi,-measurable, we have E (UyR;Y) = 0 = E (UyE;R;Y); so that, PE,R,(Y) = 0.
Futhermore Y = P.Y + RyY implies P.E,.Y = P.P.Y + P.ER,Y = P.Y which yields
(4.3). Now we state the main result of this section.
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Theorem 4.1. For h small enough, we have

9 N—-1 9 N-1 )
N,I _
+h Y E|Z) - 2| < on 0 Y B|RYY
k=0

k=0

N,I,1
max E |V, — VY
0<k<N k k

N-1
2
+ CE[® (X)) - Pvo (X)) + Cn Y B[Ry 2|
k=0
Proof of Theorem 4.1. The proof will be deduced from severals lemmas. The first
result gives integrability properties of the scheme defined by (4.1) and (4.2).

Lemma 4.2. For everyk =0,...,N andi=0,...,I we have Y}iv’i’l, Zt]Z’I e L? (Fip)-

Proof. We prove this by backward induction on k, and for fixed k£ by forward induction on
i. By definition KEJJX’I"I = PN‘I)(Xt]X,) and ng’l = 0. Suppose that Zt]j’l and Ytév’l’l belong
to L? (ftj) forj=N,N—-1,....,k+1and any [, and for j =k and [ =0,...,7 — 1; we
will show that Y,"", Z/" e 12 (7).

The measurability is obvious since Py, C L? (F;). We at first prove the square integrability

of szv 1, Using (4.3), the conditional Cauchy-Schwarz inequality and the independence of
AWj4q and Fy, , we deduce

2 2 2
E ‘Pk (thfi Tz AWkH)‘ —E ‘PkIEk <th+{ 1 AWkH)‘ <E ‘Ek <th+{ 1 AWkH)‘
2 2

<E <Ek |AWk+1|2Ek ‘YtN,I,I‘ ) < IE ‘YtN,I,I

k41 k41

%
A similar computation using the independence of AW}y and F;,, and of ABy and F, |
as well as the growth condition deduced from (2.4) yields

E ‘Pk (XBRAWR+19 <XN YN’I’I>> (2 ) ‘PkEk (XBRAWR+19 <XN YN’I’I)> (2

tht1? Ttk tht1? Ttk

2 2
<E By (ABaWig (X, Y 0"))| < WEEg s | B Brg (X5, vt

tht1? "tk tht1? "tk
2)

The two previous upper estimates and the induction hypothesis proves that Zt]Z’I €
L% (F,). A similar easier proof shows that Ytiv’z’l € L?(F,). O

tht1? T tpta tht+1 th+1

2 2
Sth‘g (XN YN,I,I)‘ < 912 |g(0,0)|2+2h2Lg (E‘XN _|_E‘YNJ,I

The following lemma gives L? bounds for multiplication by AW}
Lemma 4.3. For every Y € L2 we have E|Ex (YAW;1)|> < h (E|Y|2 ~E |EkY|2>
Proof. Using the fact that Ex (AW,11ErY) = 0 we have
E|Ex (Y AWii1) [ =E [Bg (Y — ERY) AW y1)[”
Using the conditional Cauchy-Schwarz inequality and the independence of AW}, 1 and F, ,

we deduce E|Ej, (YAW;41)]? < RE|Y —E,Y|* < h <IE|Y|2 —E |EkY|2) ; this concludes
the proof. O

The following result gives orthogonality properties of several projections.

Lemma 4.4. Let k=0,...,N —1, and My, , Ny, € L? (.7-}“1). Then
%
E (PkMtkHPk <ABthk+l>) — 0.
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Proof. Let My, , € L? (.Ftk +1); the definition of P yields

<_
. , ABy_
PeMy, = Z a(in)uiy (Xt]Z) + Z a(N —1in)uiy (Xt]Z) % (4.4)
1<in<L 1<iny<L
N-1
. . AB
+ Z Z a(l,zN,...,zl+1)u,~N H v, (AB) \/517
k<ISN—11<in,...ij1 <L r=i+1
%
where a(iy) =E [Mtk+1uizv (ngv)}, a(N—-1,iy)=E [MtHluZ-N (ngv) A%ﬁ, and
a(lyi,...,i;41) = E [MtHlu,N (Xt]kv) HT _l+1 v, (AB ) A\/@]. Taking conditional ex-
pectation with respect to 7, ,, we deduce that for any iy, ..., iz € {1,..., L}
N-1 e
. . e AB
a(kyin, .. ipsr) =E | My i (X)) T o, <ABT) By \/Ek —0.
r=k+1
A similar decomposition of Py (ABthk+l> yields
- AB
P (BBiNy,, ) = Y Blnuiy (X)) + D0 BIN = Lin) iy (X5) %
1<in<L 1<in<L
N-1 N
. . — AB
+ Z Z B (LN, ... i41) Uiy (Xt]kv) H i, (ABT) Tl (4.5)
k<ISN—11<in,...iip1<L r=l+1 h
. N , N iy
where § (i) = E | AByNyg,, iy (X)) ], 8(N = 1,in) = E [ABthkHuiN (x) M’ﬁl]
) ) e _ — N
and S (l,in,...,i141) = E [ABthHluiN (Xt]kv) Hf,V:Hl_l v;,. <ABT> A\/lg’]. In the above
sum, all terms except those corresponding to | = k are equal to 0. Indeed, let [ €

{k+1,...,N —1}; then using again the conditional expectation with respect to 7, , we
obtain

N—-1
. . — AB
Bin,... 1) =E [Ntkﬂum CHRIES <ABT> 20, AB| =0

r=Il+1 \/E

%
The two first terms in the decomposition of Py (ABthk +1> are dealt with by a similar

argument. Notice that for any [ € {k+1,...,N — 1} and any in,..., i, N,---,Jk+1 €
{1,..., L} we have, (conditioning with respect to Fy, ):

N-1 e
AB[ N <— ABk
uzN H Vi, <AB ) —F UjN (th) H Uy, (ABT) =0.
[ r=Il+1 \/E r=k+1 \/E
B
A similar computation proves that for any iy, jn,...,jk+1 € {1,..., L}, { € {1, \/%’1 }
N-1 -
E |uiy (X3)) €us (X2) T v (3B,)| =0.
r=k+1
The decompositions (4.4) and (4.5) conclude the proof. O

The next lemma provides upper bounds of the L?-norm of ZthV,I and ZthV,I — ZtJZ.
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Lemma 4.5. For small h enough and fork =0, ..., N—1, we have the following L? bounds

2
_E ‘EkYN,I,I

tet1

tet1

2) (4.6)

) 2
+ <E ‘ZBkg (Xt]kVJrl,YN’I,I)‘ —-E ‘Ek <ZBkg (X5Z+1’YN7I7I))‘ ) ,

tet1 tet1

E| NI 2 Sl B |y NI
tr h
1
h

2 1
NI N N |2 N,II N
E ‘Ztk B Ztk ‘ <E |Rthk | + E <E ‘Y;fkﬂ B Y;fkﬂ

1 i N N,I,1 N N 2
o (o[ mme o () -0 (12, 22)]

e N,II 2
s (B [o (2, v0) - (i, 02, )])[)

Proof. Lemma 4.4 implies that both terms in the right hand side of (4.1) are orthogonal.
Hence squaring both sides of equation (4.1), using (4.3) and Lemma 4.3, we deduce

tet1 Upt1? " tegr

2 1 2 1 2
! e (2 s« el (S (227 a0

——E|P.E, [YN LI AWkH] (2 n %E (Pkﬂ«:k <ZBkg <XN y N ) AWkH) (2

h2 let1 [FR R T

1 N,I,I 2 1 e N N,II 2
e ] s (S (2, 7220 30|

1 N,I,T|? N,I,T|2

tet1 tet1

1 2 2
w5 (B[S (x| B [m (B (x,3200))[)

this proves (4.6).
Using the orthogonal decomposition Zt]Z = Pth]Z + Rth]Z , since Zt]Z’I € P we have

2 2
E ‘Zt]Z’I - ngv‘ =E ‘Zt]Z’I - PngkV‘ +E ‘Rth]Z‘Q . Futhermore (3.3), (4.1) and (4.3) yield

1
2y = Pzl = P [ (VN -V, ) AW

1 —
+ 3P [ABk (g (XN YN’I’I) _g <X§Z+1,}in+l)) AWkH] .

tht1? Ttk
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Lemma 4.4 shows that the above decomposition is orthogonal; thus using (4.3), the con-
traction property of P, and Lemma 4.3, we deduce

B| 23— Pl | = P (VN - v, ) AW [
+ %E P.E, [ZBkAWkJrl < <Xﬁ+1vnﬁi I) (Xt]ZJrl’ni\irl))} ‘2
%E Eg KY;QL{ I Y}QL) AWk+1] i
e [B (BBt (o (0L, ) - (2, 0]
% < tiVJr{I tk+ Z_E‘Ek< ti\;?_nﬁl)‘Q)

2
N N,I,I N N
+ = (E‘ABk[ (X vty =g (2, v ]|

[ (o (67,020 - (x2,020)]) )
This concludes the proof of (4.7). O
For Y € L? (F,), let XéV’I(Y) be defined by:
W) = P (Y g (XY, 20T) + BB (XYY )

The growth conditions of f and g deduced from (2.3), (2.4) and the orthogonality of ZBk
and F, ., imply that Xév’l (L?(F,)) C Py C L? (Ft,). Futhermore, (2.3) implies that for
Yl, YQ S L2 (-;Etk)
2
E [ (%) - xp 00| < LnE|Ys - PP, (4.8)

and (4.2) shows that YN’Z’I ij’] (Ktiv’i_l’l> fori=1,...,1.

Lemma 4.6. For small h (i.e., h2Ly < 1) and for k =0,...,N —1, there exists a unique
YNOo Ler? (Ft,) such that

N,o00,1 N,I,T N yNool NI < N N,I,I
v\l = p, [Ytkﬂ +f (XY Ztk )+ BB (XN D] ()
and there exists some constant K > 0 such that for every N, k, I,
2 2
E ‘thv“vf‘ < Kh+(1+KR)E (Ytﬁf[ (4.11)

Proof. The fixed point theorem applied to the map Xév’l, which is a contration for h?L <
1, proves (4.9) ; (4.10) is straightforward consequence from (4.2) by induction on i. Lemma

<_
4.4 shows that PkY;iVi’I and P <ABkg (ngVH,YNI 1)) are orthogonal. Hence for any

tet1

¢ > 0, using Young’s inequality, (4.3), the L? contracting property of Pj, the growth
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condition of g deduced from (2.4) we obtain

2 h
N,o00,1 N,I,I
B |y | < (”z)E\Pkth

+ <1 n %) E ‘Pk [ZBkg <XN YN’I’IH ‘2

1 Ttk
h N.IT
€

tr g

C+ 2z pe [ (v 2] [

2 2 2
+ 2(h? + 2¢h) | £(0,0,0)]

+1

+ 2L (h? + 2¢h) (E XN +E ‘thf’“vf‘z +E (ijvvf‘z>
(02 el 5 (2 )]
Using the upper estimate (4.6) in Lemma 4.5, we obtain
[1-2L; (h? + 2¢h)|E (thj’wvff

2
+2(h? + eh) <\f(0,0,0)]2 + LE|X)Y 2)

trt1

h
< (1 +—=—=2Ls(h+ 26)> E ‘EkyN,I,I
€

tht1 tet1? " g4t

2 2
+ 2Ly (h+20)E (YN” + 2Ly (h+20)E ‘XBkg (x¥ YN”)(

tet1

+ (1 + g — 2Ly (h+ 2e)> E ‘Ek <ZBkg (thkﬁl,YN’I’f)) ‘2.

Choose € such that 4Lpe = 1. Then (1+ %) — 2Ly (h+ 2¢) = 2Lsh and 2Lg(h + 2¢) =

2Lh + 1. Using Theorem 3.1 we deduce the exitence of C' > 0 such that,
2

N,o0,I

(1= 2L (B + 2eh)| B[, |

<Ch+ (1+AL;h) [E()@NU

k+1

‘IE (ZBkg <XN YN’I’I>‘2] .

U1 " gt

Then for h* € (0,1] small enough (ie (2L + 1)h* < 1), using Lemma 3.7, we deduce that

for I := k&% and h € (0,h*), we have (1 — (2Ls 4 1)h)~! < 1+Th. Thus using the

independence of A By and Fy,,, the growth condition (2.4) and Lemma 3.1, we deduce
the existence of a constant C' > 0, such that for h € (0, h*),
N,o0,I]2 N,I,1]2 N NI\ |2
B[y <Cht 1+ C BV Y|+ on g (X0, v )|
2

tet1

<Ch+ (1+Ch)E ‘YN’I’I

This concludes the proof of (4.11). O

2
Let 77,?7’] =E ‘YZCV’I’I — Y;iv‘ for k = 0,...,N; the following lemma gives an upper

N,oo,I . NI
bound of the L2-norm of Y, o — PkYtiV in terms of 7,7

Lemma 4.7. For small h and for k=0,...,N — 1 we have:

2 2 2
E‘Y;iv,oo,l —Pky;eiv‘ <(1 +Kh)771]gv_ﬂl1 + Kh [E‘Rknﬂ +E|szgkv| ] .



16 OMAR ABOURA

Proof. The argument, which is similar to that in the proof of Lemmas 4.5 and 4.6 is more
briefly sketched. Applying the operator Py to both sides of equation (3.4) and using (4.3),
we obtain

%
PYY =PYN 4+ P [ (XYY, 200 + P [ BBrg (X5, vt

tht1? "tk

Hence Lemma 4.6 implies that

thi\f,oo,l _ PkY}fj _p, [YN,I,I _yN

trt1 tht1
e N,I,I
+ 0 (B[ (X0, ) - o (X0 ) ).

Lemma 4.4 proves the orthogonality of the first and third term of the above decomposition.
Squaring this equation, using Young’s inequality and (4.3), the L2-contraction property
of Py and the Lipschitz property of g given in (2.4), computations similar to that made in
the proof of Lemma 4.6 yield

2 h
o~ = (i )
€

|+ 7 (X0 o=t 2N ) = (X, 2]

tg o Ty ) St

2

tht1 Tkt

2
+ 02 (1420 VB R [ 1 (X v 20 - (v 28|

h — 2
(o) ol (S (e vt = (2 )])

h
< (1 + —> E ‘Ek [YN” _yN
€

tet1 tk+1}
h e 2
+ <1 + E) BBy (BB [o (X0 vat") =g (x5, v )] (4.12)

By construction Y;iv’oo’l € Pr. Hence

2 2
+E|z) - 2l

N———

2 N,o0,T
+Lf(h+2e)h<E‘Ytk ol _yN

2 2
E ‘Y;i\f,oo,f B Y;i\/' - ‘Y'tivpo,[ B PkY;iV 2 (413)

Using Lemma 4.5 we deduce that for any ¢ > 0

(1— Ly (h* +2¢h))E ‘thjw - BYY ’

<Ly (h+2)mh + hLy (h+2¢) [E|RYY )" + B Ry Z) ]

h N,I,I N\
+ ((1 + ;) — Ly (h+ 26)) E ‘Ek (Ytkﬂ N Ytk“)‘

w20 o (50,507 o (0,70

tht1? "tk th+1? " k41

h — 2
+ <<1 + E) — Ly (h+26)> BB (BB o (X, vat") =g (x0, ¥ )]

Let € > 0 satisfy 2Le = 1; then (1 + %) — Lg(h+2€)=Lgh and Ly (h+2¢) = Lyh + 1.
Thus, since Ej, contracts the L?-norm, we deduce

(1— Ly (h*+2¢h))E (thv“’vf ~ BYN i

< (L4 2Lsh) Nk + B (1 + Lyh) [E |RyYN|* +E Ry 2 2]

— 2
+ (2L E | DBy [g (X, YN0 — g (X))
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1 L+1
Let h* < (O, m) and set I' = m

- —
(1 — Ly (h2 + 2eh)) ! < 1+ I'h. The previous inequality, the independence of A By and
Ft,., and the Lipschitz property (2.4) imply that for some constant K which can change
for one line to the next

2
E[y,Y! = BYY| < 1+ Knnllh + Kn B[R + B[Ry 2] 7]

—i—KhE‘g(XN YN’I’I>—g(XN YN )(2

1 "tk trr1? Ttk

Lemma 3.7 shows that for h € (0,h*) we have

<O+ Kbyt + Kh B[Ry +E[RyZY|]

This concludes the proof of Lemma 4.7 O

The following Lemma provides L?-bounds of Y;iv’l’l, y, Yool

N and I.

and Zt]kv ! independent of

Lemma 4.8. There exists a constant K such that for large N and for every I > 1,

2 2 2
max E YtN’fvf‘ + max E YthOOJ‘ + max hE‘ZtN’I‘ <K.
0<k<N k 0<k<N-1 k 0<k<N k
Proof. Using inequality (4.10) and Young’s inequality, we have the following bound, for
i=1,...,1, h <1 and some constant K depending on L:
1 N,o0,] NI
§<1+E>E‘Ytk — v

N'12 2 N 12
E‘Y}k 5Ty _i_(l_i_h)E‘Y'tk ,00, ‘

1\ o9 | Nooo |2 Noo,I |2 N.oo,I|?
< (HE) LBV | (L B Y=t < (1 KnE|yY |
(4.14)
Choosing ¢ = I and using (4.11) we deduce that for some constant K which can change

2 2
from line to line, E‘Y}iv’l’l‘ < Kh+ (1 + Kh)E‘YtN’I’I

k+1
‘2

Hence Lemma 3.8 yields

maxy E ‘Ytiv’l’l < K. Plugging this relation into inequality (4.11) proves that

2 2
max E ‘YtN’I’I‘ + max E ‘YIEN’OO’I‘ < K < oo.
k k k k
<_
Using (4.6) and the independence of A By and F, , ,, we deduce

2
nE |7 | <E |y

lkt1

2 2
1E ‘ZBkg <XN YN,I,I)‘

tht1? "tk

2

<E ‘YtN,I,I
k+1

2
+ hE ‘g <XN YN’I’I>

U1 " gt

Finally, the Lipschitz property (2.4) yields
N, T2 N,I,T|? 2 N,II
nE |20 <B vt +Ey

tr41

tet1

+2h]g (0,0)% + 2hL, (E ‘XN

)

Theorem 3.1 and the L?-upper estimates of Y;ivi’l conclude the proof. O

(7 Tt

2
<(1+2hL,)E ‘YN’I’I‘ +2h|g (0,0)? + 2hL,E ‘XN

The following lemma provides a backward recursive upper estimate of n™V>/ Recall that

2
N, I N,I,I N
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Lemma 4.9. For 0 < k < N, we have:

il < (1 + KR+ Ch T + KE RN + KhE Ry Z)Y [

Proof. Fork =N, YN =& (X)) and YV = Py® (X)) so that n" = E |& (X)) — Py® (XN)|*.

tN

Let k € {0,..., N — 1}; using inequality (4.10) and Young’s inequality, we obtain

2

N,I N,I,I N

1 N,II N,oo,I|? N,oo,T N |2
§<1+E>E‘Yt . ‘ +(1+h)E‘Ytk°° — v

k

2
+(1+WE RN

1 N,oo,I]2 N,oo,T
< <1+E> LBV 4 (14 mE |V - Py

Finally, Lemmas 4.8 and 4.7 imply that for some constant K we have for every N any
k=1,...,N:

2
+(1+h)E|RyYY| (4.15)

k

! KR (1 nE [V - Py

2

?

<(1+ KRyt + KW 4 KE RN |* + KhE| Ry ZYY

this concludes the proof. O

Gronwall’s Lemma 3.8 and Lemma 4.9 prove the existence of C' such that for h small
enough

N—-1 N—-1
2 2
N,II N 212 N|2 NI
max E |V, -y <on 4 0 Y EIRYY + 00 Y E|RZ|
- k=0 k=0

+CE |0 (X)) - Py® (XN)|? (4.16)

2
which is part of Theorem 4.1. Let ¢V := thN;Ol E ‘Zt]Z’I — ngv . In order to conclude

the proof Theorem 4.1, we need to upper estimate ¢V, which is done in the next lemma.

Lemma 4.10. There exits a constant C' such that for h small enough and every I > 1

N—-1 N—-1
N <O+ On YBR[ +C Y EIRYN + 0 max g,
k=0 k=0 o

Proof. Multiply inequality (4.7) by h, use the independence of ZBk and Fy, ., and the
Lipschitz property (2.4); this yields

N—-1 N-1
2 N,II 2 N,I,I 2
CN <h Z B |Rth]Z| + Z <(1 + Lgh) E ‘Y;kJrl o Y;fc\iu -k ‘Ek (Y;kﬂ o Y;fc\;l)‘ ) :
k=0 k=0

(4.17)
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%
Multiply inequality(4.12) by (1 + Lgh)(1 + h), use the independence of A By and Fy,
and the Lipschitz property (2.4); this yields for e > 0:

2
(1+ Lyh)(1 + h)E (Y;N’“’J ~ BYN

k

2

tet1 tk+1i|

< (1 + ﬁ) (1+ Lyh)(1+ h)E (Ek [YN“ —yN
€

2
+ Ly (h 4 2€) h(1 + Lgh)(1 + h) (IE (Ytﬁjm” -YN| +E (ijvﬁf ~z)

)

(4.18)

h 2
+ (1 + —> (1+ Lyh)(1 + h)L,hE ‘Yth“ — Yy
€

k1 tet1

Multiply inequality (4.15) by (1 + Lgh) and use (4.18); this yields for some constants K,
C, C and h € (0,1], e > 0:

Ak+1 = (1 —|— Lgh) E ‘YN’I’I - YN

tp41 te+1

2 N,II N |2
~E[E (v - v

2

<KI*'+ KE|RY)N| + <<1 + %) (1+ Lgh)(1+h) — 1> E ‘Ek [YN“ YN

let1 tk+1i|
2)

2
NI N
+E |2y - 7

N,o00,1
+C(h+2e)h<E‘Ytk —yy

2
+ (1 + ﬁ) ChE (Yth“ Yy
€

k+1 ter1

Now we choose € such that 2Ce = 7; then we have for some constant K and h € (0, 1]:

)

1

4
2

Mgy KR4 KE|RY,N [ + KhE (Yth“ _yN

k1 tet1
1
i (Ch+ Z) I <IE ‘YtN,oo,I _ Y;fiv

k

2 NI N
+E |2 - 2

Thus, for h small enough (so that Ch < i), summing over k we obtain

N-1
2 2
N,I,I N N,I,I N
(+ Zome vl vl [ e (v - )[)
k=0
N—-1
212 N |2 N,I
<Kh +K;E{RkY;k{ + K max

2
+E |z - 2l

1 N—-1
N,00,1 N
#3h s (B P o
k=0

)

Plugging this inequality in (4.17) yields

N-1 N—1
1 N 212 N|2 N2 N,I
LY <k n YBR[ K YBR[+ Kmaer)
k=0 k=0
| Nl )
N,00,1 N
+5h Y E ‘Y — v
k=0

ty
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Using (4.13) and Lemma 4.7, we obtain for some constant K and every h € (0, 1]
N-1
N,oo,I 2 2
hZE‘Y °° YtN‘ 1+Khhznk+1+Kh22[E\RkY;ﬂ +E |72 7]
= k=0
N-1 , N-1 ) N-1 )
+h Y E|RYY < Kmaxo™ + K Y E[RY,| + Kh Y E[RZ]
k=0 k=0 k=0
This concludes the proof of Lemma 4.10. O

Theorem 4.1 is a straightforward consequence of inequality (4.16) and Lemma 4.10.

5. APPROXIMATION STEP 3

In this section we will use regression approximations and introduce some minimization
problem for a M-sample of (B, W) denoted by (B™, W™ m =1,...,M). This provides a
Monte Carlo approximation of Y I, I and ZV,I on the time grid.

5.1. Some more notations for the projection. We at first introduce some notations
(N5) For firzed k =1,...,N and m = 1,...,M, let p;* denote the orthonormal family
of L* () similar to py, in (N4) replacing X~ by XN™ and B by B™.
(N6) For a real n x n symmetric matriz A, | Al is the mazimum of the absolute value of
1

its eigenvalues and ||A||p = (Z” Azz,j) * its Frobenius norm. If A : R™ — R" also
denotes the linear operator whose matriz in the canonical basis is A, then || Al is
the operator-norm of A when R™ is endowed with the Euclidian norm. Note that
|A]| < ||All7 follows from Schwarz’s inequality.

(N7) Fork=10,...,N—=1andm =1,...,M let v and vy be column vectors whose
entries are the components in the canonical base of the vectors

o AW AW,
(pk; ’p \/%+ > ) and <pk;apk \/%+1> (51)

respectively. Note that Evkvk = Id, since the entries of pi are an orthonormal

family of L? (]:k) and 2 k“ is a normed vector in L? independent of py.

(N8) For k=0,. —1 let Vk , PM be symmetric matrices defined by
1 J 1 <
V= LS R = LS (5.2
m=1 m=

(N9) We denote by N the o-algebra of measurable sets A with P(A) = 0 and set:
FVM=o (WIM0<s<t)VN, F"=o(Bl'-Bit<s<t)VAN,
M
FM=FV v \/ 7 FEM =\ FRr o R=FY v FL
m=1 m=1

Note that (F;), and (ffT) are not filtrations.
/)t

(N10) In the sequel we will need to localize some processes using the following events

A = {|[V}M - I1d| < b, ||PM — 1d|| < b} € BV Vv FPY, (5.3)

tit1

-1
M=o e RNV EDY. (5.4)
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(N11) For z = (x1,...,2m) € RM, we denote |z|3, := = M e

5.2. Another look at the previous results. We introduce the following random vari-
ables

G =l = (Ipel VCo) v 1,

where Cy is constant in the Lemma 4.8. Since Y;fj” and ZtJZ’I are in Py, (see (4.1) and
(4.2)), we can rewrite these random variables as follows:

N,i.I i1 i1\ " N,I
Vi = ook = (0‘2’ ) pes Zy = Bloe = (B1) bk, (5.5)

where 04231 (resp. ﬁ,ﬁ) is the vector of the coefficient in the basis py of the random variable

Y;iv’i’l (resp. Zikv’l), identified with the column matriz of the coefficients in the canonical
basis.

Remark 5.1. Note that the vectors aZ’I and B,g are deterministic.

The following Proposition gives a priori estimates of YN’Z’I d Zt]Z’I.

Proposition 5.2. Fori € {1,...,I} U{co} and for k = 0,...,N, we have ‘y;i\’zl‘ <

oy, Vh|zZ!

. ‘gg,ﬁV. Moreover, for every I and i =0,...,1I:

ol <E[F, |87 < B[ (5.6)

~h

Proof. Let i € {1,...,1} U{oo} and k = 0,..., N. Squaring YN’Z’I taking expectation

and using the previous remark, we obtain
i\ * o il I a1 | ar|?
= <ak ) E (prpp) oy > (ak > ay

N7z7I
‘Y} = |

2
’ I‘ < (Cp. The Cauchy-Schwarz inequality implies

Using Lemma 4.8, we deduce that ‘ak’

‘YtN,z,I

Co < (Ipel Vo) V1.

A similar computation based on Lemma 4.8 proves that \/E‘Zt]l\j’l‘ < C,iv The upper

2
. 2 . .
estimates of aZZI‘ and | ﬁé ‘ are straightforward consequences of the previous ones. [

We now prove that (aiﬁl, @é) solves a minimization problem.

Proposition 5.3. The vector (az’l,ﬁ/i) solves the following minimization problem: for
k=0,...,N —1 and for every i =1,...,1, we have:
<ak ,ﬁk) = arg mm E‘ kJLII —a.pg + hf ( el al” 1’I.pk, Zt]Z’I)
NI 2
+ ABkg th+1’y - ﬁ.pkAWk_H (57)

lkt1
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Proof. Let (Y, Z) € Py x Py; then since Py, C L? (Ft,) and AWy is independent of F,,
we have

— 2

B[V =y 4 nf (XN Y0 Z0) + BB (XN, Vi) = ZAWi|
- — 2

E‘YN,II Y+hf< tk’YiV,z 1,1’thz,l> + ABpg (XN YNII)‘

trt1 trr1? ey
2

FhE|Z -+ (YN’I’I + AByg (XN YN”)> AWpiy

h tet1 tet1? " lpat

lkt1 tht1? "kt

_ _E‘( YN L A B <XN YN”>> AWkH‘Q.

The minimun on pairs of elements of Py, is given by the orthogonal projections, that is by
the random variables Y = Y;iv’l’l and Z = ZtJZ I defined by (4.2) and (4.1) respectively.
This concludes the proof using the notations introduced in (5.5). (]

For i € {1,...,1} U{oo}, we define 92’1 = (Ozz,’l, \/Eﬁé) The following lemma gives
some properties on HZ’I
Lemma 5.4. For all i € {1,...,1} U{oo}, we have for k = 0,...,N (resp. for k =
0,....N—1)

6| <E|pNP+E|QN], resp. o~ ! T < LhE o}

Furthermore, we have the following explicit expression of 6, for v defined by (5.1):

I 1,1
07" =E [vk (akgl.pkﬂ +hf (lecv7ak ks By pk) + ABkg (th+1’ak+1 pk“))] '

i1

o' =[]+ n 5L < B |6 +E|GP.

Using inequality (4.10) and Proposition 5.2, since E |p;|> = 1 we obtain
12
‘9[:071 _ 92‘7[

Proof. Proposition 5.2 implies that

.12 2
N,o0,I NI i 1 2i N,o0,I i 12 | N |2
o A A R AT D A R TIPS

Using equation (4.9) and the fact that the components of pj are an orthonormal family
of L?, we have

—F [ YNoo 1}
N,I,T N I N,I N N,I,T
=K (kak |:Y;fk+1 + hf ( tk’ 00 Z ) + ABkg <ngv+1,Y;k+1 >})

=E [pk (aiil-pk-i-l +hf (X;iv,ak i BE pk) + AByg <Xt,€+1,04£+1 pk+1>>}

A similar computation based on equation (4.1) and on the independence of F;, and AW}
yields

Vi =E [Viipz]

[ 1
=E ﬁpkpk < tk+1 TAWp1 + ABkg (X{ZH,YZL{ I) AWkﬂﬂ

[ AW, AW,
_ L1 k+1 N k+1
=E _Pk <04k+1-pk+17 + ABkg < tk+1’ak+1 pk+1> NG ﬂ
AW -
=E |p \/{1 (Oéﬁl Pr+1+hf (Xk ap” pmﬁ;ﬁ-m) + A Bgg <Xﬁ+l,aéil-pk+1)>] :
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Finally, we recall by (5.1) that vy := <pk,pk A%“); this concludes the proof. O

5.3. The numerical scheme. Let £ : R — R be a C? function, such that ¢(z) = = for
|z] <3/2,[€|00 <2 and |¢'|o < 1. We define the random truncation functions

A (@) = e (%) Q)= (%) | (5.9)

The following lemma states some properties of these functions.
Lemma 5.5. Let py and E,ﬁv be defined by (5.9), then
(1) p¥ (res EN) leaves YU (resp. VRZY!) invariant, that is:
k D- Gk th D- th ) :
Y (o' o) = af s QY (VRBLok) = VRBLok.
(2) p, Eév are 1-Lipschitz and {ﬁév(x){ < |x| for every x € R.
(3) P (resp. Eév) is bounded by 2 ‘pﬁ‘ (resp. by 2 ‘Cé\f‘)
Proof. In part (1)-(3) we only give the proof for pi', since that for E,ﬁv is similar.

1,1 I,1 1,1
1. By Proposition 5.2, akpl\}pk < 1. Hence, & <a’fp1\}p’“> = % Pk

k k Py

2. Let y,y € R; since [¢'| <1,
/
Y Y
§<—N> —§<—N>' <ly -9
Pk Pk

Since pi (0) = 0, we deduce |,/o\év(:v)‘ < |z|.
3. This upper estimate is a straightforward consequence of || < 2; this concludes the
proof. O

2 (v) — on ()] = | ok |

Let (XNm)

%
remensr AWM opcpp and (AB_m) be independent realizations

1<m<M

P <m<

of XN, AW and AB respectively. In a similar way, we introduce the following random
variables and random functions:

N N
G m =P = pitlA/Co V1,

Z]i\/,m(x) ::Cé\f,mé. <<N%> : Z)\é\/,m(x) — pé\/,mg (p]\?m) , T € R. (510)
k

k

An argument similar to that used to prove Lemma 5.5 yields the following:
Lemma 5.6. The random functions ﬁgm() defined above satisfy the following properties:

(1) ﬁiv’m is bounded by 2 ‘piv’m

and is 1-Lipschitz.
(2) pfcv’m and p{cv have the same distribution.
We now describe the numerical scheme

Deﬁnition 5.7. Initialization. At time t = ty, set Y;]]\vf’i’l’M = aé\’,[’M.pN = Py® (Xt]yv)
and ﬁj\’,l’M =0forallie{1,...,T}.
Induction Assume that an approximation Y}fV’Z’I’M is built for [ = k+ 1,..., N and set

NIIMm . N [ LIM m \ s .. . .
Ytk+1 =P (O‘k+1 'pk+1) its realization along the mth simulation.

We use backward induction in time and forward induction on 7. For i = 0, let 042’ =
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O.LM —_ 0. For i = 1,...,1, the vector goIM = ”M \/— L1M) s defined by (for-
k k

ward) induction as the arg min in (o, 8) of the quantlty.

y NLLM,m i=LLM m z LM m
ME:‘tk_H Oépk‘f‘hf( b "y Pk > )

2
N, N,I,I,M,
+ABMg (thﬁ,y;m m) - 5.p;nAW,g11‘ . (5.11)
This minimization problem is similar to (5.7) replacing the expected value by an average
over M independent realizations. Note that HUM = ( »1,M Vh ﬁ”M> is a random

vector. We finally set:
yNILILM . _ ﬁév <a£,I,M > \/— N,I,I,M _ Ck (\/EBZ,I,M.pk)’ (5.12)

ty

The following theorem gives an upper estimate of the L? error beetween (YN A )
and (Y_NJ’I’M,Z_N’I’I’M) in terms of ‘CN‘ and {pN
We recall that by (5.4) AY = (1 { ||V = rdl| < 1P = 10 < 0} € MV DY
For k=1,...,N —1 set

er =Ellugvi — d[} (E|pf " + B¢} )+E[Ivkl2lpk+1lz]E\pkN+1\2

; it is the main result of this section.

o[ (s e )

2 2
+ hE {(yvky%r |w?| ) <1+ ‘thH +ypk+112E\p;V+1\ )} (5.13)

Choosing N and then M large enough, the following result gives the speed of convergence
of the Monte Carlo approximation scheme of YN-1:! and ZN1.

Theorem 5.8. There exists a constant C' > 0 such that for h small enough, for any
k=0,....N—1and M > 1:

&,y =K ‘YNII B YN,LLM‘ h Z ‘ZNI B ZN’I’I’M‘
]_

N—-1 N—-1
<16 3B (I + 1)) 1pageye] + 00 3 (02 + 1Bl + E |} +EICT)
ji=k j=k
C N-1
+h—M : Ej
ji=k

5.4. Proof of Theorem 5.8. Before we start the proof, let us recall some results on
regression (i.e. orthogonal projections). Let v = (v Ji<m<M be a sequence of vectors in

R™. Let use define the n x n matrix VM := i Z _ v"™v™*, suppose that VM ig invertible
and denote by Apin (VM ) its smallest eigenvalue.

Lemma 5.9. Under the above hypotheses, we have the following results: Let (x™,m =
1,...,M) be a vector in RM,

(1) There exists a unique R™ valued vector 0, satisfying 6, = arginf|z — 0.v|3, where

OcR™
0.v denotes the vector (Z? 1 H(i)vm(z) =1...,M).
(2) Moreover, we have 6, = (VM) M zmm e R?
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(3) The map x + 0, is linear from RM to R™ and Amin(VM)|0,2 < 0,03, < |z[3;.
The following lemma gives a first upper estimate of &y;.

Lemma 5.10. For every M and k =0,..., N — 1, we have the following upper estimate
ew [t -] 0 S g4
N |2 — N|2
+ 16E Upk | 1[%‘%]6} +16 Zk E [\Cj | 1[AJM]0} :

This lemma should be compared with inequality (31) in [7].
Proof. Using the decomposition of YN:I.I Yy NLLM = 7NI and zNLLM Temma 5.5 (1) ,
\/E,BLI’M.])J)

we deduce
€y —E [( <ak ) =2 (o[ ]
[ (vt o]

Using hte partition AM ) (Aﬁ/[ ) where A]k\/[ is defined by (5.4), Cauchy-Schwarz’s inequality,

Lemma 5.5 and the independence of <a£ 4 M, ﬁ;’I’M, 1Aiw> and p; we deduce:

\/Eﬂf.pj) —

e <2 ot e ol 1] e [ - 1
j=k
+ 2R K‘ﬁ{f (aéﬁl,pk) ‘2 + ‘ﬁfk\f < élMpk>‘2> 1[Al,€w]c}
+ 2%13 K‘@N (Vhsl ;) ‘2 IO (VR ) ‘2> 1[AJM]C}
<8 [ (ol — af ™) p, (ol —al M) 1,4/

+h i E[(8] = 8"") p; (8] - 8/") 1w ]
j=k
+2E [8 o]’ 1[A£f]°} * QN_lE [8 i 1[AJM]°}
j=k

N—-1
<Epkpk,E “ LI Ozk’I’M‘ 1AJVI:| +h Z pjp]E |:‘ﬂl I’I’M‘ 1AJM:|
=k

N—-1
+ 168 |[of | 1] +16 3 E || 1]
=k
This concludes the proof. O

2
We now upper estimate HI’I’M Hé’l‘ on the event Aﬂ” . This will be done in severals

lemmas below. By definition |V, —I|| < h on AM for any k = 1,...,N. Hence for
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h e (0,1)
1—h < Amin (VM (W) on A} (5.14)
L n _ 2 M
emma 5.11. For everya € R andk = 1,..., N, we have +; Zm 1 leep] 2 < o HP H .

Proof. The definition of the Euclidian norm and of Pé\/[ imply

M M
1 2 M M| 12
37 2l = o'y S ) o = o Pta < || ol
m=1 m=1
this concludes the proof. O
For i =0,...,1, we introduce the vector :UZ’I’M = (xZ’I’m’M> defined for m =
m:17"'7

..M by:
I,m,M ~N, I,1,M I,.M I, M
Z " —Pk+qL (O‘k+1 P;cn-f-l) +hf (X 042 Dk ,52 m)
N,m ~N, I,1,M
+ AB,:,”g (Xk+Tvpk+T (O‘kﬂ pZ:Ll)) . (5.15)

Using Lemma 5.9, we can rewrite equation (5.11) as follows:

M
2 1 — i—
e FES AU 5 D S S ST

m=1

oIL,M _
0, =arg mf

We will need the following

Lemma 5. 12 For all k = 0,...,N — 1 and every I, the random wvariables aé’I’M are

.7:WM V .7-" T measurable.

Proof. The proof uses backward indution on k£ and forward induction on 1.

Initialization. Let k = N — 1. By definition ozNI Jy = 0. Let 7« > 1 and suppose aN 11[ M e

FpMy .7-"B M . Using (5.1) (resp. (5.2)), we deduce that v, € Fy'"™ v .7-"B " o (resp.
M WM B,.M

Vo1 €Fp  VF 1)

Futhermore (5.15) shows that 2 11[ e .7-"7‘1[/ My f&ﬁf and hence (5.16) implies that

i1, M W,M B,M
ay’y € Fp \/.7-"tN LT

Induction. Suppose that aéi’lM € Fr WMy F BﬂdT; we will prove by forward induction on

i that o™ GFWM\/]-"BM fori=0,...,1I.

By definition aglM 0. Suppose o/ ! IM € .7-"WM \Y .7-"1C T 3 we prove that (XZIM €
fj‘:V’M \/]:5:7]\14 by similar arguments. Indeed, (5.1) (resp. (5.2)) implies that v}* € fj‘iv’m v
ftf:? (resp. VM e FYM \/fizé/[), while (5.15) (resp. (5.16)) yields f "™ e FPMy
.7:5 7]‘5[ (resp. aZII’M € .7-"}/‘/ My .7-"5 7]‘5[ ). This concludes the proof. O

. 2
The following Lemma gives an inductive upper estimate of HZH 1M HZ’I’M

Lemma 5.13. There exists C > 0 such that for small h, for k =0,...,N —1 and for

. . 2 ~ . . 2
R N A e e I V)

Proof. Using (5.14) and Lemma 5.9 (4), we obtain on A}

iGILM i—1,1,M|?
X — X

(1—nh) i &

. . 2 . . 2
i1, ILM i, M . M\ | i+l I, M i I M
I e W N =

o .
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Plugging equation (5.15) and using the Lipschitz property (2.3) of f, we deduce

i i 2 RL
(1— h) 6;+1,I,M _ Hz,I,M‘ f Z (‘( i,M 2 1,1,M) o

4 ‘( z,I,M _ 52 1,1,M) ‘pkmr) ‘

Lemma 5.11 and the inequality ||PM| < 2, yield

:

. . 2
(1—h) 02+1,I,M B HL,I,M‘ < < OCZI,M a; 1,I,M‘ X zJ,M 1,I,M‘ > th HP H
i, I, M i—1,1,M
<ohL;|ob"M gt ( .
This concludes the proof. O

2
For 0 = (a \/Eﬁ) set Fi(0) := arginfy- xi’M(H) - 0*.vk‘ where

LM I,1,M XN N N,m AN, I,1,M

" (0) == Pk+1 (%H pk+1)+hf< t, mva-Pgbaﬁ-P?)JFABkmg <th+r?7pk+qb <%+1 p?ﬂ)) .

Lemma 5.14. On AM | the map Fy, is Lipschitz with a Lipschitz constant 2hLz(1—h)~L.

Proof. Using (5.14) and Lemma 5.9 (3), we obtain on A}

(1= h)|Fy (61) = Fr (62)1> < Ammin (Vi) | Fx (61) — F (62)]7 < ‘xiM (01) —ap™ (92)‘2

Using the Lipschitz property (2.3) of f, Lemma 5.11 and the inequality ||PM| < 2, we
deduce that on Aé\/[ :

WLy &
(1= h)|Fx (61) — Fr (62)]? Swf Z <|041-p2n — g i + |1} — ﬁ2-p2n|2) :
m=1
<lay —ar*R2Ly | PM|| + |81 — Bof* KLy || P
SQth ’61 — 92’2 ;
this concludes the proof. O
The Lipschitz property of Fj yields the following:

Corollary 5.15. (i) For h small enough, on Al]y, there exists a unique random vector

9;07171\/1 — < oo,l,M \/_5°°IM> such that

. (5.17)

000717 2
k

(Vk _1 Z co.lm My — arg mf ‘xk <HZ°’I’M> — 0. y

where for 0 =

’\il

\/—B) xiM 0) :== <x£mM (9)) o denotes the vector with com-
m=1,...,
ponents

I M ~N I,I,M
xk’m’ (0) :—PkJrT (Ozk+1 pﬁl) +hf< ty ,Oc-pic”,ﬂ-p?)

m N, II,M
+ ABY'g (thﬁ,pkﬁ (akﬂ -pkm+1>> :
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Let xoo,I,M _ xoo,[,m,M _ meJ\/[ Hoo,I,M ]
k k k
m=1,....M m=1,....M

(ii) Moreover there exits a constant C > 0 such that for small h and any k =0,...,N —1
(e,j“vM - e,ﬁ’f’M(Q <Cn! (9,3“7“”(2 .

Proof. (i) This is a consequence of Lemma 5.14 since 2hLs(1 — h)~! < 1 for small h.
(ii) An argument similar to that used to prove Lemma 5.14 implies that for i = 1,...,1

2 2
(1-nh) ‘QEO,I,M _ Hé,I,M‘ <2hL; ‘H?,I,M B Hé’l’I’M

Since HZ’I’M = 0, we conclude the proof. O

The following result, similar to Lemma 4.4, will be crucial in subsequent estimates. It
requires some additional argument compared with similar estimates in [7].

Lemma 5.16. Let Ul:,’jrl be a }":IF/V’M \/]:tB’MT measurable random variable. Then we have
k41

m m
E [1AQIU,€+1AB,§] =0
Proof. Using (5.3) and (5.4) we deduce

N —
E <1A£4U/ﬁ1AB;T> ) (1A%1Ulﬁ1[@ <AB,’;“1% ]::IF/V’M v FBM >>

tet1, T

Recall that 2, = {||V;M — Id|| < h,||PM — Id|| < h}. We will prove that

la, = f (ZB;,...,ZB%) (5.18)
with a symmetric function f, that is f (B1,...,8:) = f (=B1,...,—Bar) for any 8 € RM.
Suppose at first that (5.18) is true. Since the distribution of the vectors (XB,%, cey ZB,]CV[ >
and (—XB,%, cey —XB%) are the same, the independence of <ZB,2,Z =1,... ,M) and

W, M B,M . }
Frm v ]:tk+17T yields

E (ZB,Q”%

v FL) =B (8Bps (BBt ABY))
E <_<ZB,Tf (—KB;L e —ZBM)
=—E(ABpf(aBL....ABY)).

Which concludes the proof.

Let us now prove (5.18). Clearly, it is enough to prove to prove that each norm involved
in the definition of 2 is of this form. Let A be one of the matrices VkM or P,i\/[ . Now
we will compute the characteristic polynomial y of the matrix A — Id and prove that its
coefficients are symmetric.

<_ *
Let ¢™ be pi* or v;*. We reorganize ¢™ as ¢"" = (q{”,q?ABL”) , where ¢7" are the
— —
elements of ¢™ independent of AB}", and ¢y is independent of AB}". So we have
<_
oy = ()@ ABy
a5 (¢1") ABY | a5 (a5')" ABY

Let A = % 2%21 q™ (¢™)*; then the characteristic polynomial of the matrix A — Id is
given by

B— (X +1)Id C
X(A_Id)(X):det< c ID—(X+1)Id>
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where
1 < =
B ::M qumq € M1, (R ) Z ABk € Miyx, (R)’
m=1 m:
1 & = 2
D ::M Z qgn(bm,* ABIT‘ € M12><12 (R) :

Set Jy ={1,....1} and Jo ={1 +1,...,I; + Ic}, and for o € &1, 41, the following sets
H(a,0,8) = {z € Jo,0(t) € Jg}, for a,ﬁ € {1,2}. Using the definition of the determinant,
we have

XA-I)X)= > o) J[ [B,0@)~ (X +1)5i0)

o€, 41, i1€H(1,0,1)
II cGoe@) [ C@.) ][I [P6e@)—(X+1)6 0]
1€H(1,0,1) 1€H(2,0,1) 1€H(2,0,2)

Since we have the relation |H (1,0, 1)|+|H(1,0,2)| = |J1| = I and |H(1,0,1)|+|H(2, 0(,_1)| =
|J1| = 11, we deduce that |H(1,0,1)| + |H(2,0,1)| is even. Therefore, the power of A B}"
in x(A — Id)(X) is even, which concludes the proof. O

As a corollary, we deduce the following identities

Corollary 5.17. For k=0,...,N — 1, we have

N II,M N N,m ~N I,1,M

1AM Z karT <ak+1 pZnJrl) ABng (‘nyk_f;7p]ngnl1 (ak+1 pznﬂ))] = 0, (519)
LY, 17[ /\N, I,1,M

E [1A£/’ (Pk+1 (%+1-Pkm+1> — Prit (%H PZLH))

N N, II N,m ~N I,1,M

AB;CH <g <th+77117ak+1 pk+1> g (th+77117pk+7711 (ak+1 pzl+1))>:| == 0 (520)

Proof. Indeed, Xikv’m € fW’M. Futhermore, (5.10), Lemma 5.12 and the definition of p;", |

. ~N,m [ I,I,M ~Nom (LI W,M B,M
imply that p, <ak+1 pZLH) s Pt <ak+1.p2”+1) e Fp oV ftk+17T' Thus Lemma 5.16

concludes the proof. O

The following result provides an L? bound of HZO’I’M in terms of p]kv 1

Lemma 5.18. There exists a constant C such that, for every N and k =0,...,N — 1
2
I.M N |2
E {1%% o7 ] < CE o, |* + Ch.

J

Proof. Using (5.14), Lemma 5.9 (3) and Corollary 5.15 (i) we have on AM
2 9 )
1= 1) |0 < A2 0 < [zt

Using (N11), taklng expectation, using Young’s inequality and (5.19), we deduce for any
e>0,k=0,...,N —1,

3
2
(1-h)E |:1Aiw 9,20’1’M‘ :| SZTICLM(])a
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1,1,M 2
Pk+1 ML Pr )

2
f<XikV’m azoIM mﬁooIM m)‘],

M

Z E |:1AJM
m=1

M

; Z E |:1A]1€v1

m=1
M
>

E |:1Ai”

e Nym N, I,1,M 2
ABy'g <th+1?’pk+ql <O‘k+1 p;anrl))‘ ] .
Lemma 5.6 yields
1 h\ =
M
7 (1)§4M<1+2>m E‘pk+1‘ <4<1+ >E|pk+1| (5.21)

The Lipschitz condition (2.3) of f, Lemma 5.11 and the inequalities HP,?/I H < 2 valid on
A% imply

2
oo,I,M

M
1 ool M m|?
TklvM(Z) SQth(h + 26) E E |:1A{€VI /Bk ,I,M.pk ‘ :|

1 U 2
+2h(h +20)— > E(f (ij’m,o,o)(

3
I

2 2
<2Lgh(h +26)E § 1 4u (‘QZO’I’M‘ +‘ﬁ,j°’f’M( >||P,§4||}+2h(h+26)E|f(X§Z,o,o)\2

<4Lgh(h + 26)E {1%1 (‘ “vIvM( + ‘5 LM( )} +2h(h + 20 | £ (X,0,0) .
(5.22)

%
Finally, since A B} is independent of .7-"71/}/ My F tfr\l/lT for every m = 1,..., M, the Lipschitz
property (2.4) of g and Lemma 5.6 (1) yield for m=1,..., M

ABrg (Xt]Z:?’ it (aﬁlM pzn“)) ‘2]

Kopy (x50 (oL )]

<X;Z+T,ﬁiv+ql <O‘£J{1M p?ﬂ)) ‘2 E <1Q[k AB;:,”‘ WM vV f£+]\l{T>:|
<h Ly, Jo (3320 A7 (o))

N,m2 N,m 2
< SLGHE |1y ‘pkﬂ‘ + 2hE |1y ‘g(thH,O)‘ .

E [1A1kw

Therefore,

T (3) <8L,h <1+%>E{pk+1{ +2h <1+ >E‘g< tk“,o)f. (5.23)
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The inequalities (5.21)-(5.23) imply that for any € > 0 and h € (0, 1],

o T |2 h h
0, ’I’M( ] g{4 <1+;> +8Lgh <1—|—Z>}E|p£f+1|2

2 2
+ 4th(h + QG)E [114{:1 (‘O&ZO’I’M‘ + ‘,BEO’I’M‘ >]

(1-h)E [1%1

h 2
+2h(h + 20| £ (X),0,0)|* +2n (1 n E) E‘g (X{ZH,())‘ .

Choose € such that 8L se = 1 so that 4Ly(h+2€) = 2 +4Lh. For h small enough (that is
< m), we have 4L s(h+2¢) < $(1—h). Hence, we deduce %(1—h)E1Azku

CE ‘p]kv +1‘2 + Ch, which concludes the proof. O

2
ego,I,M‘ <

The next result yields an upper estimate of the L?-norm of 9,€’I’M — Hé’l in terms of
HOO7I7M _ 600,[
k k-

Lemma 5.19. There is a constant C such that for every N large enough and all k =
0,...,N —1,

M ,ra)? 0o [, M pooI|? -1 N2 N2
E {1%1 oM~ op| } < (1+Ch)E [1AI€M oM — o7 | ]+Ch (Bl +E|GY) -
Proof. We decompose 9,€’I’M — 9,?[ as follows:

LILM  pl0 _ (poo,,M  poo,l LIM  poo,,M LI poo,l
oM =0T = (00 = o) 4 (ot = gt — (ap - 6.
Young’s inequality implies

2 0 0o 2 1 i 2 00 2
‘e,ﬁvIvM—e,ﬁJ( —(1+h) (ek LM _ g ’f‘ +2 <1+ E) (‘a,ﬁvf—ek J‘ + (e,ﬁvaM—ek ’I’M( >

Taking expectation over the set A,JCVI , using Lemma 5.4 and the fact that aﬁc’l and ﬁ,g are
deterministic, we deduce

2 2 1
E [1A£4 ‘eng —~ e,ﬂ } <(1+h)E [1%1 gy AM 0;;“( ] +2 (1 + E) LERTE | ol |

1
+2<1+E>E|:1Aiw

Since 9,20’[ is deterministic, Corollary 5.15 (ii) and again Lemma 5.4 yield

2
E |:1A1kw 9120’1’M‘ :|

k

1M po0,I,M|2
LI _ g .

2
oM — o] ] <CH'E [1 A

<Cn! (E N +E |g,§V|2) +CHE {1%1 g M _ 9;;“(2] .

Therefore, we deduce

E |:1Ai”

2 2
pLIM —a,ﬂ } <(1+ h)E [1Ag, agovIvM—e,jOJ( } +2 (1 + %) Chl (E{pfjf +E\<,§V\2)

1
+2 (1 + E) Ch'E [114%

1M 12 L\ r1porg ) N2
oM = | | 2 (14 5 ) LIRE o

<(1+ Ch)E |:1A;€VI

ot et + o (B 4L ).

which concludes the proof. O
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The rest of this section is devoted to upper estimate HZO’I’M — GZO’I on A,i\/[ . We at first

oo,I oo,I,M
Hk B Hk

decompose as follows:

5
00" — oot =S "y, (5.24)

i=1

where B,, B3 and B5 introduce a Monte-Carlo approximation of some expected value by
an average over the M-realization: for Kk =0,..., N — 1,

By = (1d— (VM) ) o,

M
~1 . 11 1 Nom [ I,I
By = (V) |E <UkPkN+1 (%+1-pk+1>) M Z UK Pt (O‘k+1 Pk+1>] )
m=1
1 1 M
- g N g
m=1

M
1 My—1 ~N, 1,1 ~N, I,1,M
By M 7 Z [pmnf <ak+1'p?+1) — Pt <0‘k+1 PZ”H)
m=1
N, I I,M M
+hf (XN 0 g B ) — o (X, o M i, oM )
e Nm ~N 1,1 N,m ~N, I.I,M
+ABy! [9 (thﬁ?/’kﬁf (ak+1 pk+1>> g (th+T=Pk+T (O‘kﬂ pﬁl))” )

-1 N N,m =N, II
By := (VkM) <vaBkg (th+17ak+1 pk+1>) Z v ABll'g <th+T,pk+T <ak’+1.pzn+1))] )
m:l

Note that compared to the similar decomposition in [7], B4 is slightly different and B5 is
new. Indeed, using equation (5.8) and (5.17) and Lemma 5.5 (1), we obtain:

VkMYl) o+ (V) e — gt

II I e 1,1
E [Uk <Oék’+1-pk+1 +hf <X;iv, oy’ -pk,ﬁzg-pk) + A Bgg (Xt]kv+1,04k;1-l7k+1>>]

M
1 ~N, 1,I.M N, IM JI,M
Z v [pk_gl <O‘k+1 p}cn_H) + hf <th m ozzo e 500 m)
=1

g — (1~
-1
N om Nm ~Nm ( II.M m
+ABg (thﬂ 1 Pl (%H Pk+1)>}

M M
1 My —1 ~N, 1,1 ~N, 1,1,M
= Z B+ M (Vk ) [Z Ulrcnpmnf (%+1-Pkm+1> - Z Ulrcnpmnf <O‘k+1 pzn+1)

j€{1,2,3,5} m=1 m=1

07 o (0 ) (510 50
)-

M
1 a1 < N;m ~N, xNom SN, 1I.M
+ M (Vk ) Z vp A By {9 <thff,ﬂkﬁl <O‘k+1 pk+1) < tkﬁL,PngL <ak+1 pﬁl))] )

3
Il

which concludes the proof of (5.24).
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The following lemmas provide upper bounds of the error terms B;. Recall that if F is
a matrix such that ||[Id — F|| < 1, then F is inversible, F~! — Id = D1 (Id — F)* and
[1d— F|
1—||Id - F|
Indeed, F~' = (Id— (Id— F))~' = Y, o(Id— F)" and [[Id— F~| < 30,5, [|(1d = F)*||.

|Id — F7Y| < (5.25)

Lemma 5.20. (i) Let (U,...,Upr) be a sequence of iid centered random variables. Then
we haveE‘Z ‘ = ME|U .

2
(i1) We have E Hzmzl (v ()" — Id)HF = ME|jvgvf — Id||%.

Proof. (i) The proof is straightforward.
(ii) Using (i) (N6) and (N 7) we deduce

M
e[S vy | -~ |3 e oy - s
m= m=1
:MZE\ ok (on)" = 1d] (i, j)|” = ME|jogvj, — 1d| 3
i7j
this concludes the proof of the Lemma. O

The following lemma provides a L? upper bound of B;. Recall that Aﬂ” is defined by
(5.4).

Lemma 5.21 (Upper estimate of B1). There exist a constant C' such that for small h
and every M > 1,

C
E (191 Loy | < T7Bloeei — 1l (E o[ +E[6Y])
Proof. On AM we have ||Id — VM| < h < 1; and hence (5.25) implies ||Id — (VM)7Y| <

[1d—V;M || < [7d=VM ]|
1—|[1d—V M| 1-h

. Using the inequality [|.|| < |.||r we deduce

1
E [|11d - (V)™ P14 | < e L 1a = V]

By definition VkM = ﬁ 21{‘2121 vt (UZL)*; so using Lemma 5.20 we obtain E [114%1 HId — VkMHH <

LE|lvgv; — Id||3.. Therefore, since 9;0’1 is deterministic, Lemma 5.4 yields
2
B (1% L] < [63] B [Ira — 3121y

C ¥
<o (Blof [ + B |G |") Bllowo — Id)f3

this concludes the proof. O

The next lemma gives an upper bound of H (VkM ) ! H on A,ZCVI .

Lemma 5.22. For h € (0,3), we have |[(VM)7Y| <2 on AY.
Proof. Using the triangular inequality and inequality (5.25), we obtain on Aﬂ”

ld -Vl _ hoo1
1—|[Id - VM| — 1-h 1-h

IOV M <]l + [11d = (V) TH < 1+

Since h < %, the proof is complete. [
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The following result provides an upper bound of 2B5. This estimate should be compared
with that given in [7] page 2192.
Lemma 5.23 (Upper estimate of By). There exists a constant C > 0 such that for large
N andk=0,...,.N—1,E [|532|2 1Aﬁ’} <SR [|v,€|2 |p,§+1|2} E|od, .
Proof. We can rewrite By as follows:

(VkM)_l al m-~Nm ( I m N 1,1
By = — M Z (Uk Pr+1 <O‘k+1-pk+1) —E {Ukpkﬂ (%+1-pk+1>]> .

Using Lemmas 5.22 and 5.20 (i), we obtain for small h

M
N, LI N LI
Z (Ulrcnpkﬁb <O‘k+1-p2n+1) —E |:vk5pk?+1 (O‘k+1-pk+1>])

m=1

2
4

4 . 11 . I 2 4 5 11 2
SME ‘Ukpfsvﬂ <%’+1-Pk+1> —E {Ukpis\;l (ak3r1-pk+1)” < ME ‘Ukpfevﬂ (ak’+1-Pk+1>‘ .

Using Lemma 5.5 (2), Cauchy-Schwarz’s inequality and Proposition 5.2, since aéil is
deterministic we deduce

4 2 4 2
E [!’32\2 1A;€u} SME [!%!2 ‘Oééil-l?kﬂ‘ } < ME ka’2 ’Pk+1’2] E |P{cv+1

)

which concludes the proof. O
The next lemma gives an upper estimate of the L?-norm of B3

Lemma 5.24 (Upper estimate of B3). There exists a constant C such that for large N
and k=0,...,N —1,

h? 2 2 1 2
B Ly 1307 <OT7E [l (1413 P + PRI + P |G
Proof. We take expectation on AM use Lemmas 5.22 and 5.20 (i); this yields for small h
h? 2
E [1A;y |%3|2} <4 7E <|vk|2 ‘f <Xévaazo’l-pk,5/£-pk)‘ ) (5.26)
The Lipschitz condition (2.3), Cauchy-Schwarz’s inequality and Proposition 5.2 imply
N oo, I 2 N |2 00,1 2 I 2 2

2 2 1 2
<2Ly (!Xﬁ! + [prl*E [0 + 1 el E |G >+2\f(070,0)\2,
which together with (5.26) concludes the proof. O

The next result gives an upper estimate of B, in L?.

Lemma 5.25 (Upper estimate of B4). Fiz ¢ > 0; there exist constants C and C(€) such
that for N large and k=0,...,N — 2,

11 1,1,M|2
(1-h)E [1AkM ]%4\2} <(1+C(e)h)E [1/%1 ‘ak’ﬂ — oy }

+C(h+26)h<E |:1Aiw

2
00,1 oo, I,M
" — oy } +E [11411:1

ol - ).
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Proof. By definition, we have 84 = ﬁ (Vk,M)_1 21{‘2121 vtayt. Let xy := (2!, m=1,...,M);
then Lemma 5.9 and inequality (5.14) imply that on AM, (1—h) [B4]*> < Amin (VM) [B4)?
|x4|?\/l. Taking expectation, using Young’s inequality and (5.20) in Corollary 5.17, we ob-

tain for e > 0: (1 — h)E [1%»1 |%4|2} < 25’:1 T;, where:
M
h\ 1
Ty = <1+ Z) M Z:lE |:1A1kw
2 1
Ty=(1 + W— 3 E [1AM

=1

Non [ I m Nom [ LIM m \|?
P \Y41Pr+1) = Prgr (M1 Pr+a )

N I I
< X" ap pkm,ﬁk-pkm)

—f (et s )

e N,m ~N,
A By {9 <th+T’pk+T <0‘k+1 pk+1))

_ XNm ~N,m 1,I.M
9 Xt Prein Q%D P

R 1
T3:<1+Z>MZE|:1A;€VI

Lemma 5.6 (1) and Lemma 5.11 yield

h) 1

m=1

h

Since Apf C AL, and [|[PY, || <1+ hon A}Y, we deduce

h 11 1,1,M|?
T < (1 + E) (1+h)E [11%1 oty = okt |- (5.27)
Using property (2.3), Lemma 5.11 and a similar argument, we obtain for 0 < h < 1:

2

2
I m ILILM m
QP — 04 Pk+1”

11 1,0,M M
Qg — ol ||Pk+1\|]-

2 2
< 2Lsh (h +2¢) E [1A£J <(a;°’f . azo’f’M‘ + (ﬁ;ﬁ —BZO’I’M( ﬂ . (5.28)

%
Finally, since A,JCVI = A/,]CV_IH N2y and A B} is independent of ]522/ \% }}f+17T, we have using
the Lipschitz property (2.4):

M
R\ 1 Nom SN, 1.1 N,m <N, 1,I,M 2
T3 < <1 + E) i E 1E [1,4%1 ‘g ( tk:?’PHT <ak+1 Pk+1>> g (th-:??kaqu (%H P?ﬂ))‘
e
E (m

B\ 1 &
§L9h<1+z>—ZE[1Aﬁl

=1

— 2
AB}T‘ ‘E ’Fk-u T>:|

N (LI m N [ LILM _m \|?
Pri1 \Qkp1Pht1) = Pryr \ Q%41 Phtr :
So using Lemma again 5.6 (1) and Lemma 5.11, we deduce

h 11 1.1,M|?
T3 SLgh <1 + E) (1 + h)E |:1Ai’€\/{f'1 ‘OékJrl — o) . (5.29)
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The inequalities (5.27)-(5.29) conclude the proof. O

We decompose vy, as vy = (v§,v7) where v{ contains all the elements in the basis which
X —

A By wz. with wZ independent to ABj. The next

Vh
lemma gives an upper estimate of the L? norm of B5 on Ag” .

<_
are independent to A By and UZ =

Lemma 5.26 (Upper estimate of B5). There exists constant C' such that for small h and
k=0,...,N—1

E [Lyge 1952] <SPE [(lurl? + [l (14 18] + o PE o )]

Proof. The proof is similar to that of Lemma 5.24 which deals with B3. Lemmas 5.22,
5.20 and 5.5 (1) yield for small h

4 N — 2
2 ~ LI ~ 1,1
E {114{:1 |B5| ] SME Vg A Brg (Xt]ZH,péVJrl (ak+1.pk+1>> —E {vaBkg (Xf:ﬂ,pé\;l (ak+1.pk+1>>”
4 < N I 2
< E|upABpg (thﬂ,ozk_,_l.pk_,_l)‘ .
Then the decompostion of vy, yields
4

4 — 2 — 2
E [1%, |<B5|2] <—E [vf A Brg (ngvﬂ,aé’_{l.pk_,_l)‘ + —E |0/ AByg (ngv+1,a£i1.pk+1)‘ .

%
Since A By, is independent of }":IF/V V };E+17T, we deduce

A
e 11 2 4 ‘ k‘ I
v A By (Xt]kv+1’ak+1-pk+1>‘ + 5By NG g <Xg+1’ak+1-pk+1)

4
E [1143, |<B5|2] <—E

M

2 Ch 2
N 1,1 N 1,1
vpg <th+1,ak+1-pk+1>‘ tr E ‘wig <th+1,ak+1-pk+1>(

Ch 2 1,1 2
<t {(‘”k’z +uf) Jo (i aitioen )]

The Lipschitz condition (2.4), Cauchy-Schwarz’s and Young’s inequalities together with
Proposition 5.2 yield

2
XN I,1 XN
‘g ( tk+17ak+1-pk+1) ‘ Sng <‘ tha1

Ch
<—E
M

2 2
#[oth Ioeal) +21s0.0/°

2
2 2 2
<o, (L[ + oeaP Bl ) + 2100.0/2,

This concludes the proof. O

Final step of the proof of Theorem 5.8. Young’s inequality implies that for h €
(0,1], (b1 + ba 4 bg + by + bs)? < 2(bF 4 b3 + b3 + b2) + (1 + h)b3. Recall that €, has been
defined in (5.13). Then the decomposition (5.24) and Lemmas 5.21 and 5.23-5.26 yield for
e >0, small h and ¢, defined by (5.13):

[e’e] o9} 2 8
g2l M _ g2 J( ] <GB | Ly > 1B+ +hE [1Agf\%4!2]

J€{1727375}

C I 1,1,M|?
Sqpek T A+ C(OhE [1%&1 ‘%H —

0o oo, M|?
+(1+Ch)C(h+26)h<E[1Aiu ap T —oy ]—FE[lAiu

Bl - Bf’f’M(QD ,
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where in the last inequality, we have used Lemma 3.7. The definition of HZO’I’M and HZO’I,
yield for h small enough:

[1—(14+Ch)C(h+ 2¢)h|E |:1A1kw

2
OCZO’I — OCZO’I’M‘ :| + hE |:1A;€VI

2
I 1M
B — By }

C N )
<—e¢r+ (1 +C(e)h)E |:1AJV[ Bl — ,I,M‘ } .

Mh k+1

Using again Lemma 3.7, we obtain for some constant C' and h small enough

E |:1A;CM

2
aply —aphM } + (1 + CRh)C (h + 2¢) hE [1 Y

2 C
Gzo’I’M - 9;30’[‘ ] SM—hEk + (1 +C(e)h)E [1%&1

nr i)
Qg1 — Vg1

+ (14 Ch)C (h + 2€) hE [1 A |Bh — 5;;0717M(2] . (5.30)

Using Corollary 5.15 (ii) and Lemma 5.18 we deduce

E |:1Ai”

2 [ 2
ﬁ;ﬁ—ﬁ}?”l’M( ] <2E Ly (B = B Y| + 5B [1AkM

gl LM _ oo, I, M 2
k k

2
<OE |1 |8 — B"Y | | + ORT'E [1,4,51

2
oco,I,M
0> ‘ }

2
<O Ly (8] — g7 + CRITIE o[ + CRE. (5.31)

Plugging (5.30) and (5.31) in Lemma 5.19, we obtain for some constant C' and h small
enough

E |:1A{€V’

LIM  aLI|? C 11 1.0,0M|2
0, -0, ‘ §M—hek+(1+C(e)h)E 1Aiw+1 ‘ozkﬂ—ozkle

+Ch = (W hE || + E o |* + E |G %)
P

k
But (1 + Ch)C (h+2¢) = 2¢C + h(C + C?h + 2¢C?) and we may choose € such that

2¢C = 1,50 that 1 — (1 + Ch)C (h+2¢) =1 — (C+ C?h + %)h Using again Lemma 3.7
we obtain for some constant C' and h small enough:

+ (1 + Ch)C (h+ 26) hIE 1Aiw

2 1 2
E [1%1 all - ag’va( } +hg (1= Ch)E [1%1 gLt ﬁ,ﬁ( ]
2
< (14 Ch)E [1A£f oy — o } + O+ O (B2 4+ RE [ + E [of [ + E 6]

So for small h,

1 10Mm|?) 1
(1—Ch){E [1A£J o = ™M |+ hSE (1

ﬁjfﬂ4—-ﬂéf}}

2
aply — o } + O+ O (B2 4 RE | [* + E [of [* + E[6Y])

hM

Using the Lemma 3.7, we obtain

E |:1Ai”

2 1
1 IIM
o —ay :| + hiE |:1A{€vz

1,1,M 2}

2
ot = s

+ O ORI (2 4+ 1B |+ B[ + B |G )

11
§(1+Ch)E |:1A1kw ol — gL WM
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The Gronwall Lemma 3.8 applied with a = E [1A£/f ‘O‘k —ay

and ¢, = h%E [1Aiw

11 LLAﬂ%

2
ﬁé’I’M — Bé‘ } and the fact that af\}I’M = af\}l concludes the proof.
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