Optimization of the Contrast Tissue Ratio in Ultrasound Contrast Imaging by an Adaptive Transmit Frequency

S. Ménigot, J.-M. Girault, I. Voicu and A. Novell

Université François Rabelais de Tours Inserm U930 - CNRS ERL 3106 - Équipe 5 *Imagery and Brain*

October 29th, 2010

1 / 21

October 29th, 2010

Ménigot Girault Voicu Novell (Tours)

Optimization of the CTR

Outline

Introduction

Methods

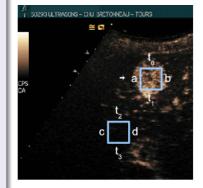
- Adaptive Harmonic Imaging
- Adaptive Pulse Inversion Imaging

3 Material

Results and Discussion

- Results and Discussion in Harmonic Imaging
- Results and Discussion in Pulse Inversion Imaging
- Comparison between Adaptive Harmonic Imaging and Adaptive Pulse Inversion Imaging

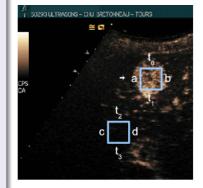
Conclusion


Introduction

э

Objectives

- Improve the echographic contrast in ultrasound contrast imaging
- Using of ultrasound contrast agent : microbubbles
- ⇒ Optimizing the <u>Contrast Tissue</u> <u>Ratio</u>, *i.e.* maximizing the ratio :


$$CTR = \frac{\sum_{i=a}^{b} \sum_{t=t_{0}}^{t_{1}} y_{i}(t)^{2}}{\sum_{j=c}^{d} \sum_{t=t_{2}}^{t_{3}} y_{j}(t)^{2}}$$

Objectives

- Improve the echographic contrast in ultrasound contrast imaging
- Using of ultrasound contrast agent : microbubbles
- ⇒ Optimizing the <u>C</u>ontrast <u>T</u>issue <u>R</u>atio, *i.e.* maximizing the ratio :


$$CTR = \frac{\sum_{i=a}^{b} \sum_{t=t_{0}}^{t_{1}} y_{i}(t)^{2}}{\sum_{j=c}^{d} \sum_{t=t_{2}}^{t_{3}} y_{j}(t)^{2}}$$

Objectives

- Improve the echographic contrast in ultrasound contrast imaging
- Using of ultrasound contrast agent : microbubbles
- \Rightarrow Optimizing the <u>C</u>ontrast <u>T</u>issue <u>R</u>atio, *i.e.* maximizing the ratio :

$$CTR = \frac{\sum_{i=a}^{b} \sum_{t=t_{0}}^{t_{1}} y_{i}(t)^{2}}{\sum_{j=c}^{d} \sum_{t=t_{2}}^{t_{3}} y_{j}(t)^{2}}$$

Context

Standard System in Harmonic Contrast Imaging

• Nonlinear behavior of the microbubbles

• Transmit at $f_0 \rightarrow \text{Received}$ at $2f_0$

Context

Standard System in Harmonic Contrast Imaging

- Nonlinear behavior of the microbubbles
- Transmit at $f_0 \rightarrow \text{Received}$ at $2f_0$

Context

Standard System in Harmonic Contrast Imaging

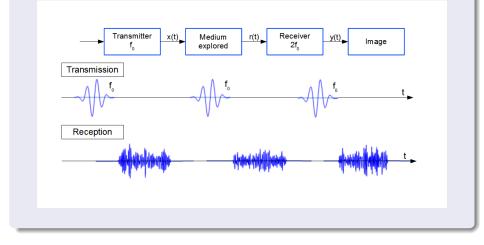


Image: Image:

э

Drawback

- Microbubble is a non-stationary medium
- Size and distribution of the microbubble are unknown
- Pressure level is unknown

э

Drawback

- Microbubble is a non-stationary medium
- Size and distribution of the microbubble are unknown
- Pressure level is unknown

э

Drawback

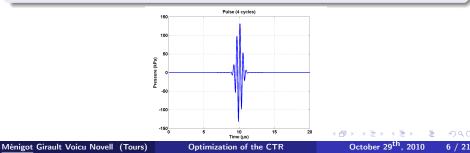
- Microbubble is a non-stationary medium
- Size and distribution of the microbubble are unknown
- Pressure level is unknown

э

Drawback

- Microbubble is a non-stationary medium
- Size and distribution of the microbubble are unknown
- Pressure level is unknown

Needs

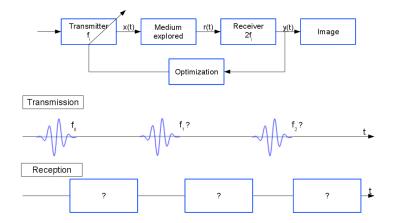

- Overcome theses drawbacks
- \Rightarrow Adaptive method by automatic adjustment of the transmit frequency

Drawback

- Microbubble is a non-stationary medium
- Size and distribution of the microbubble are unknown
- Pressure level is unknown

Needs

- Overcome theses drawbacks
- $\Rightarrow\,$ Adaptive method by automatic adjustment of the transmit frequency


Methods Adaptive Harmonic Imaging Adaptive Pulse Inversion Imaging

Ménigot Girault Voicu Novell (Tours)

Optimization of the CTR

October 29th, 2010

Adaptive Harmonic Imaging

э

Optimization Method

Principle : Method of Gradient

Seeking the maximum by "go-up the descent"

э

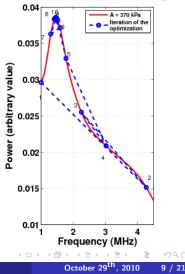
Optimization Method

Principle : Method of Gradient

Seeking the maximum by "go-up the descent"

Algorithm

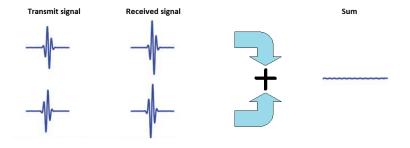
Optimal frequency modified by


$$f_{k+1} = f_k + \alpha_k \cdot \nabla E(f_k)$$

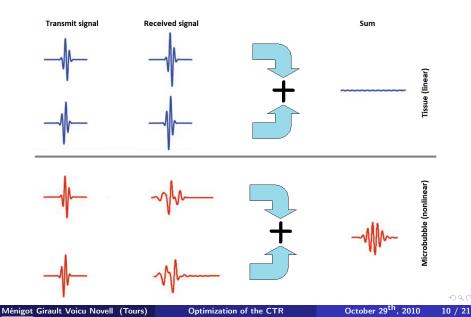
with

٩

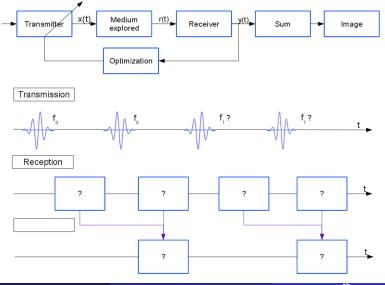
$$\nabla E(f_k) = \frac{E_k - E_{k-1}}{f_k - f_{k-1}}$$


α_k constant.

b


Methods Adaptive Pulse Inversion Imaging

Principle of the Pulse Inversion Imaging



Methods Adaptive Pulse Inversion Imaging

Principle of the Pulse Inversion Imaging

Adaptive Pulse Inversion Imaging

Ménigot Girault Voicu Novell (Tours)

Optimization of the CTR

October 29th, 2010

Materials Simulations In vitro experiments

э

Microbubble Model

- Model approxing the SonoVueTM contrast agents
- Nonlinear model using BubbleSim (L. Hoff, 2000) with modified Rayleigh-Plesset equation
- Hypothesis : response of the SonoVue = N response of one microbubble

Microbubble Model

- Model approxing the SonoVueTM contrast agents
- Nonlinear model using BubbleSim (L. Hoff, 2000) with modified Rayleigh-Plesset equation
- Hypothesis : response of the SonoVue = N response of one microbubble

Microbubble Model

- Model approxing the SonoVueTM contrast agents
- Nonlinear model using BubbleSim (L. Hoff, 2000) with modified Rayleigh-Plesset equation
- Hypothesis : response of the SonoVue = N response of one microbubble

Microbubble Model

- Model approxing the SonoVueTM contrast agents
- Nonlinear model using BubbleSim (L. Hoff, 2000) with modified Rayleigh-Plesset equation
- Hypothesis : response of the SonoVue = N response of one microbubble

Tissue

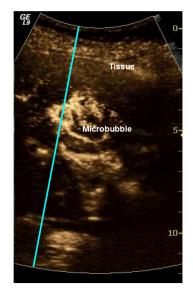
Fat scatter

linear response

Microbubble Model

- Model approxing the SonoVueTM contrast agents
- Nonlinear model using BubbleSim (L. Hoff, 2000) with modified Rayleigh-Plesset equation
- Hypothesis : response of the SonoVue = N response of one microbubble

Tissue


- Fat scatter
- linear response

Microbubble Model

- Model approxing the SonoVueTM contrast agents
- Nonlinear model using BubbleSim (L. Hoff, 2000) with modified Rayleigh-Plesset equation
- Hypothesis : response of the SonoVue = N response of one microbubble

Tissue

- Fat scatter
- linear response

Ménigot Girault Voicu Novell (Tours)

Material

Experimental setup

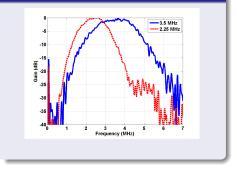
Materiel

- SonoVueTM (Bracco Research, Geneva, Switzerland)
- Perpendicular position of transducers
- Properties of transducers
 - single element PZ1
 - Transmitter (2.25 MHz bandwidth : 74%)
 - Receiver (3.5 MHz bandwith : 63%)

Experimental setup

Materiel

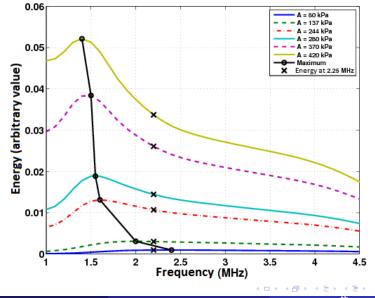
- SonoVueTM (Bracco Research, Geneva, Switzerland)
- Perpendicular position of transducers
- Properties of transducers
 - single element PZT
 Transmitter (2.25 MHz bandwidth : 74%)
 - Receiver (3.5 MHz bandwith : 63%)


Material

Experimental setup

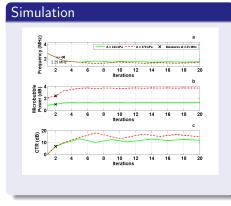
Materiel

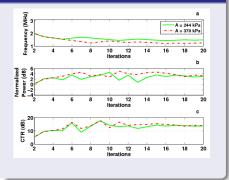
- SonoVueTM (Bracco Research, Geneva, Switzerland)
- Perpendicular position of transducers
- Properties of transducers
 - single element PZT
 - Transmitter (2.25 MHz bandwidth : 74%)
 - Receiver (3.5 MHz bandwith : 63%)


Transfer Function

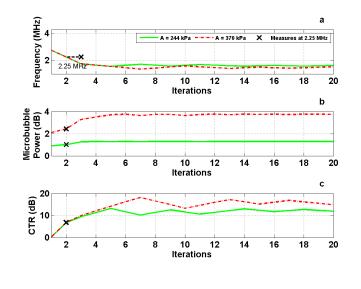
October 29th, 2010

Results and Discussion Harmonic Imaging Pulse Inversion Imaging

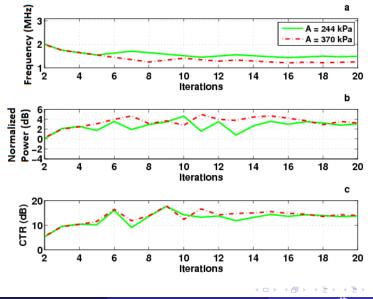

Energy Backscattered by a Microbubble in Simulation


Ménigot Girault Voicu Novell (Tours)

October 29th, 2010


Adaptive Harmonic Imaging

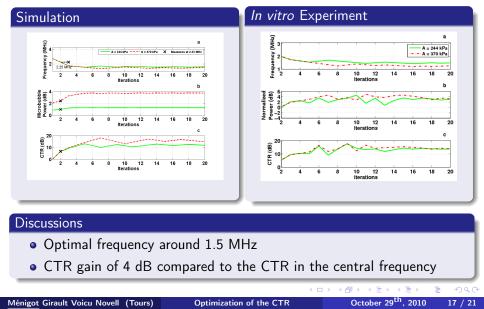
In vitro Experiment



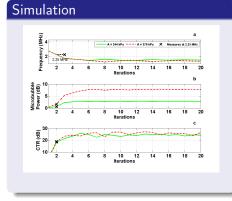
Simulation in Adaptive Harmonic Imaging

October 29th, 2010

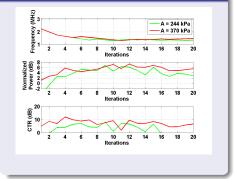
In vitro Experiment in Adaptive Harmonic Imaging

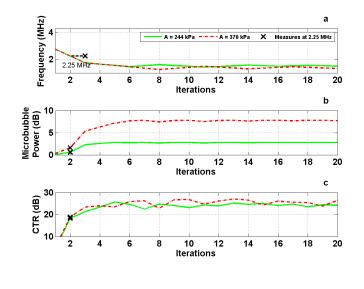


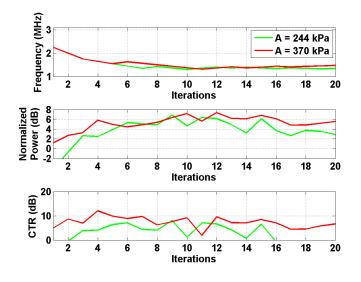
Ménigot Girault Voicu Novel (Tours)

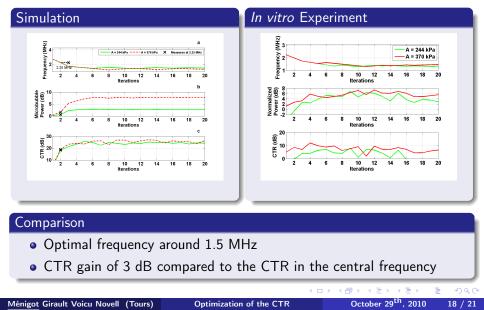

October 29th, 2010

Harmonic Imaging

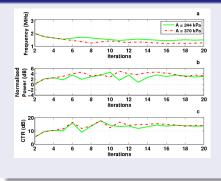

Adaptive Harmonic Imaging

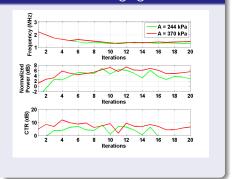

Adaptive Pulse Inversion Imaging


In vitro Experiment


Simulation in Adaptive Pulse Inversion Imaging

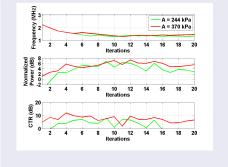
In vitro Experiment in Adaptive Pulse Inversion Imaging


Adaptive Pulse Inversion Imaging


Results and Discussion Comparison

Comparison between Adaptive Harmonic Imaging and Adaptive Pulse Inversion Imaging

Harmonic Imaging


Pulse Inversion Imaging

Results and Discussion Comparison

Comparison between Adaptive Harmonic Imaging and Adaptive Pulse Inversion Imaging

Harmonic Imaging Pulse Inversion Imaging requency (MHz) requency (MHz) A = 244 kPa A = 370 kPa 1¹2 10 12 14 Iterations Iterations Normalized Power (dB) Normalized Power (dB) 64202 42 2 10 12 14 20 Iterations Iterations CTR (dB) 1 05 20 CTR (dB) 0 Iterations 10 12 14 16 18 20 Iterations

Problem

Instrumentation time is too long

Ménigot Girault Voicu Novell (Tours) October 29th, 2010

Conclusion

≣⊁ ≣

Conclusion :

• Gain of around 4 dB with our adaptive system

⇒ Optimization of the CTR in harmonic imaging and pulse inversion imaging

Conclusion :

- Gain of around 4 dB with our adaptive system
- $\Rightarrow\,$ Optimization of the CTR in harmonic imaging and pulse inversion imaging

Conclusion :

- Gain of around 4 dB with our adaptive system
- $\Rightarrow\,$ Optimization of the CTR in harmonic imaging and pulse inversion imaging

Perspectives :

- Optimization with other imaging method like Contrast Pulse Sequence (modulation with amplitude and phase)
- Implementation on an open ultrasound scanner

Conclusion :

- Gain of around 4 dB with our adaptive system
- $\Rightarrow\,$ Optimization of the CTR in harmonic imaging and pulse inversion imaging

Perspectives :

- Optimization with other imaging method like Contrast Pulse Sequence (modulation with amplitude and phase)
- Implementation on an open ultrasound scanner

Conclusion

Conclusion & Perspective

Thank you for your attention

sebastien.menigot@etu.univ-tours.fr jean-marc.girault@univ-tours.fr