A linear model for production management - Optimal solving policies

Jean-Paul Bourrieres, Thecle Alix

To cite this version:

Jean-Paul Bourrieres, Thecle Alix. A linear model for production management - Optimal solving policies. International Journal of Production Research, 2010, 48 (18), pp.5415-5432. 10.1080/00207540903067193 . hal-00607160

HAL Id: hal-00607160
https://hal.science/hal-00607160
Submitted on 8 Jul 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A linear model for production management - Optimal solving policies

Journal:	International Journal of Production Research		
Manuscript ID:	TPRS-2009-IJPR-0093.R1		
Manuscript Type:	Original Manuscript		
Date Submitted by the	24-Apr-2009		
Complete List of Authors:	Bourrieres, Jean-Paul; University Bordeaux1, LAPS-IMS Alix, Thecle; University Bordeaux1, LAPS-IMS		
Keywords:	MANUFACTURING SYSTEMS, PRODUCTION MANAGEMENT, PROCESS MODELLING, MATH PROGRAMMING		
Keywords (user):	Manufacturing systems, Quadratic programming		

A linear model for production management
 - Optimal solving policies

J.P. Bourrières* and T. Lecompte-Alix
University of Bordeaux, IMS CNRS 5218, Department LAPS, Bordeaux, France
(v1.0 January 2009)

Abstract

A linear model for production management considering generic data on stocks, manufacturing processes, resource capacities and costs is presented. Any type of continuous or discrete production process also including assembly and disassembly tasks is taken into account. The model inversion issue is analysed and relevant joint production/inventory management policies are solved by optimizing linear and quadratic programs under resource and stock capacity constraints. Beyond the single period inversion issue which is the focus of the paper, the model is tailored to support multi-period and multi-level planning approaches whose development is the subject of separate publications.

Keywords: Manufacturing systems, production management, quadratic programming

1. Background

In manufacturing, the lean production and Just-In-Time concepts that appeared in the 70s are still in force to minimize as far as reasonable the stocks and to shorten the production cycles. The last decade has seen the emergence of networked organizations so-called supply chains (Lee and Billington 1995), extended or virtual enterprises (Jagdev and Browne 1998) providing the enterprise network with the agility required by the market without taking the partners away from their own core business. Combining the traditional need for production planning with cooperative environments leads to the integration of Production Management and Logistics, and requires appropriate advanced ERP and APS solutions. The role of the underlying information system is determining to offer the relevant contextual information to the decision makers and to synchronize partners activities despite the heterogeneity of the physical resources, processes and applications (Raghunathan 2003). Moreover, a focal enterprise commonly cumulates the activities resulting from various roles in the open market: those directly induced by customer orders, but also by external order makers in the surrounding supply chain(s). A consequence is that the networked production system is largely heterogeneous in terms of production management philosophy, as well as of IT solutions and the coherence of the global operating is most of the time far to be provable. The interoperability of the decision systems in networked manufacturing organizations is becoming a key topic in the research community (Chen et al. 2007). To face the growing mass of surrounding technical data, various multi-echelon (Mesarovic 1970), hierarchical or fractal (Warnecke 1993) decision making approaches based on aggregate views

[^0]of the technical data were proposed (Tung et al. 1999, Axsäter 2001, Van der Vorst et al. 2001, Fontan et al. 2005). Note that the aggregate planning approaches (Chen and Liao 2003, Kogan and Portougal 2006) are mainly driven by local planning solving issues and are not designed to be applied to networked manufacturing organizations. Production Management and Logistics are largely investigated as an application field of Operations Research (Coughan and Coghlan 2002, Eom and Kim 2006, Scholl and Becker 2006), more specifically addressing optimal inventory management, Supply Chain management (Lee and Billington 1995), planning and scheduling (Uzsoy 1999). Nevertheless most of the models supporting these optimization issues are case-specific and the global modeling of a networked production management is far to be achieved in the literature.

Among the generic issues addressed in Production Management are planning and scheduling. Resource planning, as largely promoted by the MRP approach (Orlicky 1975), is the definition of the activity of a production unit seen as one aggregate resource (typically a workshop or a factory) in a sequence of future time periods, and correlatively of a material procurement as well as product delivery plan. Planning solutions appeal to optimization techniques to implement management policies under capacity and cost constraints (Olhager and Selldin 2003). The scheduling issue considers the internal resources (typically workstations) of a production system and aims to allocate appropriate sub-activities to those resources, according to a complex decision subject to logical (task precedence), technical (transformation and transport resource capacities) and economical (work and stock costs) constraints. See e.g. (Tharumarajah 2001, Herroelen and Leus 2005) for a review of scheduling techniques. Actually, planning and scheduling are two types of decision to organize the activity of networked production organizations at various levels of detail. The need for a joint approach to planning and scheduling is emphasized in the literature (Barták 1999, Smith et al. 2000).
The goal of our investigations was to develop a formal and generic model allowing to support decision making in activity planning and scheduling within networked organizations (Bourrières 1998, Lecompte et al. 2000). As a first step towards this objective, this paper is focused on the elaboration of our generic production model and on its inversion over one single time-period under combined production and stock management strategies. The planning issue as such is not the subject of this paper. Nonetheless the model presented here is tailored to support multi-period planning and multi-level scheduling investigations that are the subject of separate publications. The last section indicates how to extend the results presented in this paper to address the multi-period planning issue.
The remainder of the paper is organized as follows: section 2 presents the generic model or direct production model; section 3 focuses on model inversion and on optimal production solving policies; section 4 is dedicated to an illustrative example; and section 5 is a conclusion.

2. Direct production model

In this section are presented the parameters and variables to capture the technical data, then a production model is established that links the variations of the product amounts to the works generating those variations. We also define the resource capacities and cost data. All vectors in this paper are non-negative column-vectors.

Product modeling

Parameters: The parameters below define the nomenclature of all product items
traced in the manufacturing system: components, intermediate and finished products.
$O_{u} \quad$ the set of component references
$O_{x} \quad$ the set of intermediate product references
$O_{y} \quad$ the set of finished product references
$O \quad$ the global set of product references
$m_{u} \quad$ the number of component references; $m_{u}=\left\|O_{u}\right\|$
$m_{x} \quad$ the number of intermediate product references; $m_{x}=\left\|O_{x}\right\|$
$m_{y} \quad$ the number of finished product references; $m_{y}=\left\|O_{y}\right\|$
$m \quad$ the total number of product references ; $m=m_{u}+m_{x}+m_{y}$

Variables: The following vectors address quantities of products of any possible references:
$s_{u} \quad$ the vector of component amounts with reference to set O_{u}
$s_{x} \quad$ the vector of intermediate product amounts with reference to set O_{x}
$s_{y} \quad$ the vector of finished product amounts with reference to set O_{y}
$\boldsymbol{s} \quad$ the global stock vector, i.e. the concatenation of vectors s_{u}, s_{x}, s_{y}
The vectors above depict the virtual stocks of products in the production system.

Work modeling

Parameters: We similarly introduce the parameters and variables referring to the transformation tasks:
$T \quad$ the set of tasks
$n \quad$ the length of task list of references; $n=\|T\|$

Variables: Vector \boldsymbol{w} addresses quantities of transformation tasks and as such qualifies and quantifies the works carried out in the manufacturing system.
$\boldsymbol{w} \quad$ the vector of task amounts with reference to set T

Timing

In production management, time is divided into periods of constant duration and the concatenation of periods covers a finite time horizon. Below are introduced time-related notations.
$\boldsymbol{s}(k) \quad$ the stock vector at the beginning of period k
$\boldsymbol{s}(k+1)$ the stock vector at the end of period k, i.e. beginning of period $k+1$
$\boldsymbol{w}(k) \quad$ the vector of work performed during period k
In this paper, the production problem is considered over one period only, turning the stock vector from $s(k)$ to $s(k+1)$. In the conclusion we mention how to bridge the one-period optimization related in this paper with the multi-period planning issue.

Costing

Cost modelling for production management basically consists in the valuation of product transformation costs and of inventory costs. The data model is here
enhanced as follows:

$$
\begin{array}{ll}
\boldsymbol{\beta}(k) & \text { the cost vector of the work performed during period } k \\
\gamma(k) & \text { the cost vector of stocks over period } k
\end{array}
$$

Over period k, the cost of work $\boldsymbol{w}(k)$ is $\boldsymbol{\beta}^{T}(k) \boldsymbol{w}(k)$ and the cost of stock $\boldsymbol{s}(k)$ is $\gamma^{T}(k) \boldsymbol{s}(k)$.

Direct production model

Any product transformation requires specific input items and produces output items as well. Considering all item references and all product transformations feasible by the production system, the quantitative impact of a definite work $\boldsymbol{w}(k)$ on stock vector $\boldsymbol{s}(k)$ is defined by the linear model:

$$
\begin{equation*}
\boldsymbol{s}(k+1)-\boldsymbol{s}(k)=\mathbf{C} \boldsymbol{w}(k) \quad \boldsymbol{w}(k) \geq 0 \quad \boldsymbol{s}(k) \geq 0 \quad \boldsymbol{s}(k+1) \geq 0 \tag{1}
\end{equation*}
$$

Notation $\boldsymbol{s}(k)$ and $\boldsymbol{s}(k+1)$ respectively refers to the state of the global stock before and after completion of work $\boldsymbol{w}(k)$. The m-by- n matrix \mathbf{C} defines the variation of product amounts generated by the achievement of work $\boldsymbol{w}(k)$. The components of vectors $\boldsymbol{w}(k)$ and $\boldsymbol{s}(k)$ are non negative. They may be natural integer or real numbers, depending on the application case. Equation (1) links the working activities to the consumption and production of stocks, in other words identifies the direct production model, i.e. all feasible manufacturing processes. A graphical representation of the direct production model is obtained by considering equation (1) as the fundamental equation of a Petri net $<O, T, \mathbf{C}>$ where the set of places O is the concatenation of sets O_{u}, O_{x} and O_{y} of product references, the set of transitions T is the set of task references and \mathbf{C} is the incidence matrix of the Petri net. The weighting of the arcs defines the number of product items consumed and produced by the occurrence of each task. Note that all types of product transformations (machining, assembly, cutting, etc) without any restriction can be modeled. Matrix \mathbf{C} is composed of three blocks $\mathbf{C}_{u}, \mathbf{C}_{x}$ and \mathbf{C}_{y} defined with reference to sets O_{u}, O_{x} and O_{y}. The entries of \mathbf{C}_{u} are non-positive since the input components can only be consumed by the production processes. The entries of \mathbf{C}_{y} are non-negative as the finished products can only be generated by the production processes.

Figure 1 shows an example of production model with $O_{u}=\left\{o_{1}, o_{2}\right\}$ two references of components, $O_{x}=\left\{o_{3}, o_{4}, o_{5}\right\}$ three references of intermediate products, $O_{y}=\left\{o_{6}, o_{7}\right\}$ two references of finished products and $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ four references of tasks.

Resource capacity model

The expression of resource capacities must be homogeneous with the expression of works, in order to be able to assess the load-capacity alignment. We define the capacity of a transformation resource for period k as the maximal work that the resource is able to perform during the period. The resource is potentially polyvalent and the way the resource is able to share its capacity upon the various types of work must also be modeled. One classically distinguishes disjunctive from cumulative resources (Mercier and Van Hentenryck 2007). A disjunctive resource is able to perform one task at once among a set of feasible
tasks, in other words is constrained by time-sharing. A cumulative resource is able to perform various tasks simultaneously and independently. In the latter case, the parallel tasks are commonly sharing a physical scalar (energy, space, weight, etc.). Nevertheless, if the resource is an aggregate and abstract resource, the various activities may be performed independently (e.g. a workshop can simultaneously and independently cumulate various activities allocated to distinct machines). To summarize, three basic categories of resource cover most of the situations: disjunctive resource, cumulative resource with dependent capacities, cumulative resource with independent capacities, but the two first categories can be merged as they both express the sharing of a scalar (time, energy, etc.). Hence, we finally distinguish two categories of transformation resources only: with dependent capacities or with independent capacities.

Below is defined the working capacity of a resource by a vector $\boldsymbol{a}(k), \boldsymbol{a}(k) \geq 0$, the component $a_{j}(k), j \in\{1, \cdots, n\}$ of which is the inverse of the maximal number of j-type task occurrences that can be achieved during period k, assumed that the resource does not execute any other task. The work amount $\boldsymbol{w}(k)$ can be achieved by the resource during period k under the following conditions:

$$
\begin{array}{cl}
\boldsymbol{a}^{T}(k) \boldsymbol{w}(k) \leq 1 & \text { dependent capacities } \\
\mathbf{A}(k) \boldsymbol{w}(k) \leq \mathbf{1} & \text { independent capacities } \tag{2b}
\end{array}
$$

with $\mathbf{A}(k)=\operatorname{diag}\left[a_{1}(k), \cdots, a_{n}(k)\right]$.
The graphical representation of capacity models (2a) and (2b) for $n=2$ is shown on Figure 2.

The load rate of the resource can be characterized by a scalar $\rho(k) \in[0,1]$ when the resource is with dependent capacities, and by a vector $\boldsymbol{\rho}(k) \in[0,1]^{n}$ when the resource is with independent capacities, respectively defined by:

$$
\begin{gather*}
\rho(k)=\boldsymbol{a}^{T}(k) \boldsymbol{w}(k) \quad \rho(k) \in[0,1] \quad \text { dependent capacities } \tag{3a}\\
\boldsymbol{\rho}(k)=\mathbf{A}(k) \boldsymbol{w}(k) \quad \boldsymbol{\rho}(k) \in[0,1]^{n} \quad \text { independent capacities } \tag{3b}
\end{gather*}
$$

A correlated issue is to identify the minimal duration $d[\boldsymbol{w}(k)]$ required to achieve a given load $\boldsymbol{w}(k)$. As the capacities are proportional to the duration of the period, an extrapolation (see Figure 3) can be made that yields:

$$
\begin{gather*}
d[\boldsymbol{w}(k)]=h \boldsymbol{a}^{T}(k) \boldsymbol{w}(k) \quad \text { dependent capacities } \tag{4a}\\
d[\boldsymbol{w}(k)]=h M a x\left[a_{j}(k) w_{j}(k)\right]_{j=1, n} \quad \text { independent capacities } \tag{4b}
\end{gather*}
$$

3. Inverse production model

3.1 Production capacity

A preliminary issue is to identify the maximal amount of products the system is able to achieve in the period, in other words to turn the resource capacities into product capacities : given the resource capacity vector $\boldsymbol{a}(k)$ and the current stock level vector $s(k)$, find the maximal amount of j-type products that the system is able to manufacture in period k. The question may be relevant not only regarding the finished products (set O_{y}) but also any intermediate items (set O_{x}). Moreover, considering the particular case $s_{x}(k)=0$ leads to determine the number of j-type products the system is per se able to produce in the period, i.e. limited only by its capacity, assumed that the stocks of intermediate products are initially empty.

Let \mathbf{C}_{i} be the i-eth line of matrix \mathbf{C}. The work $\boldsymbol{w}(k)$ generates the quantity $\mathbf{C}_{i} \boldsymbol{w}(k)$ of items o_{i}. The maximal production of items o_{i} under the resource capacity constraint (2a) or (2b) is provided by solving the following linear program:

$$
\begin{equation*}
\text { Maximize } \quad \mathbf{C}_{i} \boldsymbol{w}(k) \tag{5}
\end{equation*}
$$

subject to :

$$
\begin{aligned}
& \boldsymbol{w}(k) \geq 0 \\
& \boldsymbol{s}(k)+\mathbf{C} \boldsymbol{w}(k) \geq \boldsymbol{s}^{*}(k+1) \\
& \boldsymbol{a}^{T}(k) \boldsymbol{w}(k) \leq 1 \quad \text { or } \mathbf{A}(k) \boldsymbol{w}(k) \leq 1 \\
& \boldsymbol{w}(k) \in \mathbb{N}^{n}
\end{aligned}
$$

> non negative solutions stock floor constraint resource capacity constraint natural integer solutions (optional)

The last constraint is optional. The stock floor constraint $s^{*}(k+1)$ is given non-negative. The initial stock $s(k)$ is assumed to satisfy the floor and ceiling constraints. One may also add a stock ceilling constraint as shown in section 3.3.

The program above solves the maximal production problem. Nevertheless the solution $\boldsymbol{w}(k)$ may be not unique. It is necessary to search for the optimal achievement of the maximal production target stemming from program (5) by additionally considering one of the optimization programs presented in the next section.

3.2 Model inversion

The inversion of model (1) is interpreted as follows: given the current stock $s(k)$, find any work vector $\boldsymbol{w}(k)$ producing the stock variation $\boldsymbol{\delta}(k)=\boldsymbol{s}(k+1)-\boldsymbol{s}(k)$ expected. Practically, the production target $\boldsymbol{\delta}(k)$ is only partially specified, addressing at least the items of O_{y} (finished products) but also potentially some items of O_{x} (intermediate products) when a stock regulation policy is applied. The unspecified part of $\boldsymbol{\delta}(k)$, i.e. the consumption of components and the unspecified stock variations of intermediate products will result from the solution $\boldsymbol{w}(k)$ chosen. We consequently share set O in two subsets: \bar{O} the list of item references for which a production target is given, and \hat{O} the list of item references for which no production target is specified. Accordingly, the stock cost vector γ is split into vectors $\bar{\gamma}$ and $\hat{\boldsymbol{\gamma}}$, the variation vector $\boldsymbol{\delta}(k)$ into $\overline{\boldsymbol{\delta}}(k)$ and $\hat{\boldsymbol{\delta}}(k)$, and matrix \mathbf{C} into blocks $\overline{\mathbf{C}}$ and $\hat{\mathbf{C}}$ whose dimensions are \bar{m}-by- n and \hat{m}-by- n respectively, with \bar{m} the cardinal of \bar{O} and $\hat{m}=m-\bar{m}$ the cardinal of \hat{O}. Consequently, the production model (1) is refined as follows:

$$
\begin{align*}
& \overline{\boldsymbol{\delta}}(k)=\overline{\mathbf{C}} \boldsymbol{w}(k) \tag{6}\\
& \hat{\boldsymbol{\delta}}(k)=\hat{\mathbf{C}} \boldsymbol{w}(k) \tag{7}
\end{align*}
$$

Then, to invert the linear form (6) i.e. to identify the work $\boldsymbol{w}(k)$ required by the achievement of the specified stock variation $\overline{\boldsymbol{\delta}}(k)$. Each solution $\boldsymbol{w}(k)$ will thanks to relation (7), allow to determine the free stock variation $\hat{\boldsymbol{\delta}}(k)$, in particular the component requirement.

Matrix $\overline{\mathbf{C}}$ being non square, the inversion of the linear model (6) falls under classical discussion. The inversion problem has solutions only if all of the $\bar{m}-\operatorname{rank} \overline{\mathbf{C}}$ characteristic determinants of equation (6) all equate to zero. Under these conditions, the dimension of the solution space, i.e. the order of multiplicity of the solution, is $n-\operatorname{rank} \overline{\mathbf{C}}$. We here assume that $\overline{\mathbf{C}}$ is regular, i.e. $\operatorname{rank} \overline{\mathbf{C}}=\operatorname{Min}(\bar{m}, n)$.

If $\bar{m}>n$, i.e. $\operatorname{rank} \overline{\mathbf{C}}=n$, the system (6) is overdetermined. The system is invertible when all of the $\bar{m}-n$ characteristic determinants are equal to zero. Under this condition, there is an unique solution $\boldsymbol{w}(k)=\overline{\mathbf{C}}^{+} \overline{\boldsymbol{\delta}}(k)$ where $\overline{\mathbf{C}}^{+}=\overline{\mathbf{C}}^{T}\left(\overline{\mathbf{C}} \overline{\mathbf{C}}^{T}\right)^{-1}$ is the Moore-Penrose inverse (Penrose 1955), also called pseudo-inverse, of $\overline{\mathbf{C}}$. The corresponding free stock variation is $\hat{\boldsymbol{\delta}}(k)=\hat{\mathbf{C}} \overline{\mathbf{C}}^{+} \overline{\boldsymbol{\delta}}(k)$. Note that as the target $\overline{\boldsymbol{\delta}}(k)$ is implicated in the characteristic determinants, the existence of solutions results from the compatibility of the production target with the logical structure of the manufacturing process expressed by matrix $\overline{\mathbf{C}}$. Should the system be non invertible, in other words when the production target cannot be exactly achieved, then $\boldsymbol{w}(k)=\overline{\mathbf{C}}^{+} \overline{\boldsymbol{\delta}}(k)$ is the 'best fit' (least square) solution. This solution generates a stock variation that is as close as possible to the target $\overline{\boldsymbol{\delta}}(k)$ expected.

If $\bar{m}=n$, i.e. $\operatorname{rank} \overline{\mathbf{C}}=\bar{m}$, equation (6) is a Cramer system whose unique solution is $\boldsymbol{w}(k)=\overline{\mathbf{C}}^{-1} \overline{\boldsymbol{\delta}}(k)$, therefore $\hat{\boldsymbol{\delta}}(k)=\hat{\mathbf{C}} \overline{\mathbf{C}}^{-1} \overline{\boldsymbol{\delta}}(k)$.

If $\bar{m}<n$, i.e. $\operatorname{rank} \overline{\mathbf{C}}=\bar{m}$, the solution is not unique and an optimization criterion is required to identify good solutions within the $n-\bar{m}$ dimensional solution space. In production management, the objective is obviously to minimize both stock and working costs. The stock management policy is here expressed i) by the specification of 'hard' targets $\bar{s}(k+1)$ for the items whose stock level at the end of the period is strictly defined and $i i$) by the definition, in the optimization function, of 'soft' attracting targets $\hat{\boldsymbol{s}}^{*}(k+1)$ for all other items. Note that the number \bar{m} of controlled stocks must not overpass the number n of tasks, otherwise the system (6) is over-determined and conditionally invertible only.

Below is discussed how to solve the optimization problem, using first a linear programming approach then quadratic programming.

3.3 Optimal inverse model

An economical way to reach the target $\overline{\boldsymbol{\delta}}(k)$ is defined by the following linear program:

$$
\begin{equation*}
\text { Minimize } \quad J_{1}=\beta^{T} w(k)+\hat{\gamma}^{T}\left[\hat{s}(k+1)-\hat{\boldsymbol{s}}^{*}(k+1)\right] \tag{8}
\end{equation*}
$$

subject to :

$$
\begin{aligned}
& \boldsymbol{w}(k) \geq 0 \\
& \overline{\mathbf{C}} \boldsymbol{w}(k)=\overline{\boldsymbol{\delta}}(k) \\
& \hat{\boldsymbol{s}}(k+1)=\hat{\boldsymbol{s}}(k)+\hat{\mathbf{C}} \boldsymbol{w}(k) \\
& \hat{\boldsymbol{s}}(k+1) \geq \hat{\boldsymbol{s}}^{*}(k+1) \\
& \boldsymbol{a}^{T}(k) \boldsymbol{w}(k) \leq 1 \quad \text { or } \mathbf{A}(k) \boldsymbol{w}(k) \leq 1 \\
& \hat{\boldsymbol{s}}(k+1) \leq \hat{\boldsymbol{s}}_{M a x} \\
& \boldsymbol{w}(k) \in \mathbb{N}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { non negative solutions } \\
& \text { achieve specified targets } \\
& \text { production model } \\
& \text { stock floor constraint } \\
& \text { respect resource capacity } \\
& \text { stock ceiling constraint (optional) } \\
& \text { natural integer solutions (optional) }
\end{aligned}
$$

The two last constraints are optional. The stock floor $\hat{s}^{*}(k+1)$ and ceilling $\hat{s}_{\text {Max }}$ are given non-negative. Should some stock levels remain free of control, the corresponding weights in vector $\hat{\gamma}$ will be set to weak values.
The linear program formulated above is easily solved using a Simplex algorithm. The solving is made in real or natural integer numbers, depending on the semantics of the production model. Given the initial stock $\boldsymbol{s}(k)$ and the target $\overline{\boldsymbol{\delta}}(k)$, the optimization process finally provides the optimal work load $\boldsymbol{w}^{\circ}(k)$, the corresponding load rate according to (3a) or (3b), the minimal cost J_{1}° and the stock variation $\hat{\boldsymbol{\delta}}(k)=\hat{\mathbf{C}} \boldsymbol{w}^{\circ}(k)$ among which is in particular the component requirement $\hat{\boldsymbol{\delta}}_{u}(k)=\mathbf{C}_{u} \boldsymbol{w}^{\circ}(k)$.

Instead of solving numerically the optimal production problem, a parametric approach may be also expected to provide a deeper understanding of the problem solving. We will focus on the following quadratic optimization problem:

$$
\begin{equation*}
\text { Minimize } \quad J=\boldsymbol{w}^{T} \boldsymbol{\Psi} \boldsymbol{w} \quad \boldsymbol{\Psi} \text { symmetric positive definite } \tag{9}
\end{equation*}
$$

subject to:

$$
\begin{array}{ll}
\overline{\mathbf{C}} \boldsymbol{w}(k)=\overline{\boldsymbol{\delta}}(k) & \overline{\mathbf{C}} \text { regular } \bar{m} \text {-by- } n \quad \bar{m}<n \\
\boldsymbol{w}(k) \geq 0 & \text { dependent capacities } \\
\boldsymbol{a}^{T}(k) \boldsymbol{w}(k) \leq 1 & \\
\text { or } & \text { independent capacities }
\end{array}
$$

Matrix $\boldsymbol{\Psi}$ will allow us to express definite production strategies.
Minimizing a quadratic criterion subject to underdetermined linear equality constraints is a classical issue, see e.g. (Ben-Israel 2002):

$$
\begin{equation*}
J=\boldsymbol{x}^{T} \boldsymbol{\Psi} \boldsymbol{x} \quad \text { s.t. } \quad \mathbf{M} \boldsymbol{x}=\mathbf{N} \text { is minimal for } \boldsymbol{x}=\boldsymbol{\Psi}^{-1} \mathbf{M}^{T}\left[\mathbf{M} \boldsymbol{\Psi}^{-1} \mathbf{M}^{T}\right]^{-1} \mathbf{N} \tag{10}
\end{equation*}
$$

assumed that $\boldsymbol{\Psi}$ is a symmetric positive definite matrix. Adding the inequality constraints (the optimal solution $\boldsymbol{w}^{\circ}(k)$ must be non-negative and satisfy the capacity constraints) the program has a unique solution when the Karush-Kuhn-Tucker (KKT) conditions are satisfied, see e.g. (Jensen and Bard 2002, Shinners 1998). Logarithmic barriers may also be introduced in the objective function to consider
positive solutions (Frisch 1955). Nevertheless, solving the KKT conditions leads to set up a new linear program itself requiring Simplex-like numerical algorithms. The solving process is thus not fully parametric and there is no more argument to prefer the quadratic optimization approach to the linear program (8). Here we bypass the difficulty of quadratic programming under inequality constraints by previously identifying the 'feasible' production targets for which we are sure that the optimal solution is non-negative and capacity complying. We hereafter make a two-fold study consisting in i) identifying the optimal solution $\boldsymbol{w}^{\circ}(k)$ for some relevant quadratic objective functions subject to equality constraints only and ii) identifying the conditions of target feasibility which ensure that the inequality constraints are satisfied.

Let first equation (6) be considered. An analytical description of the solution space is provided by the generalised inverse formalism:

$$
\begin{equation*}
\boldsymbol{w}(k, \boldsymbol{z})=\overline{\mathbf{C}}^{+} \overline{\boldsymbol{\delta}}(k)+\left(\mathbf{I}-\overline{\mathbf{C}}^{+} \overline{\mathbf{C}}\right) \boldsymbol{z} \tag{11}
\end{equation*}
$$

where \boldsymbol{z} is an arbitrary n-dimensional vector, \mathbf{I} the identity matrix and $\overline{\mathbf{C}}^{+}$the pseudo-inverse of $\overline{\mathbf{C}}$ (Mayer 1973, Varga 2001, Ben-Israel 2002). According to (7), the corresponding free stock variation is:

$$
\begin{equation*}
\hat{\boldsymbol{\delta}}(k, \boldsymbol{z})=\hat{\mathbf{C}} \overline{\mathbf{C}}^{+} \overline{\boldsymbol{\delta}}(k)+\hat{\mathbf{C}}\left(\mathbf{I}-\overline{\mathbf{C}}^{+} \overline{\mathbf{C}}\right) \boldsymbol{z} \tag{12}
\end{equation*}
$$

Within the solution domain (11) we identify the solutions that optimize some specific quadratic criteria expressing relevant production policies, as shown in Table 1. Hereafter is discussed each of the optimization policies.
$\left(J_{2}\right)$ Minimize work amount. Minimizing criterion $J_{2}=\|\boldsymbol{w}(k)\|^{2}$ simply ensures that the target is achieved with the minimal quadratic work amount. The optimal solution is $\boldsymbol{w}^{\circ}(k)=\overline{\mathbf{C}}^{+} \overline{\boldsymbol{\delta}}(k)$, provided by (10) with $\boldsymbol{\Psi}=\mathbf{I}, \mathbf{M}=\overline{\mathbf{C}}$ and $\mathbf{N}=\overline{\boldsymbol{\delta}}(k)$.
$\left(J_{3}\right)$ Minimize working cost. We have to minimize criterion $J_{3}=\|\mathbf{E} \boldsymbol{w}(k)\|^{2}$ with $\mathbf{E}=\operatorname{diag}\left(\beta_{1}, \cdots \beta_{n}\right)$ where β_{j} is the cost of task j. Let \boldsymbol{v} be a vector such that $\boldsymbol{w}(k)=\mathbf{E}^{-1} \boldsymbol{v}$. According to (10), minimizing $J_{3}=\|\boldsymbol{v}\|^{2}$ s.t. $\overline{\mathbf{C}} \mathbf{E}^{-1} \boldsymbol{v}=\overline{\boldsymbol{\delta}}(k)$ leads to solution $\boldsymbol{v}=\left(\overline{\mathbf{C}} \mathbf{E}^{-1}\right)^{+} \overline{\boldsymbol{\delta}}(k)$. Therefore J_{3} is minimal for $\boldsymbol{w}^{\circ}(k)=\mathbf{E}^{-1}\left(\overline{\mathbf{C}} \mathbf{E}^{-1}\right)^{+} \overline{\boldsymbol{\delta}}(k)$. If more particularly the task costs are all identical, then $\mathbf{E}=\mathbf{I}$ and $\boldsymbol{w}^{\circ}(k)=\overline{\mathbf{C}}^{+} \overline{\boldsymbol{\delta}}(k)$.
($J_{4 a}$) Load rate control (dependent capacities). Assumed that the resource has dependent capacities defined by (2a), the objective function $J_{4 a}$ aims to engage the resource capacities at a specified level $\rho^{\circ}(k)$ while achieving the production target $\overline{\boldsymbol{\delta}}(k)$. Here we have to minimize

$$
\left\|\rho(k)-\rho^{\circ}(k)\right\|^{2}=\left[\boldsymbol{w}(k)-\boldsymbol{w}^{\circ}(k)\right]^{T} \boldsymbol{a}(k) \boldsymbol{a}(k)^{T}\left[\boldsymbol{w}(k)-\boldsymbol{w}^{\circ}(k)\right]
$$

where $\boldsymbol{w}^{\circ}(k)$ is so that $\boldsymbol{a}(k)^{T} \boldsymbol{w}^{\circ}(k)=\rho^{\circ}(k)$.
Unfortunately, matrix $\boldsymbol{a}(k) \boldsymbol{a}(k)^{T}$ is singular thus solution (10) is not applicable. To minimize $J_{4 a}$ we follow (Fletcher 1985) by identifying a \bar{m}-by- n matrix \mathbf{S} and a \bar{m}-by- $(n-\bar{m})$ matrix \mathbf{Z} complying with $\overline{\mathbf{C}} \mathbf{S}=\mathbf{I}$ and $\overline{\mathbf{C}} \mathbf{Z}=\mathbf{0}$ and $[\mathbf{S} \mid \mathbf{Z}]$ invertible. Note that $\mathbf{Z}^{T} \boldsymbol{a}(k) \boldsymbol{a}(k)^{T} \mathbf{Z}$ is positive definite on the solution space defined by the equality
constraint. With simplified notations, we minimize the following Lagrangian :

$$
\boldsymbol{L}(\boldsymbol{w}, \boldsymbol{\lambda})=\left(\boldsymbol{w}-\boldsymbol{w}^{\circ}\right)^{\mathrm{T}} \boldsymbol{a} \boldsymbol{a}^{\mathrm{T}}\left(\boldsymbol{w}-\boldsymbol{w}^{\circ}\right)+\boldsymbol{\lambda}^{\mathrm{T}}(\overline{\mathbf{C}} \boldsymbol{w}-\overline{\boldsymbol{\delta}})
$$

which requires to solve :

$$
\begin{gathered}
\nabla_{\boldsymbol{w}}=2 \boldsymbol{a} \boldsymbol{a}^{T}\left(\boldsymbol{w}-\boldsymbol{w}^{\circ}\right)-\overline{\mathbf{C}}^{T} \boldsymbol{\lambda}=0 \\
\nabla_{\boldsymbol{\lambda}}=\overline{\mathbf{C}} \boldsymbol{w}-\overline{\boldsymbol{\delta}}=0
\end{gathered}
$$

By introducing a vector \boldsymbol{v} such as $\boldsymbol{w}=\mathbf{S} \overline{\boldsymbol{\delta}}+\mathbf{Z} \boldsymbol{v}$ we still have $\overline{\mathbf{C}} \boldsymbol{w}-\overline{\boldsymbol{\delta}}=0$ since $\overline{\mathbf{C S}}=\mathbf{I}$ and $\overline{\mathbf{C}} \mathbf{Z}=\mathbf{0}$. By left multiplying $\nabla_{\boldsymbol{w}}$ by \mathbf{Z}^{T} we eliminate $\boldsymbol{\lambda}$:

$$
\mathbf{Z}^{T} \boldsymbol{a} \boldsymbol{a}^{T}\left(\mathbf{S} \overline{\boldsymbol{\delta}}+\mathbf{Z} \boldsymbol{v}-\boldsymbol{w}^{\circ}\right)=0
$$

As $\mathbf{Z}^{T} \boldsymbol{a} \boldsymbol{a}^{T} \mathbf{Z}$ is regular, the unique solution is :

$$
\boldsymbol{v}=\left(\mathbf{Z}^{T} \boldsymbol{a} \boldsymbol{a}^{T} \mathbf{Z}\right)^{-1} \mathbf{Z}^{T} \boldsymbol{a} \boldsymbol{a}^{T}\left(\boldsymbol{w}^{\circ}-\mathbf{S} \overline{\boldsymbol{\delta}}\right)
$$

Finally, $\boldsymbol{w}=\mathbf{S} \overline{\boldsymbol{\delta}}+\mathbf{Z} \boldsymbol{v}$ provides the optimal solution:

$$
\tilde{\boldsymbol{w}}=\mathbf{Z}\left(\boldsymbol{a}^{\mathrm{T}} \mathbf{Z}\right)^{-1} \rho^{\circ}+\left[\mathbf{I}-\mathbf{Z}\left(\boldsymbol{a}^{\mathrm{T}} \mathbf{Z}\right)^{-1} \boldsymbol{a}^{\mathrm{T}}\right] \mathbf{S} \overline{\boldsymbol{\delta}}
$$

Note that solution $\tilde{\boldsymbol{w}}$ leads $\left\|\rho(k)-\rho^{\circ}(k)\right\|^{2}$ to be exactly equal to zero hence $\tilde{\boldsymbol{w}}=\boldsymbol{w}^{\circ}$. The reason is that the quadratic program is semi-definite. This can be verified by left multiplying $\tilde{\boldsymbol{w}}$ by \boldsymbol{a}^{T}, which leads to $\boldsymbol{a}^{T} \tilde{\boldsymbol{w}}=1 \rho^{\circ}+\mathbf{0} \overline{\boldsymbol{\delta}}=\rho^{\circ}$.
$\left(J_{4 b}\right)$ Load rate control (independent capacities). If the resource has independent capacities, see $(2 b)$, one may wish to spare the resource capacities by $\operatorname{minimizing} J_{4 b}=\|\boldsymbol{\rho}(k)\|^{2}=\|\mathbf{A} \boldsymbol{w}(k)\|^{2}$ with $\mathbf{A}(k)=\operatorname{diag}\left[a_{1}(k), \cdots, a_{n}(k)\right]$. The optimal solution is here $\boldsymbol{w}^{\circ}(k)=\mathbf{A}^{-1}\left(\overline{\mathbf{C}} \mathbf{A}^{-1}\right)^{+} \overline{\boldsymbol{\delta}}(k)$. As matrix \mathbf{A} is regular, the quadratic programme is definite and does not bring $J_{4 b}$ to zero but to its minimal positive value.
$\left(J_{5}\right)$ Stock and/or work control. The component $\|\mathbf{E} \boldsymbol{w}(k)\|^{2}$ of criterion J_{5} aims to minimize work cost whereas $\left\|\hat{\mathbf{F}}\left[\hat{\boldsymbol{\delta}}(k)-\hat{\boldsymbol{\delta}}^{*}(k)\right]\right\|^{2}$ is to attract the parasitic production $\hat{\boldsymbol{\delta}}(k)$ to a predefined value $\hat{\boldsymbol{\delta}}^{*}(k)$ expressing a 'soft' stock target $\hat{\boldsymbol{s}}^{*}(k+1)=\hat{\boldsymbol{s}}(k)+\hat{\boldsymbol{\delta}}^{*}(k)$.

Noting that $\hat{\boldsymbol{\delta}}(k)-\hat{\boldsymbol{\delta}}^{*}(k)=\hat{\boldsymbol{s}}(k+1)-\hat{\boldsymbol{s}}^{*}(k+1)$, the expression $\left\|\hat{\mathbf{F}}\left[\hat{\boldsymbol{\delta}}(k)-\hat{\boldsymbol{\delta}}^{*}(k)\right]\right\|^{2}$ is the weighted quadratic error on the final stock and the entries of the diagonal matrix $\hat{\mathbf{F}}$ are the stock costs. The minimization of J_{5} with simplified notations is as follows:

$$
J_{5}=\|\mathbf{E} \boldsymbol{w}\|^{2}+\left\|\hat{\mathbf{F}}\left(\hat{\boldsymbol{\delta}}-\hat{\boldsymbol{\delta}}^{*}\right)\right\|^{2}=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w}-2 \boldsymbol{w}^{* \mathrm{~T}} \hat{\mathbf{C}}^{\mathrm{T}} \hat{\mathbf{F}}^{2} \hat{\mathbf{C}} \boldsymbol{w}+\boldsymbol{w}^{* \mathrm{~T}} \hat{\mathbf{C}}^{\mathrm{T}} \hat{\mathbf{F}}^{2} \hat{\mathbf{C}} \boldsymbol{w}^{*}
$$

where $\boldsymbol{\Phi}=\mathbf{E}^{2}+\hat{\mathbf{C}}^{T} \hat{\mathbf{F}}^{2} \hat{\mathbf{C}}$.

Here \boldsymbol{w}^{*} is the work generated by the variation $\hat{\boldsymbol{\delta}}^{*}$. Using the Lagrange multiplier technic, we have $\boldsymbol{L}(\boldsymbol{w}, \boldsymbol{\lambda})=J_{5}+\boldsymbol{\lambda}^{\mathrm{T}}(\overline{\mathbf{C}} \boldsymbol{w}-\overline{\boldsymbol{\delta}})$ and consequently:

$$
\begin{gathered}
\nabla_{\boldsymbol{w}}=2 \boldsymbol{\Phi} \boldsymbol{w}-2 \hat{\mathbf{C}}^{T} \hat{\mathbf{F}}^{2} \hat{\mathbf{C}} \boldsymbol{w}^{*}-\hat{\mathbf{C}}^{T} \boldsymbol{\lambda}=0 \\
\nabla_{\boldsymbol{\lambda}}=\overline{\mathbf{C}} \boldsymbol{w}-\overline{\boldsymbol{\delta}}=0
\end{gathered}
$$

whose explicit solution after some calculation is :

$$
\boldsymbol{w}^{\circ}=\boldsymbol{\Phi}^{-1} \hat{\mathbf{C}}^{T}\left(\overline{\mathbf{C}} \boldsymbol{\Phi}^{-1} \hat{\mathbf{C}}^{T}\right)^{-1} \overline{\boldsymbol{\delta}}+\left[\mathbf{I}-\boldsymbol{\Phi}^{-1} \hat{\mathbf{C}}^{\mathrm{T}}\left(\overline{\mathbf{C}} \boldsymbol{\Phi}^{-1} \hat{\mathbf{C}}^{\mathrm{T}}\right)^{-1} \overline{\mathbf{C}}\right] \boldsymbol{\Phi}^{-1} \hat{\mathbf{C}}^{\mathrm{T}} \hat{\mathbf{F}}^{2} \hat{\boldsymbol{\delta}}^{*}
$$

Hence the error on the final stock is $\hat{\boldsymbol{s}}^{*}(k+1)-\hat{\mathbf{C}} \boldsymbol{w}^{\circ}(k)$. The particular case $\mathbf{E}=0$ minimizes stock costs only, whereas program J_{5} tends to program J_{3} (work minimization) when $\hat{\mathbf{F}}$ tends to $\mathbf{0}$.

Taking into account inequality constraints : target feasibility domain

To ensure that the optimal solutions given by Table 1 are non-negative (real or natural integer) vectors satisfying the capacity constraints, we here identify the restrictions on the production targets.

Looking for real solutions, the optimal solutions from Table 1 must additionally satisfy the following constraints depending on the capacity model (2a) or (2b):

$$
\begin{array}{ccc}
\boldsymbol{w}^{\circ}(k) \geq 0 & \boldsymbol{a}^{T}(k) \boldsymbol{w}^{\circ}(k) \in[0,1] & \text { (dependent capacities) } \\
\boldsymbol{w}^{\circ}(k)=\mathbf{A}^{-1} \boldsymbol{\rho}^{\circ}(k) & \boldsymbol{\rho}^{\circ}(k) \in[0,1]^{n} & \text { (independent capacities) } \tag{13b}
\end{array}
$$

The condition (13a) or (13b) defines the target feasibility domain making $\overline{\boldsymbol{\delta}}(k)$, $\hat{\delta}^{*}(k)$ and $\rho^{\circ}(k)$ linearly dependent. Note that the target feasibility domain is a linear inequality defining a convex set and may be turned into a standard LMI form to benefit from LMI-based optimization techniques (Boyd et al. 1994). For example looking for the real solutions of quadratic program $J_{4 a}$ (load rate control), the conditions (13a) applied to $J_{4 a}$ define the target feasibility domain as follows:

$$
\begin{equation*}
\mathbf{Z}\left(\boldsymbol{a}^{T} \mathbf{Z}\right)^{-1} \rho^{\circ}(k)+\left[\mathbf{I}-\mathbf{Z}\left(\boldsymbol{a}^{T} \mathbf{Z}\right)^{-1} \boldsymbol{a}^{T}\right] \mathbf{S} \overline{\boldsymbol{\delta}}(k) \geq 0 \quad \rho^{\circ}(k) \in[0,1] \tag{14a}
\end{equation*}
$$

whereas (13b) combined with (6) defines the following feasibility domain:

$$
\begin{equation*}
\overline{\boldsymbol{\delta}}(k)=\overline{\mathbf{C}} \mathbf{A}^{-1} \boldsymbol{\rho}^{\circ}(k) \quad \boldsymbol{\rho}^{\circ}(k) \in[0,1]^{n} \tag{14b}
\end{equation*}
$$

Looking for natural integer solutions, the optimal solutions from Table 1 must satisfy the following constraints depending on the capacity model (2a) or (2b):

$$
\begin{array}{lrr}
\boldsymbol{w}^{\circ}(k) \in \mathbb{N}^{n} & \boldsymbol{a}^{T}(k) \boldsymbol{w}^{\circ}(k) \in[0,1] & \text { (dependent capacities) } \\
\boldsymbol{w}^{\circ}(k)=\mathbf{A}^{-1} \boldsymbol{\rho}^{\circ}(k) & {\left[\boldsymbol{\rho}^{\circ}(k)\right]_{j}=\eta_{j} a_{j}} & \text { (independent capacities) } \tag{15b}
\end{array}
$$

with $\eta_{j}=0,1, . ., a_{j}{ }^{-1}$

Finally, an appropriate approach to solve the quadratic programs J_{2} to J_{5} submitted to both equality and inequality constraints is the following:

1) prior define the feasible targets under inequality constraints using (13a), (13b), (15a) or (15b), then
2) apply the optimal solution provided by Table 1. Programs J_{2}, J_{3}, J_{5} are usable with both capacity models (2a) and (2b). Program $J_{4 a}$ suits for the dependent capacity model (2a) whereas $J_{4 b}$ suits for the independent capacity model (2b).

4. Application

This section illustrates the use of our linear model in the determination of singleperiod production scenarios according to the control policies presented in Table 1. We consider the production model shown on Figure 1. We associate the 'hard' production target with items o_{4}, o_{6} and o_{7} whereas the 'soft' target is on items o_{3} and o_{5}. We consequently note:

$$
\overline{\boldsymbol{\delta}}(k)=\left(\delta_{4} \delta_{6} \delta_{7}\right)^{T} \quad \hat{\boldsymbol{\delta}}(k)=\left(\delta_{1} \delta_{2} \delta_{3} \delta_{5}\right)^{T}
$$

Let moreover the following data be considered:
$\boldsymbol{s}(k)=(300300505050100200) \quad$ initial stock level
$\boldsymbol{a}(k)=10^{-3}(1021020) \quad$ resource capacity
$\mathbf{E}=\operatorname{diag}(30251020) \quad$ working cost
$\hat{\mathbf{F}}=\operatorname{diag}(20101020) \quad$ stock cost

We have :

$$
\begin{array}{cc}
\bar{O}=\left\{o_{4}, o_{6}, o_{7}\right\} & \overline{\mathbf{C}}=\left(\begin{array}{cccc}
1 & 1 & -2 & -1 \\
0 & 0 & 3 & 0 \\
0 & 0 & 1 & 2
\end{array}\right)
\end{array} \quad \hat{O}=\left\{o_{1}, o_{2}, o_{3}, o_{5}\right\} \quad \hat{\mathbf{C}}=\left(\begin{array}{cccc}
-2 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
2 & 0 & -1 & 0 \\
0 & 1 & 0 & -3
\end{array}\right), ~\left(\begin{array}{ccc}
3 & 1.5 & 1.5 \\
3 & 1.5 & 1.5 \\
0 & 2 & 0 \\
0 & -1 & 3
\end{array}\right) \quad \mathbf{I}-\overline{\mathbf{C}}^{+} \overline{\mathbf{C}}=\frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Here $\bar{m}=3, n=4, \operatorname{ran} k \overline{\mathbf{C}}=3$ and the dimension of the solution space is $n-\operatorname{rank} \overline{\mathbf{C}}=1$. To solve the semi-definite program $J_{4 a}$ the following matrices may be used:

$$
\mathbf{S}=\frac{1}{6}\left(\begin{array}{ccc}
6 & 0 & 3 \\
0 & 3 & 0 \\
0 & 2 & 0 \\
0 & -1 & 3
\end{array}\right) \quad \mathbf{Z}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right)
$$

which verify $\overline{\mathbf{C S}}=\mathbf{I}$ and $\overline{\mathbf{C}} \mathbf{Z}=\mathbf{0}$.
Maximal production The linear program (5) applied to items o_{6} and o_{7} provides the production capacities shown in Table 2. Here the constraint $\boldsymbol{w}(k) \in \mathbb{N}^{n}$ is additionally considered. The production capacities are both computed for the initial stock $\boldsymbol{s}(k)$ previously given and for $\boldsymbol{s}_{x}(k)=0$ (the intermediate stocks are empty and the resource has consequently to achieve the whole manufacturing processes). The results are obtained for dependent and for independent resource capacities.

Feasible targets Assumed first that the resource is with dependent capacities, we solve the load rate control problem by previously identifying the feasible targets according to (13a):

$$
\left(\begin{array}{c}
125 \\
-125 \\
0 \\
0
\end{array}\right) \rho^{\circ}(k)+\frac{1}{24}\left(\begin{array}{ccc}
-6 & -3 & -33 \\
30 & 15 & 45 \\
0 & 8 & 0 \\
0 & -4 & 12
\end{array}\right) \overline{\boldsymbol{\delta}}(k) \geq 0 \quad \rho^{\circ}(k) \in[0,1]
$$

The LMI above defines the domain of feasibility of the production target $\overline{\boldsymbol{\delta}}(k)$ and ensures that the corresponding work vector $\boldsymbol{w}(k)$ is non negative and satisfies the capacity constraint. The domain is ρ°-homothetic. It is shown on Figure 4a. Setting the load rate to 1 , the production of achieved items is maximal at point $P_{1}\left(\bar{\delta}_{6}=300 ; \bar{\delta}_{7}=100\right)$, assumed that the stock level of o_{4} is sufficient $\left(\bar{\delta}_{4}=-200\right)$. If the production of o_{7} only is expected, one can obtain up to $\bar{\delta}_{7}=100$ with $\bar{\delta}_{4}=-50$, see point P_{2}. One may also expect to concentrate the activity on the production item o_{4} up to $\bar{\delta}_{4}=500$, see P_{3}.

If the resource is with independent capacities, we consider (13b):

$$
\overline{\boldsymbol{\delta}}(k)=\left(\begin{array}{cccc}
100 & 500 & -200 & -50 \\
0 & 0 & 300 & 0 \\
0 & 0 & 100 & 100
\end{array}\right) \boldsymbol{\rho}^{\circ}(k) \quad \boldsymbol{\rho}^{\circ}(k) \in[0,1]^{4}
$$

The target feasibility domain is shown on Figure 4b.
Optimal production policies Let e.g. the 'hard' target $\overline{\boldsymbol{\delta}}(k)=\left(\begin{array}{lll}0 & 70 & 40\end{array}\right)^{T}$ be specified i.e. to produce $70 o_{6}$ and $40 o_{7}$ while strictly maintaining the stock o_{4} unchanged. To be feasible, the target must additionally comply with (13a) or (13b), which yields:

$$
\begin{array}{cc}
0.51 \leq \rho^{\circ}(k) \leq 0.95 & \text { (dependent capacity) } \\
20 \rho_{1}^{\circ}+100 \rho_{2}^{\circ}=11 \quad \rho_{3}^{\circ}=0.23 & \rho_{4}^{\circ}=0.17 \quad \text { (independent capacity) }
\end{array}
$$

The optimized solutions to reach the target $\overline{\boldsymbol{\delta}}(k)=\left(\begin{array}{lll}0 & 70 & 40\end{array}\right)^{T}$ with reference to criteria J_{1} to J_{5} are presented in Table 3. A Simplex solver was used to minimize J_{1}. The other criteria were optimized analytically, applying the results from Table
2. For criterion $J_{4 a}$ we chose $\rho^{\circ}=0.51$, the minimal possible value of the load rate identified above. The 'soft' target $\hat{\delta}^{*}(k)=(-100-10000)^{T}$ was used for J_{5}. The optimization of J_{5} was made for the matrix \mathbf{E} previously given (work and stock cost minimization) and for $\mathbf{E}=0$ (stock cost minimization only) as well. For each optimization problem, we have computed the optimal solution $\boldsymbol{w}^{\circ}(k)$ and the corresponding production $\boldsymbol{\delta}(k)$. The 'hard' production target $\overline{\boldsymbol{\delta}}(k)$ is strictly reached, whereas the 'free' production $\hat{\boldsymbol{\delta}}(k)$-of which the component requirementstems from the particular economical and/or stock level control policy expressed by the objective function. The optimization of J_{2} is very easily computerized and minimizes the quantity of operations to be performed. Nevertheless the resource capacity is also partly engaged to generate a parasitic production. Minimizing J_{3} provides the most economical solution with regard to the working cost. But the parasitic production of items o_{3} is very high and over consumes the resource capacity ($\rho^{\circ}=0.86$). The programs $J_{4 a}$ and $J_{4 b}$ allow to spare the resource capacity by engaging the minimal load rate. The counterpart is the consumption of the intermediate stock o_{3}. The program J_{1} and J_{5} give the priority to working and stocking costs minimization rather than sparing the load rate.

5. Conclusion

The linear model presented is this paper is applicable to a large range of discrete or continuous production systems performing various transformation tasks, including assembly/disassembly. The boundaries of the article are the consideration of single-period production and stock management policies formalized as optimization problems subject to linear equalities (the production model) and inequalities (resource capacity constraints). Appealing to linear criteria leads to easy problem solving approaches using popular Simplex algorithms. Being numerical, those algorithms nevertheless do not provide any deep understanding of the solutions obtained. For this reason, we have performed the analytical solving of some quadratic programs expressing the most relevant policies. The inequality constraints were integrated through prior analysis of the target feasibility domain.

On the basis of the model presented in this paper, our investigations are in two directions : i) multi-period resource planning and $i i$) multi-level scheduling.

The multi-period planning model is derived from the one-period production problem by extending vector $\boldsymbol{w}(k)$ to a vector $\tilde{\boldsymbol{w}}(k)$ such that:

$$
\tilde{\boldsymbol{w}}^{T}(k)=\left[\boldsymbol{w}^{T}(k) \boldsymbol{\pi}^{T}(k) \boldsymbol{\xi}^{T}(k)\right]
$$

with $\boldsymbol{\pi}^{T}(k)$ the procurement vector in period k and $\boldsymbol{\xi}^{T}(k)$ the expedition vector in period k. We consequently state an under-determined linear model over a planning horizon model $k=1, H$ with $\left(\boldsymbol{w}^{T}(k), k=1, H\right)$ as decision variables whose inversion under capacity and cost constraints leads to formulate linear or quadratic programs similar to those studied in this paper.

The formulation of the multi-level scheduling problem addresses simultaneously two levels of data : i) aggregate data related to the capacity of a mother resource as well as to the corresponding product/task/processes and ii) detailed data related to the network of daughter-resources encapsulated in the mother resource. The interrelations between the aggregate and detailed views can be formulated in a linear
framework and lead to identify aggregation/disaggregation consistency rules. Based on the linear model presented in this paper, our investigations aim to promote unified planning and scheduling generic primitives in a multi-level plan breaking-up approach to iteratively turn a product order book into detailed activities.

References

Axsäter, S., 2001, A framework for decentralized multi-echelon inventory control, IIE Transactions, 33, 91-97.
Barták, R., 1999, Conceptual Models for Combined Planning and Scheduling. Electronic Notes in Discrete Mathematics, 4. Elsevier.
Ben-Israel, A., 2002, The Moore of the Moore-Penrose inverse, Electron. journ. lin. algeb. 9, 150-157.
Bourrières, J.P., 1998, Multi-level algebraic modelling of complex manufacturing tasks, Proc. of the IFAC IMS'98 Int. Conf., Gramado, 261- 265.
Boyd, S., L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM books, Philadelphia, 1994.
Chen, D., Dassisti, M., Elvester, B., 2007, Enterprise Interoperability Framework and Knowledge Corpus, Public Deliverable DI.3, FP6 INTEROP-NoE IST508 011, European Commission.
Chen, Y.K. and Liao, H.C., 2003, An investigation on selection of simplified aggregate production planning strategies using MADM approaches. Int. Journ. of Production Research, 41, 3359-3374.
Coughan, P., Coghlan, D., 2002, Action research for operations management, Int. Journ. of Operations \& Production Management, 22(2), 220-240.
Eom, S. and Kim, E, A survey of decision support system applications (1995-2001). 2006, Operations Research Society, 57, 1264-1278.
Fletcher, R., 1985, Semi-definite matrix constraints in optimization, SIAM Journal on Control and Optimization, 1985, 23(4), 493-513.
Fontan, G., Merc, C., Hennet, J.C., and Lasserre ,J.B., 2005, Hierarchical scheduling for decision support, Int. Journ. of Intelligent Manufacturing, 16, 235-242.
Frisch, K. R., 1955, The logarithmic potential method for convex programming. Memorandum, Institute of Economics, University of Oslo.
Kogan, K. and Portougal, V., 2006, Multi-period aggregate production planning in a newsvendor framework. Operations Research Society, 57, 423-433.
Herroelen, W., Leus, R., 2005, Project scheduling under uncertainty: Survey and research potentials, European Journal of Operational Research, 165, 289-306.
Jagdev, H.S, Browne, J., 1998, The extended enterprise- a context for manufacturing, Int. Journ. of Production Planning and Control, 9, 216-229.
Jensen, P., Bard, J. F., 2002, Operations Research Models and Methods: Models and Methods, John Wiley \& Sons.
Lecompte, T., Deschamps, J.C., Bourrières, J.P., 2000, A data model for generalised scheduling for virtual enterprise, Int. Journ. of Production Planning and Control, 11, 343-348.
Lee, H.L, Billington C. (1995), The evaluation of supply chain management models and practice at Hewlet - Packard, Interfaces, 25, 42-63.
Mayer, C.D., 1973, Generalized inversion of modified matrices, Int. J. Appl. Math. 24, 315-323
Mercier, L., Van Hentenryck, P., 2007, Strong polynomiality of resource constraint propagation, Discrete Optimization, 4, 288-314
Mesarovic, M. D., 1970, Theory of hierarchical multilevel systems, Academic Press, New York \& London.

Olhager, J. E., Selldin, 2003, Enterprise Resource Planning survey of Swedish manufacturing firms, European Journal of Operational Research, 146, 365-373.
Orlicky J.,1975, Material Requirements Planning, ed. Mac Graw Hill, New York.
Penrose, R., 1955, A generalized inverse for matrices, Cambridge Philosophical Society, 51, 406-413.
Raghunathan, S., 2003, Impact of demand correlation on the value of and incentives for information sharing in a supply chain, Eur. J. of Operations Research, 146, 634-649.
Roy B., Anciaux, D. Vernadat F., "SYROCO : A Novel Multi-agents Shop-floor Control System", Int. Journ. of Intelligent Manufacturing, Chapman and Al, 2000.

Scholl, A., Becker, C., 2006, State-of-the-art exact and heuristic solution procedures for simple assembly line balancing, European Journ. of Operational Research, 168 (3), 666-693.
Shinners, S., M., 1998, Modern Control system Theory and Design, John Wiley and Sons.
Smith, D., E., Frank, J., Jonsson, A., K., 2000, Bridging the Gap Between Planning and Scheduling, Knowledge Engineering Review, 15 (1), 47-83.
Tharumarajah, A., 2001, Survey of resource allocation methods for distributed manufacturing systems, Int. Journ. of Production Planning \& Control, 12 (1), 58-68.
Tung L.F., Lin L. and Nagir, R., 1999, Multiple objective scheduling for the hierarchical control of flexible manufacturing systems, Flexible Manufacturing Systems, 11, 379-409.
Uzsoy, R., 1999, Book review " the Planning and Scheduling of Production Systems, Chapman and Hall " IIE Transactions, 31, 190-193.
Van der Vorst, J., Beulens, A. and Van Beek, P., 2001, Modelling and simulating multi-echelon food systems, Eur. J. of Operations Research, 122, p. 354-366.
Varga, A., 2001, Computing generalized inverse systems using matrix pencil methods. Int. J. of Applied Mathematics and Computer Science, 11,1055-1068.
Vernadat F., Anciaux D., Spadoni M., 1999, Reactive shop-floor Control Architecture Based on Multi-agents Systems, Theory and Practice of Control and System, World Scientific Publishing, London.
Warnecke, H.J., The Fractal Company: a Revolution in Corporate Culture, Springer-Verlag, Berlin, 1993.
Table 1. Optimal solutions s.t. equality constraint $\overline{\mathbf{C}} \boldsymbol{w}(k)=\overline{\boldsymbol{\delta}}(k)$

Optimization criterion	Optimal solution				
$J_{2}=\\|\boldsymbol{w}(k)\\|^{2}$	$\boldsymbol{w}^{\circ}(k)=\overline{\mathbf{C}}^{+} \overline{\boldsymbol{\delta}}(k)$				
$J_{3}=\\|\mathbf{E} \boldsymbol{w}(k)\\|^{2}$	$\boldsymbol{w}^{\circ}(k)=\mathbf{E}^{-1}\left(\overline{\mathbf{C}} \mathbf{E}^{-1}\right)^{+} \overline{\boldsymbol{\delta}}(k)$				
$J_{4 a}=\left\\|\rho(k)-\rho^{\circ}(k)\right\\|^{2}$	$\boldsymbol{w}^{\circ}(k)=\mathbf{Z}\left(\boldsymbol{a}^{\mathrm{T}} \mathbf{Z}\right)^{-1} \rho^{\circ}(k)+\left[\mathbf{I}-\mathbf{Z}\left(\boldsymbol{a}^{\mathrm{T}} \mathbf{Z}\right)^{-1} \boldsymbol{a}^{\mathrm{T}}\right] \mathbf{S} \overline{\boldsymbol{\delta}}(k)$				
$J_{4 b}=\\|\boldsymbol{\rho}(k)\\|^{2}$	$\boldsymbol{w}^{\circ}(k)=\mathbf{A}^{-1}\left(\overline{\mathbf{C}} \mathbf{A}^{-1}\right)^{+} \overline{\boldsymbol{\delta}}(k)$				
$J_{5}=\\|\mathbf{E} \boldsymbol{w}(k)\\|^{2}+\left\\|\hat{\mathbf{F}}\left(\hat{\boldsymbol{\delta}}(k)-\hat{\boldsymbol{\delta}}^{*}(k)\right)\right\\|^{2}$	$\boldsymbol{w}^{\circ}(k)=\Phi^{-1} \hat{\mathbf{C}}^{T}\left(\overline{\mathbf{C}} \Phi^{-1} \hat{\mathbf{C}}^{T}\right)^{-1} \overline{\boldsymbol{\delta}}(k)+\left[\mathbf{I}-\Phi^{-1} \hat{\mathbf{C}}^{\mathrm{T}}\left(\overline{\mathbf{C}} \Phi^{-1} \hat{\mathbf{C}}^{\mathrm{T}}\right)^{-1} \overline{\mathbf{C}}\right] \Phi^{-1} \hat{\mathbf{C}}^{\mathrm{T}} \hat{\mathbf{F}}^{2} \hat{\boldsymbol{\delta}}^{*}(k)$				
Notes: $\quad \mathbf{E}=\operatorname{diag}\left(\beta_{1}, \cdots \beta_{n}\right) \quad \mathbf{A}=\operatorname{diag}\left(a_{1}, \cdots a_{n}\right) \quad \hat{\mathbf{F}}$ diagonal $\quad \Phi=\mathbf{E}^{2}+\hat{\mathbf{C}}^{T} \hat{\mathbf{F}}^{2} \hat{\mathbf{C}}$					
$J_{4 a}$ and $J_{4 b}$ for respectively dependent and independent resource capacities					

Table 2. Production capacity

Resource capacity	dependent	dependent	independent	independent
Initial stock	$\boldsymbol{s}(k)$	$\boldsymbol{s}_{x}(k)=0$	$\boldsymbol{s}(k)$	$\boldsymbol{s}_{x}(k)=0$
Max δ_{6}	216	165	300	300
Max δ_{7}	90	76	200	200

Policy		Optimal work			Load rate			Stock variation			$\bar{\delta}_{6}(k)$	$\bar{\delta}_{7}(k)$
	$w_{1}(k)$	$w_{2}(k)$	$w_{3}(k)$	$w_{4}(k)$	$\begin{gathered} \rho(k) \\ \boldsymbol{\rho}^{T}(k) \end{gathered}$	$\hat{\delta}_{1}(k)$	$\hat{\delta}_{2}(k)$	$\hat{\delta}_{3}(k)$	$\bar{\delta}_{4}(k)$	$\hat{\delta}_{5}(k)$		
resource with dependent capacities												
J_{1}	30	25	23.33	8.33	0.75	-85	-25	36.66	0	0	70	40
$J_{4 a}$	0	55	23.33	8.33	0.51	-55	-55	-23.33	0	30	70	40
resource with independent capacities												
J_{1}	55	0	23.33	8.33	$\left[\begin{array}{llllll}0.55 & 0.00 & 0.23 & 0.17\end{array}\right]$	-85	-25	36.66	0	0	70	40
$J_{4 b}$	2.12	52.88	23.33	8.33	$\left[\begin{array}{llllll}0.02 & 0.11 & 0.23 & 0.17\end{array}\right]$	-57.12	-52.88	-19.10	0	27.88	70	40
resource with dependent or independent capacities												
J_{2}	27.5	27.5	23.33	8.33	$\left.\begin{array}{ccc} 0.73 \\ {\left[\begin{array}{lll} 0.28 & 0.06 & 0.23 \end{array}\right.} & 0.17 \end{array}\right]$	-82.5	-27.5	31.66	0	2.5	70	40
J_{3}	44	11	23.33	8.33	$\begin{array}{cc} 0.86 \\ {\left[\begin{array}{lll} 0.44 & 0.02 & 0.23 \\ 0.17 \end{array}\right]} \end{array}$	-99	-11	-64.66	0	-14	70	40
J_{5}	35.12	19.88	23.33	8.33	$\begin{gathered} 0.79 \\ {\left[\begin{array}{ll} 0.35 & 0.04 \\ 0.23 & 0.17 \end{array}\right]} \end{gathered}$	-90.12	-19.88	46.92	0	5.12	70	40
$J_{5}(\mathbf{E}=0)$	6.31	48.69	23.33	8.33	$\begin{gathered} 0.56 \\ {\left[\begin{array}{lll} 0.06 & 0.10 & 0.23 \\ 0.17 \end{array}\right]} \end{gathered}$	-61.31	-48.69	-10.71	0	23.69	70	40

components semi-achieved achieved

(a) Petri net

$$
\mathbf{C}=\left(\begin{array}{l}
\mathbf{C}_{u} \\
\mathbf{C}_{x} \\
\mathbf{C}_{y}
\end{array}\right)=\left(\begin{array}{cccc}
-2 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
\hline 2 & 0 & -1 & 0 \\
1 & 1 & -2 & -1 \\
0 & 1 & 0 & -3 \\
\hline 0 & 0 & 3 & 0 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

(b) Incidence matrix

Figure 1. Production model

Taylor 8 Francis and I.T. Consultant

(a) Dependent capacities (b) Independent capacities

Figure 2. Resource capacity model

(a) Dependent capacities

Figure 3. Delay to achieve work $\boldsymbol{w}(k)$

(a) Dependent capacity

(b) Independent capacity

Figure 4. Target feasibility domain

[^0]: *J.P. Bourrieres. Email: jean-paul.bourrieres@laps.ims-bordeaux.fr

