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A linear model for production management considering generic data on stocks, manufac-
turing processes, resource capacities and costs is presented. Any type of continuous or discrete
production process also including assembly and disassembly tasks is taken into account. The
model inversion issue is analysed and relevant joint production/inventory management poli-
cies are solved by optimizing linear and quadratic programs under resource and stock capacity
constraints. Beyond the single period inversion issue which is the focus of the paper, the model
is tailored to support multi-period and multi-level planning approaches whose development
is the subject of separate publications.

Keywords: Manufacturing systems, production management, quadratic programming

1. Background

In manufacturing, the lean production and Just-In-Time concepts that appeared in
the 70s are still in force to minimize as far as reasonable the stocks and to shorten
the production cycles. The last decade has seen the emergence of networked or-
ganizations so-called supply chains (Lee and Billington 1995), extended or virtual
enterprises (Jagdev and Browne 1998) providing the enterprise network with the
agility required by the market without taking the partners away from their own
core business. Combining the traditional need for production planning with co-
operative environments leads to the integration of Production Management and
Logistics, and requires appropriate advanced ERP and APS solutions. The role of
the underlying information system is determining to offer the relevant contextual
information to the decision makers and to synchronize partners activities despite
the heterogeneity of the physical resources, processes and applications (Raghu-
nathan 2003). Moreover, a focal enterprise commonly cumulates the activities re-
sulting from various roles in the open market: those directly induced by customer
orders, but also by external order makers in the surrounding supply chain(s). A con-
sequence is that the networked production system is largely heterogeneous in terms
of production management philosophy, as well as of IT solutions and the coherence
of the global operating is most of the time far to be provable. The interoperability
of the decision systems in networked manufacturing organizations is becoming a
key topic in the research community (Chen et al. 2007). To face the growing mass
of surrounding technical data, various multi-echelon (Mesarovic 1970), hierarchical
or fractal (Warnecke 1993) decision making approaches based on aggregate views
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of the technical data were proposed (Tung et al. 1999, Axsäter 2001, Van der Vorst
et al. 2001, Fontan et al. 2005). Note that the aggregate planning approaches (Chen
and Liao 2003, Kogan and Portougal 2006) are mainly driven by local planning
solving issues and are not designed to be applied to networked manufacturing or-
ganizations. Production Management and Logistics are largely investigated as an
application field of Operations Research (Coughan and Coghlan 2002, Eom and
Kim 2006, Scholl and Becker 2006), more specifically addressing optimal inventory
management, Supply Chain management (Lee and Billington 1995), planning and
scheduling (Uzsoy 1999). Nevertheless most of the models supporting these opti-
mization issues are case-specific and the global modeling of a networked production
management is far to be achieved in the literature.

Among the generic issues addressed in Production Management are planning and
scheduling. Resource planning, as largely promoted by the MRP approach (Orlicky
1975), is the definition of the activity of a production unit seen as one aggregate re-
source (typically a workshop or a factory) in a sequence of future time periods, and
correlatively of a material procurement as well as product delivery plan. Planning
solutions appeal to optimization techniques to implement management policies un-
der capacity and cost constraints (Olhager and Selldin 2003). The scheduling issue
considers the internal resources (typically workstations) of a production system and
aims to allocate appropriate sub-activities to those resources, according to a com-
plex decision subject to logical (task precedence), technical (transformation and
transport resource capacities) and economical (work and stock costs) constraints.
See e.g. (Tharumarajah 2001, Herroelen and Leus 2005) for a review of scheduling
techniques. Actually, planning and scheduling are two types of decision to organize
the activity of networked production organizations at various levels of detail. The
need for a joint approach to planning and scheduling is emphasized in the literature
(Barták 1999, Smith et al. 2000).

The goal of our investigations was to develop a formal and generic model allowing
to support decision making in activity planning and scheduling within networked
organizations (Bourrières 1998, Lecompte et al. 2000). As a first step towards this
objective, this paper is focused on the elaboration of our generic production model
and on its inversion over one single time-period under combined production and
stock management strategies. The planning issue as such is not the subject of this
paper. Nonetheless the model presented here is tailored to support multi-period
planning and multi-level scheduling investigations that are the subject of separate
publications. The last section indicates how to extend the results presented in this
paper to address the multi-period planning issue.
The remainder of the paper is organized as follows: section 2 presents the generic
model or direct production model; section 3 focuses on model inversion and on op-
timal production solving policies; section 4 is dedicated to an illustrative example;
and section 5 is a conclusion.

2. Direct production model

In this section are presented the parameters and variables to capture the technical
data, then a production model is established that links the variations of the prod-
uct amounts to the works generating those variations. We also define the resource
capacities and cost data. All vectors in this paper are non-negative column-vectors.

Product modeling

Parameters: The parameters below define the nomenclature of all product items
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traced in the manufacturing system: components, intermediate and finished prod-
ucts.

Ou the set of component references
Ox the set of intermediate product references
Oy the set of finished product references
O the global set of product references
mu the number of component references; mu=‖Ou‖
mx the number of intermediate product references; mx=‖Ox‖
my the number of finished product references; my=‖Oy‖
m the total number of product references ; m = mu+mx+my

Variables: The following vectors address quantities of products of any possible
references:

su the vector of component amounts with reference to set Ou

sx the vector of intermediate product amounts with reference to set Ox

sy the vector of finished product amounts with reference to set Oy

s the global stock vector, i.e. the concatenation of vectors su, sx, sy

The vectors above depict the virtual stocks of products in the production system.

Work modeling

Parameters: We similarly introduce the parameters and variables referring to the
transformation tasks:

T the set of tasks
n the length of task list of references; n=‖T‖

Variables: Vector w addresses quantities of transformation tasks and as such
qualifies and quantifies the works carried out in the manufacturing system.

w the vector of task amounts with reference to set T

Timing

In production management, time is divided into periods of constant duration
and the concatenation of periods covers a finite time horizon. Below are introduced
time-related notations.

s(k) the stock vector at the beginning of period k
s(k+1) the stock vector at the end of period k, i.e. beginning of period k+1
w(k) the vector of work performed during period k

In this paper, the production problem is considered over one period only, turning
the stock vector from s(k) to s(k+1). In the conclusion we mention how to bridge
the one-period optimization related in this paper with the multi-period planning
issue.

Costing

Cost modelling for production management basically consists in the valuation
of product transformation costs and of inventory costs. The data model is here
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enhanced as follows:

β(k) the cost vector of the work performed during period k
γ(k) the cost vector of stocks over period k

Over period k, the cost of work w(k) is βT (k)w(k) and the cost of stock s(k) is
γT (k)s(k).

Direct production model

Any product transformation requires specific input items and produces out-
put items as well. Considering all item references and all product transformations
feasible by the production system, the quantitative impact of a definite work w(k)
on stock vector s(k) is defined by the linear model:

s(k + 1) − s(k) = Cw(k) w(k) ≥ 0 s(k) ≥ 0 s(k + 1) ≥ 0 (1)

Notation s(k) and s(k+1) respectively refers to the state of the global stock before
and after completion of work w(k). The m-by-n matrix C defines the variation of
product amounts generated by the achievement of work w(k). The components of
vectors w(k) and s(k) are non negative. They may be natural integer or real num-
bers, depending on the application case. Equation (1) links the working activities
to the consumption and production of stocks, in other words identifies the direct
production model, i.e. all feasible manufacturing processes. A graphical representa-
tion of the direct production model is obtained by considering equation (1) as the
fundamental equation of a Petri net < O, T,C > where the set of places O is the
concatenation of sets Ou, Ox and Oy of product references, the set of transitions
T is the set of task references and C is the incidence matrix of the Petri net. The
weighting of the arcs defines the number of product items consumed and produced
by the occurrence of each task. Note that all types of product transformations (ma-
chining, assembly, cutting, etc) without any restriction can be modeled. Matrix C
is composed of three blocks Cu, Cx and Cy defined with reference to sets Ou, Ox

and Oy. The entries of Cu are non-positive since the input components can only
be consumed by the production processes. The entries of Cy are non-negative as
the finished products can only be generated by the production processes.

Figure 1 shows an example of production model with Ou={o1, o2} two refer-
ences of components, Ox={o3, o4, o5} three references of intermediate products,
Oy={o6, o7} two references of finished products and T={t1, t2, t3, t4} four refer-
ences of tasks.

Resource capacity model

The expression of resource capacities must be homogeneous with the ex-
pression of works, in order to be able to assess the load-capacity alignment. We
define the capacity of a transformation resource for period k as the maximal
work that the resource is able to perform during the period. The resource is
potentially polyvalent and the way the resource is able to share its capacity upon
the various types of work must also be modeled. One classically distinguishes
disjunctive from cumulative resources (Mercier and Van Hentenryck 2007). A
disjunctive resource is able to perform one task at once among a set of feasible
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tasks, in other words is constrained by time-sharing. A cumulative resource is able
to perform various tasks simultaneously and independently. In the latter case, the
parallel tasks are commonly sharing a physical scalar (energy, space, weight, etc.).
Nevertheless, if the resource is an aggregate and abstract resource, the various
activities may be performed independently (e.g. a workshop can simultaneously
and independently cumulate various activities allocated to distinct machines).
To summarize, three basic categories of resource cover most of the situations:
disjunctive resource, cumulative resource with dependent capacities, cumulative
resource with independent capacities, but the two first categories can be merged
as they both express the sharing of a scalar (time, energy, etc.). Hence, we
finally distinguish two categories of transformation resources only: with dependent
capacities or with independent capacities.

Below is defined the working capacity of a resource by a vector a(k), a(k) ≥ 0,
the component aj(k), j ∈ {1, · · · , n} of which is the inverse of the maximal number
of j -type task occurrences that can be achieved during period k, assumed that the
resource does not execute any other task. The work amount w(k) can be achieved
by the resource during period k under the following conditions:

aT (k)w(k) ≤ 1 dependent capacities (2a)

A(k)w(k) ≤ 1 independent capacities (2b)

with A(k) = diag[a1(k), · · · , an(k)].

The graphical representation of capacity models (2a) and (2b) for n=2 is shown
on Figure 2.

The load rate of the resource can be characterized by a scalar ρ(k) ∈ [0, 1] when
the resource is with dependent capacities, and by a vector ρ(k) ∈ [0, 1]n when the
resource is with independent capacities, respectively defined by:

ρ(k) = aT (k)w(k) ρ(k) ∈ [0, 1] dependent capacities (3a)

ρ(k) = A(k)w(k) ρ(k) ∈ [0, 1]n independent capacities (3b)

A correlated issue is to identify the minimal duration d[w(k)] required to achieve
a given load w(k). As the capacities are proportional to the duration of the period,
an extrapolation (see Figure 3) can be made that yields:

d[w(k)] = haT (k)w(k) dependent capacities (4a)

d[w(k)] = hMax[aj(k)wj(k)]j=1,n independent capacities (4b)
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3. Inverse production model

3.1 Production capacity

A preliminary issue is to identify the maximal amount of products the system is
able to achieve in the period, in other words to turn the resource capacities into
product capacities : given the resource capacity vector a(k) and the current stock
level vector s(k), find the maximal amount of j-type products that the system is
able to manufacture in period k. The question may be relevant not only regarding
the finished products (set Oy) but also any intermediate items (set Ox). Moreover,
considering the particular case sx(k) = 0 leads to determine the number of j-type
products the system is per se able to produce in the period, i.e. limited only by
its capacity, assumed that the stocks of intermediate products are initially empty.

Let Ci be the i-eth line of matrix C. The work w(k) generates the quantity
Ciw(k) of items oi. The maximal production of items oi under the resource capacity
constraint (2a) or (2b) is provided by solving the following linear program:

Maximize Ciw(k) (5)

subject to :

w(k) ≥ 0 non negative solutions
s(k) + Cw(k) ≥ s∗(k + 1) stock floor constraint
aT (k)w(k) ≤ 1 or A(k)w(k) ≤ 1 resource capacity constraint
w(k) ∈ N

n natural integer solutions (optional)

The last constraint is optional. The stock floor constraint s∗(k + 1) is given
non-negative. The initial stock s(k) is assumed to satisfy the floor and ceiling
constraints. One may also add a stock ceilling constraint as shown in section 3.3.

The program above solves the maximal production problem. Nevertheless the
solution w(k) may be not unique. It is necessary to search for the optimal achieve-
ment of the maximal production target stemming from program (5) by additionally
considering one of the optimization programs presented in the next section.

3.2 Model inversion

The inversion of model (1) is interpreted as follows: given the current stock s(k),
find any work vector w(k) producing the stock variation δ(k) = s(k + 1) − s(k)
expected. Practically, the production target δ(k) is only partially specified, ad-
dressing at least the items of Oy (finished products) but also potentially some
items of Ox (intermediate products) when a stock regulation policy is applied. The
unspecified part of δ(k), i.e. the consumption of components and the unspecified
stock variations of intermediate products will result from the solution w(k) chosen.
We consequently share set O in two subsets: Ō the list of item references for which
a production target is given, and Ô the list of item references for which no produc-
tion target is specified. Accordingly, the stock cost vector γ is split into vectors γ̄

and γ̂, the variation vector δ(k) into δ̄(k) and δ̂(k), and matrix C into blocks C̄

and Ĉ whose dimensions are m̄-by-n and m̂-by-n respectively, with m̄ the cardinal
of Ō and m̂ = m − m̄ the cardinal of Ô. Consequently, the production model (1)
is refined as follows:
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δ̄(k) = C̄w(k) (6)

δ̂(k) = Ĉw(k) (7)

Then, to invert the linear form (6) i.e. to identify the work w(k) required by the
achievement of the specified stock variation δ̄(k). Each solution w(k) will thanks

to relation (7), allow to determine the free stock variation δ̂(k), in particular the
component requirement.

Matrix C̄ being non square, the inversion of the linear model (6) falls under clas-
sical discussion. The inversion problem has solutions only if all of the m̄ − rankC̄
characteristic determinants of equation (6) all equate to zero. Under these
conditions, the dimension of the solution space, i.e. the order of multiplicity of the
solution, is n−rankC̄. We here assume that C̄ is regular, i.e. rankC̄ = Min(m̄, n).

If m̄ > n, i.e. rankC̄ = n, the system (6) is overdetermined. The system
is invertible when all of the m̄ − n characteristic determinants are equal to
zero. Under this condition, there is an unique solution w(k) = C̄

+
δ̄(k) where

C̄
+

= C̄
T
(C̄C̄

T
)−1 is the Moore-Penrose inverse (Penrose 1955), also called

pseudo-inverse, of C̄. The corresponding free stock variation is δ̂(k) = ĈC̄
+
δ̄(k).

Note that as the target δ̄(k) is implicated in the characteristic determinants, the
existence of solutions results from the compatibility of the production target with
the logical structure of the manufacturing process expressed by matrix C̄. Should
the system be non invertible, in other words when the production target cannot
be exactly achieved, then w(k) = C̄

+
δ̄(k) is the ’best fit’ (least square) solution.

This solution generates a stock variation that is as close as possible to the target
δ̄(k) expected.

If m̄ = n, i.e. rankC̄ = m̄, equation (6) is a Cramer system whose unique

solution is w(k) = C̄
−1

δ̄(k), therefore δ̂(k) = ĈC̄
−1

δ̄(k).

If m̄ < n, i.e. rankC̄ = m̄, the solution is not unique and an optimization
criterion is required to identify good solutions within the n − m̄ dimensional
solution space. In production management, the objective is obviously to minimize
both stock and working costs. The stock management policy is here expressed
i) by the specification of ‘hard’ targets s̄(k + 1) for the items whose stock level
at the end of the period is strictly defined and ii) by the definition, in the
optimization function, of ‘soft’ attracting targets ŝ∗(k + 1) for all other items.
Note that the number m̄ of controlled stocks must not overpass the number n of
tasks, otherwise the system (6) is over-determined and conditionally invertible only.

Below is discussed how to solve the optimization problem, using first a linear
programming approach then quadratic programming.

3.3 Optimal inverse model

An economical way to reach the target δ̄(k) is defined by the following linear
program:
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Minimize J1 = βT w(k) + γ̂T [ŝ(k + 1) − ŝ∗(k + 1)] (8)

subject to :

w(k) ≥ 0 non negative solutions
C̄w(k) = δ̄(k) achieve specified targets

ŝ(k + 1) = ŝ(k) + Ĉw(k) production model
ŝ(k + 1) ≥ ŝ∗(k + 1) stock floor constraint
aT (k)w(k) ≤ 1 or A(k)w(k) ≤ 1 respect resource capacity
ŝ(k + 1) ≤ ŝMax stock ceiling constraint (optional)
w(k) ∈ N

n natural integer solutions (optional)

The two last constraints are optional. The stock floor ŝ∗(k + 1) and ceilling
ŝMax are given non-negative. Should some stock levels remain free of control, the
corresponding weights in vector γ̂ will be set to weak values.
The linear program formulated above is easily solved using a Simplex algorithm.
The solving is made in real or natural integer numbers, depending on the
semantics of the production model. Given the initial stock s(k) and the target
δ̄(k), the optimization process finally provides the optimal work load w◦(k),
the corresponding load rate according to (3a) or (3b), the minimal cost J◦

1 and

the stock variation δ̂(k) = Ĉw◦(k) among which is in particular the component

requirement δ̂u(k) = Cuw
◦(k).

Instead of solving numerically the optimal production problem, a parametric
approach may be also expected to provide a deeper understanding of the problem
solving. We will focus on the following quadratic optimization problem:

Minimize J = wTΨw Ψ symmetric positive definite (9)

subject to:

C̄w(k) = δ̄(k) C̄ regular m̄-by-n m̄ < n

w(k) ≥ 0
aT (k)w(k) ≤ 1 dependent capacities
or
A(k)w(k) ≤ 1 independent capacities

Matrix Ψ will allow us to express definite production strategies.

Minimizing a quadratic criterion subject to underdetermined linear equality con-
straints is a classical issue, see e.g. (Ben-Israel 2002):

J = xTΨx s.t. Mx = N is minimal for x = Ψ−1MT [MΨ−1MT ]−1N (10)

assumed that Ψ is a symmetric positive definite matrix. Adding the inequality con-
straints (the optimal solution w◦(k) must be non-negative and satisfy the capacity
constraints) the program has a unique solution when the Karush-Kuhn-Tucker
(KKT) conditions are satisfied, see e.g. (Jensen and Bard 2002, Shinners 1998).
Logarithmic barriers may also be introduced in the objective function to consider
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positive solutions (Frisch 1955). Nevertheless, solving the KKT conditions leads
to set up a new linear program itself requiring Simplex-like numerical algorithms.
The solving process is thus not fully parametric and there is no more argument
to prefer the quadratic optimization approach to the linear program (8). Here we
bypass the difficulty of quadratic programming under inequality constraints by
previously identifying the ‘feasible’ production targets for which we are sure that
the optimal solution is non-negative and capacity complying. We hereafter make
a two-fold study consisting in i) identifying the optimal solution w◦(k) for some
relevant quadratic objective functions subject to equality constraints only and ii)
identifying the conditions of target feasibility which ensure that the inequality
constraints are satisfied.

Let first equation (6) be considered. An analytical description of the solution
space is provided by the generalised inverse formalism:

w(k, z) = C̄
+
δ̄(k) + (I − C̄

+
C̄)z (11)

where z is an arbitrary n-dimensional vector, I the identity matrix and C̄
+

the
pseudo-inverse of C̄ (Mayer 1973, Varga 2001, Ben-Israel 2002). According to (7),
the corresponding free stock variation is:

δ̂(k,z) = ĈC̄
+
δ̄(k) + Ĉ(I − C̄

+
C̄)z (12)

Within the solution domain (11) we identify the solutions that optimize some
specific quadratic criteria expressing relevant production policies, as shown in
Table 1. Hereafter is discussed each of the optimization policies.

(J2) Minimize work amount. Minimizing criterion J2=‖w(k)‖2 simply en-
sures that the target is achieved with the minimal quadratic work amount. The
optimal solution is w◦(k) = C̄

+
δ̄(k), provided by (10) with Ψ = I, M = C̄ and

N= δ̄(k).

(J3) Minimize working cost. We have to minimize criterion J3=‖Ew(k)‖2

with E=diag(β1, · · ·βn) where βj is the cost of task j. Let v be a vector such that
w(k)=E−1v . According to (10), minimizing J3 = ‖v‖2 s.t. C̄E−1v = δ̄(k) leads to

solution v = (C̄E−1)
+
δ̄(k) . Therefore J3 is minimal for w◦(k) = E−1(C̄E−1)

+
δ̄(k).

If more particularly the task costs are all identical, then E=I and w◦(k) = C̄
+
δ̄(k).

(J4a) Load rate control (dependent capacities). Assumed that the resource
has dependent capacities defined by (2a), the objective function J4a aims to
engage the resource capacities at a specified level ρ◦(k) while achieving the
production target δ̄(k). Here we have to minimize

‖ρ(k) − ρ◦(k)‖2 = [w(k) −w◦(k)]Ta(k)a(k)T [w(k) −w◦(k)]

where w◦(k) is so that a(k)T
w◦(k) = ρ◦(k).

Unfortunately, matrix a(k)a(k)T is singular thus solution (10) is not applicable.
To minimize J4a we follow (Fletcher 1985) by identifying a m̄-by-n matrix S and a
m̄-by-(n-m̄) matrix Z complying with C̄S=I and C̄Z=0 and [S|Z] invertible. Note

that ZTa(k)a(k)TZ is positive definite on the solution space defined by the equality
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constraint. With simplified notations, we minimize the following Lagrangian :

L(w, λ) = (w−w◦)TaaT(w−w◦) + λT(C̄w − δ̄)

which requires to solve :

∇w = 2aaT (w−w◦) − C̄
T
λ = 0

∇λ = C̄w − δ̄ = 0

By introducing a vector v such as w=Sδ̄+Zv we still have C̄w − δ̄ = 0 since
C̄S=I and C̄Z=0. By left multiplying ∇w by ZT we eliminate λ:

ZTaaT (Sδ̄ + Zv −w◦) = 0

As ZTaaTZ is regular, the unique solution is :

v = (ZTaaTZ)
−1

ZTaaT (w◦ − Sδ̄)

Finally, w=Sδ̄+Zv provides the optimal solution:

w̃ = Z(aTZ)
−1

ρ◦ + [I − Z(aTZ)
−1

aT]Sδ̄

Note that solution w̃ leads ‖ρ(k) − ρ◦(k)‖2 to be exactly equal to zero hence
w̃ = w◦. The reason is that the quadratic program is semi-definite. This can be
verified by left multiplying w̃ by aT , which leads to aT w̃ = 1ρ◦ + 0δ̄ = ρ◦.

(J4b) Load rate control (independent capacities). If the resource has inde-
pendent capacities, see (2b), one may wish to spare the resource capacities by
minimizing J4b = ‖ρ(k)‖2 = ‖Aw(k)‖2 with A(k) = diag[a1(k), · · · , an(k)]. The

optimal solution is here w◦(k) = A−1(C̄A−1)
+
δ̄(k). As matrix A is regular, the

quadratic programme is definite and does not bring J4b to zero but to its minimal
positive value.

(J5) Stock and/or work control. The component ‖Ew(k)‖2 of criterion J5

aims to minimize work cost whereas ‖F̂[δ̂(k) − δ̂
∗
(k)]‖2 is to attract the parasitic

production δ̂(k) to a predefined value δ̂
∗
(k) expressing a ‘soft’ stock target

ŝ∗(k + 1) = ŝ(k) + δ̂
∗
(k).

Noting that δ̂(k)− δ̂
∗
(k) = ŝ(k+1)− ŝ∗(k+1), the expression ‖F̂[δ̂(k)− δ̂

∗
(k)]‖2

is the weighted quadratic error on the final stock and the entries of the diagonal
matrix F̂ are the stock costs. The minimization of J5 with simplified notations is
as follows:

J5 = ‖Ew‖2 + ‖F̂(δ̂ − δ̂
∗
)‖2 = wTΦw − 2w∗TĈ

T
F̂

2
Ĉw + w∗TĈ

T
F̂

2
Ĉw∗

where Φ = E2 + Ĉ
T
F̂

2
Ĉ.
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Here w∗ is the work generated by the variation δ̂
∗
. Using the Lagrange multiplier

technic, we have L(w, λ) = J5 + λT(C̄w − δ̄) and consequently:

∇w = 2Φw− 2Ĉ
T
F̂

2
Ĉw∗ − Ĉ

T
λ = 0

∇λ = C̄w − δ̄ = 0

whose explicit solution after some calculation is :

w◦ = Φ−1Ĉ
T
(C̄Φ−1Ĉ

T
)
−1

δ̄ + [I − Φ−1Ĉ
T
(C̄Φ−1Ĉ

T
)
−1

C̄]Φ−1Ĉ
T
F̂

2
δ̂
∗

Hence the error on the final stock is ŝ∗(k + 1) − Ĉw◦(k). The particular case
E = 0 minimizes stock costs only, whereas program J5 tends to program J3 (work

minimization) when F̂ tends to 0.

Taking into account inequality constraints : target feasibility domain

To ensure that the optimal solutions given by Table 1 are non-negative (real or
natural integer) vectors satisfying the capacity constraints, we here identify the
restrictions on the production targets.

Looking for real solutions, the optimal solutions from Table 1 must additionally
satisfy the following constraints depending on the capacity model (2a) or (2b):

w◦(k) ≥ 0 aT (k)w◦(k) ∈ [0, 1] (dependent capacities) (13a)

w◦(k) = A−1ρ◦(k) ρ◦(k) ∈ [0, 1]n (independent capacities) (13b)

The condition (13a) or (13b) defines the target feasibility domain making δ̄(k),

δ̂
∗
(k) and ρ◦(k) linearly dependent. Note that the target feasibility domain is a

linear inequality defining a convex set and may be turned into a standard LMI
form to benefit from LMI-based optimization techniques (Boyd et al. 1994). For
example looking for the real solutions of quadratic program J4a (load rate control),
the conditions (13a) applied to J4a define the target feasibility domain as follows:

Z(aTZ)
−1

ρ◦(k) + [I − Z(aTZ)
−1

aT ]Sδ̄(k) ≥ 0 ρ◦(k) ∈ [0, 1] (14a)

whereas (13b) combined with (6) defines the following feasibility domain:

δ̄(k) = C̄A−1ρ◦(k) ρ◦(k) ∈ [0, 1]n (14b)

Looking for natural integer solutions, the optimal solutions from Table 1 must
satisfy the following constraints depending on the capacity model (2a) or (2b):

w◦(k) ∈ N
n aT (k)w◦(k) ∈ [0, 1] (dependent capacities) (15a)

w◦(k) = A−1ρ◦(k) [ρ◦(k)]j = ηjaj (independent capacities) (15b)

with ηj = 0, 1, .., aj
−1
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Finally, an appropriate approach to solve the quadratic programs J2 to J5

submitted to both equality and inequality constraints is the following:

1) prior define the feasible targets under inequality constraints using (13a),
(13b), (15a) or (15b), then

2) apply the optimal solution provided by Table 1. Programs J2,J3,J5 are usable
with both capacity models (2a) and (2b). Program J4a suits for the dependent
capacity model (2a) whereas J4b suits for the independent capacity model (2b).

4. Application

This section illustrates the use of our linear model in the determination of single-
period production scenarios according to the control policies presented in Table
1. We consider the production model shown on Figure 1. We associate the ‘hard’
production target with items o4, o6 and o7 whereas the ‘soft’ target is on items o3

and o5. We consequently note:

δ̄(k) = (δ4δ6δ7)
T δ̂(k) = (δ1δ2δ3δ5)

T

Let moreover the following data be considered:

s(k) = (300 300 50 50 50 100 200) initial stock level
a(k) = 10−3(10 2 10 20) resource capacity
E = diag(30 25 10 20) working cost

F̂ = diag(20 10 10 20) stock cost

We have :

Ō = {o4, o6, o7} C̄ =





1 1 −2 −1
0 0 3 0
0 0 1 2



 Ô = {o1, o2, o3, o5} Ĉ =









−2 −1 0 0
0 −1 0 0
2 0 −1 0
0 1 0 −3









C̄
+

=
1

6









3 1.5 1.5
3 1.5 1.5
0 2 0
0 −1 3









I − C̄
+
C̄ =

1

2









1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0









Here m̄ = 3, n = 4, rankC̄ = 3 and the dimension of the solution space is
n− rankC̄ = 1. To solve the semi-definite program J4a the following matrices may
be used:

S =
1

6









6 0 3
0 3 0
0 2 0
0 −1 3









Z =









1
−1
0
0
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which verify C̄S = I and C̄Z = 0.

Maximal production The linear program (5) applied to items o6 and o7 pro-
vides the production capacities shown in Table 2. Here the constraint w(k) ∈ N

n

is additionally considered. The production capacities are both computed for the
initial stock s(k) previously given and for sx(k) = 0 (the intermediate stocks are
empty and the resource has consequently to achieve the whole manufacturing
processes). The results are obtained for dependent and for independent resource
capacities.

Feasible targets Assumed first that the resource is with dependent capacities, we
solve the load rate control problem by previously identifying the feasible targets
according to (13a):









125
−125

0
0









ρ◦(k) +
1

24









−6 −3 −33
30 15 45
0 8 0
0 −4 12









δ̄(k) ≥ 0 ρ◦(k) ∈ [0, 1]

The LMI above defines the domain of feasibility of the production target δ̄(k)
and ensures that the corresponding work vector w(k) is non negative and satisfies
the capacity constraint. The domain is ρ◦-homothetic. It is shown on Figure 4a.
Setting the load rate to 1, the production of achieved items is maximal at point
P1 (δ̄6=300; δ̄7=100), assumed that the stock level of o4 is sufficient (δ̄4=-200). If
the production of o7 only is expected, one can obtain up to δ̄7=100 with δ̄4=-50,
see point P2. One may also expect to concentrate the activity on the production
item o4 up to δ̄4=500, see P3.

If the resource is with independent capacities, we consider (13b):

δ̄(k) =





100 500 −200 −50
0 0 300 0
0 0 100 100



 ρ◦(k) ρ◦(k) ∈ [0, 1]4

The target feasibility domain is shown on Figure 4b.

Optimal production policies Let e.g. the ‘hard’ target δ̄(k)=(0 70 40)T be
specified i.e. to produce 70 o6 and 40 o7 while strictly maintaining the stock o4

unchanged. To be feasible, the target must additionally comply with (13a) or
(13b), which yields:

0.51 ≤ ρ◦(k) ≤ 0.95 (dependent capacity)

20ρ◦1 + 100ρ◦2 = 11 ρ◦3 = 0.23 ρ◦4 = 0.17 (independent capacity)

The optimized solutions to reach the target δ̄(k) = (0 70 40)T with reference to
criteria J1 to J5 are presented in Table 3. A Simplex solver was used to minimize
J1. The other criteria were optimized analytically, applying the results from Table
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2. For criterion J4a we chose ρ◦ = 0.51, the minimal possible value of the load

rate identified above. The ‘soft’ target δ̂
∗
(k) = (-100 -100 0 0)T was used for J5.

The optimization of J5 was made for the matrix E previously given (work and
stock cost minimization) and for E=0 (stock cost minimization only) as well. For
each optimization problem, we have computed the optimal solution w◦(k) and
the corresponding production δ(k). The ‘hard’ production target δ̄(k) is strictly

reached, whereas the ‘free’ production δ̂(k) -of which the component requirement-
stems from the particular economical and/or stock level control policy expressed
by the objective function. The optimization of J2 is very easily computerized and
minimizes the quantity of operations to be performed. Nevertheless the resource
capacity is also partly engaged to generate a parasitic production. Minimizing
J3 provides the most economical solution with regard to the working cost. But
the parasitic production of items o3 is very high and over consumes the resource
capacity (ρ◦=0.86). The programs J4a and J4b allow to spare the resource capacity
by engaging the minimal load rate. The counterpart is the consumption of the
intermediate stock o3. The program J1 and J5 give the priority to working and
stocking costs minimization rather than sparing the load rate.

5. Conclusion

The linear model presented is this paper is applicable to a large range of discrete
or continuous production systems performing various transformation tasks,
including assembly/disassembly. The boundaries of the article are the consider-
ation of single-period production and stock management policies formalized as
optimization problems subject to linear equalities (the production model) and
inequalities (resource capacity constraints). Appealing to linear criteria leads
to easy problem solving approaches using popular Simplex algorithms. Being
numerical, those algorithms nevertheless do not provide any deep understanding of
the solutions obtained. For this reason, we have performed the analytical solving
of some quadratic programs expressing the most relevant policies. The inequality
constraints were integrated through prior analysis of the target feasibility domain.

On the basis of the model presented in this paper, our investigations are in two
directions : i) multi-period resource planning and ii) multi-level scheduling.

The multi-period planning model is derived from the one-period production prob-
lem by extending vector w(k) to a vector w̃(k) such that:

w̃T (k) =
[

wT (k) πT (k) ξT (k)
]

with πT (k) the procurement vector in period k and ξT (k) the expedition vector
in period k. We consequently state an under-determined linear model over a
planning horizon model k = 1,H with (wT (k), k =1,H) as decision variables whose
inversion under capacity and cost constraints leads to formulate linear or quadratic
programs similar to those studied in this paper.

The formulation of the multi-level scheduling problem addresses simultaneously
two levels of data : i) aggregate data related to the capacity of a mother resource as
well as to the corresponding product/task/processes and ii) detailed data related
to the network of daughter-resources encapsulated in the mother resource. The in-
terrelations between the aggregate and detailed views can be formulated in a linear

Page 15 of 23

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

April 24, 2009 16:26 International Journal of Production Research revision1

International Journal of Production Research 15

framework and lead to identify aggregation/disaggregation consistency rules. Based
on the linear model presented in this paper, our investigations aim to promote uni-
fied planning and scheduling generic primitives in a multi-level plan breaking-up
approach to iteratively turn a product order book into detailed activities.
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Table 1. Optimal solutions s.t. equality constraint C̄w(k) = δ̄(k)

Optimization criterion Optimal solution

J2 = ‖w(k)‖2 w◦(k) = C̄
+

δ̄(k)

J3 = ‖Ew(k)‖2 w◦(k) = E−1(C̄E−1)
+

δ̄(k)

J4a = ‖ρ(k) − ρ◦(k)‖2 w◦(k) = Z(aTZ)
−1

ρ◦(k) + [I − Z(aTZ)
−1

aT]Sδ̄(k)

J4b = ‖ρ(k)‖2 w◦(k) = A−1(C̄A−1)
+

δ̄(k)

J5 = ‖Ew(k)‖2 + ‖F̂(δ̂(k) − δ̂
∗

(k))‖2 w◦(k) = Φ−1Ĉ
T

(C̄Φ−1Ĉ
T

)
−1

δ̄(k) + [I − Φ−1Ĉ
T

(C̄Φ−1Ĉ
T

)
−1

C̄]Φ−1Ĉ
T
F̂

2
δ̂
∗

(k)

Notes: E = diag(β1, · · ·βn) A = diag(a1, · · · an) F̂ diagonal Φ = E2 + Ĉ
T
F̂

2
Ĉ

J4a and J4b for respectively dependent and independent resource capacities

Table 2. Production capacity

Resource capacity dependent dependent independent independent

Initial stock s(k) sx(k)=0 s(k) sx(k)=0
Max δ6 216 165 300 300
Max δ7 90 76 200 200
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Table 3. Optimal production scenarios for target δ̄(k) =(0 70 40)T

Policy Optimal work Load rate Stock variation

w1(k) w2(k) w3(k) w4(k) ρ(k) δ̂1(k) δ̂2(k) δ̂3(k) δ̄4(k) δ̂5(k) δ̄6(k) δ̄7(k)
ρT (k)

resource with dependent capacities

J1 30 25 23.33 8.33 0.75 -85 -25 36.66 0 0 70 40
J4a 0 55 23.33 8.33 0.51 -55 -55 -23.33 0 30 70 40

resource with independent capacities

J1 55 0 23.33 8.33 [0.55 0.00 0.23 0.17] -85 -25 36.66 0 0 70 40
J4b 2.12 52.88 23.33 8.33 [0.02 0.11 0.23 0.17] -57.12 -52.88 -19.10 0 27.88 70 40

resource with dependent or independent capacities

J2 27.5 27.5 23.33 8.33 0.73 -82.5 -27.5 31.66 0 2.5 70 40
[0.28 0.06 0.23 0.17]

J3 44 11 23.33 8.33 0.86 -99 -11 -64.66 0 -14 70 40
[0.44 0.02 0.23 0.17]

J5 35.12 19.88 23.33 8.33 0.79 -90.12 -19.88 46.92 0 5.12 70 40
[0.35 0.04 0.23 0.17]

J5 (E = 0) 6.31 48.69 23.33 8.33 0.56 -61.31 -48.69 -10.71 0 23.69 70 40
[0.06 0.10 0.23 0.17]
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(a) Petri net

C =





Cu

Cx

Cy



 =





















−2 −1 0 0
0 −1 0 0
2 0 −1 0
1 1 −2 −1
0 1 0 −3
0 0 3 0
0 0 1 2





















(b) Incidence matrix

Figure 1. Production model
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(a) Dependent capacities (b) Independent capacities

Figure 2. Resource capacity model
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(a) Dependent capacities (b) Independent capacities

Figure 3. Delay to achieve work w(k)
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(a) Dependent capacity
(b) Independent capacity

Figure 4. Target feasibility domain

Page 23 of 23

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


