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SINGULAR FOLIATIONS WITH TRIVIAL CANONICAL CLASS

FRANK LORAY1, JORGE VITÓRIO PEREIRA2 AND FRÉDÉRIC TOUZET1

Abstract. This paper is devoted to describe the structure of singular codi-
mension one foliations with numerically trivial canonical bundle on projective
manifolds. To achieve this goal we study the reduction modulo p of foliations,
describe the structure of first integrals of (semi-)stable foliations with (nega-
tive) zero canonical bundle, establish a criterium for uniruledness of projective
manifolds, and investigate the deformation of free morphisms along foliations.
This paper also contains a classification of the irreducible components of the
space of foliations with KF ≤ 0 on Fano 3-folds with rank one Picard group,
and new information about the structure of codimension one foliations on Pn

of degree smaller than or equal to 2n− 3.

Contents

1. Introduction and Statement of Results 1
2. Preliminaries 8
3. Reduction modulo p 13
4. First integrals of (semi)-stable foliations 19
5. Foliations on Fano threefolds with rank one Picard group 24
6. Criterium for Uniruledness 39
7. Projective structures and transversely projective foliations 44
8. Deformation of free morphisms along foliations 46
9. Foliations with numerically trivial canonical bundle 57
10. Toward a more precise structure theorem 62
References 65

1. Introduction and Statement of Results

Let F be a singular holomorphic foliation on a compact complex manifold X ,
and KF be its canonical line bundle. In strict analogy with the case of complex
manifolds, the canonical line bundle of F is the line bundle on X which, away from
the singular set of F , coincides with bundle of differential forms of maximal degree
along the leaves of F .

As in the case of manifolds, one expects that KF governs much of the geometry
of F . When X is a projective surface, this vague expectation has already been
turned into precise results. There is now a birational classification of foliations on
projective surfaces, very much in the spirit of Enriques-Kodaira classification of
projective surfaces, in terms of numerical properties of KF , see [49, 11].

Key words and phrases. Foliation, Transverse Structure, Birational Geometry.
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In this paper we investigate the structure of codimension one foliations on pro-
jective manifolds with KF numerically equivalent to zero. We were dragged into
this problem by a desire to better understand/generalize two previous results on
the subject. The first, by Cerveau and Lins Neto [15], concerns the description of
irreducible components of the space of foliations on P3 with KF = 0. While the
second, by the third author of this paper [63], classifies smooth codimension one
foliations with numerically trivial canonical bundle on compact Kähler manifolds.

Further motivation comes from the study of holomorphic Poisson manifolds as
studied in [56], and from [55, Corollary 4.6] which says that foliations with numeri-
cally trivial canonical bundle naturally appears when studying the obstructions for
a projective variety to have Ω1

X generically ample.

1.1. Previous results on foliations with c1(KF) = 0. Cerveau and Lins Neto
proved that the space of foliations on P3 with KF = 0 has six irreducible compo-
nents. Their result not only counts the number of irreducible components, but also
give a rather precise description of them which we now proceed to recall. Four of
the irreducible components parametrize foliations defined by logarithmic 1-forms
with poles on a reduced divisor of degree four, the different irreducible components
correspond to the different partitions of 4 with at least two summands. One of the
components parametrizes pull-back under linear projections of foliations on P2 with
canonical bundle OP2(1). The remaining component is rigid in the sense that its
generic element correspond to a unique foliation up to automorphisms of P3. If we
fix a point p in P1 and identify Aff(C) with the isotropy group of this point under
the natural action of Aut(P1) on P1 then this foliation corresponds to the induced
action of Aff(C) on P3 = Sym3 P1. From this description one promptly sees that
foliations on P3 with trivial canonical bundle are either defined by closed rational
1-forms, or come from P2 by means of a linear pull-back. Notice that in the latter
case the leaves are covered by rational curves, indeed lines.

In 1997, one year after the publication of Cerveau-Lins Neto paper, appeared
a paper [56] by Polishchuk which, among other things, contains a classification
of Poisson structures on P3 under restrictive hypothesis on their singular set. But
(non-zero) Poisson structures on 3-folds are nothing more than foliations with trivial
canonical bundle, thus Polishchuk’s result is a particular case of Cerveau-Lins Neto
classification.

The third author of this paper proved in [63] that a smooth codimension one
foliation F with numerically trivial canonical bundle on compact Kähler manifold
X fits into at least one of the following descriptions.

(1) After a finite étale covering, X is the product of Calabi-Yau variety Y and
a complex torus T and F is the pull-back under the natural projection to
T of a linear codimension one foliation on T .

(2) The manifold X is fibration by rational curves over a compact Kähler va-
riety Y with c1(Y ) = 0, and F is a foliation everywhere transverse to the
fibers of the fibration.

(3) The foliation F is an isotrivial fibration by hypersurfaces with zero first
Chern class.

The particular case of smooth Poisson structures on projective 3-folds was treated
before by Druel in [26]. When the third author of this paper proved the classification
above he was not aware of Druel’s work.
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1.2. Rough structure of foliations with c1(KF) = 0. While some of the foli-
ations described above are defined by closed meromorphic 1-forms, some are not.
Nevertheless, all of them are either defined by closed meromorphic 1-forms with
coefficients in a torsion line bundle, or through a generic point of the ambient
space there exists a rational curve contained in a leaf. Foliations having the latter
property will be called uniruled foliations.

In face of these examples one is naturally lead to enquire if this pattern persists
for arbitrary codimension one foliations with numerically trivial canonical bundle.
One of our main results gives a positive answer to this question.

Theorem 1. Let F be a codimension one foliation with numerically trivial canon-
ical bundle on a projective manifold X. Then at least one of following assertions
hold true.

(a) The foliation F is defined by a closed rational 1-form with coefficients in a
torsion line bundle and without divisorial components in its zero set.

(b) All the leaves of F are algebraic.
(c) The foliation F is uniruled.

Moreover, if F is not uniruled then KF is a torsion line bundle.

Our proof of Theorem 1 combines a variety of techniques: reduction modulo p
of foliations, basic Hodge theory, deformations of morphisms along foliations, and
the theory of transversely homogeneous structures for foliations. In the course of
our investigations we stumble upon results with a somewhat broader scope, which
we will now proceed to present.

1.3. Semi-stable foliations and reduction modulo p. In a joint work with
Cerveau and Lins Neto, we have proved that codimension one foliations in positive
characteristic are, as a rule, defined by closed rational 1-forms, see [17, Section
6]. Given a complex foliation F on a projective manifold X , then both F and
X are defined over a finitely generated Z-algebra R and we can reduce modulo a
maximal prime p ⊂ R to obtain a foliation on a variety over a field of characteristic
p > 0. Applying the above mentioned result we obtain that this reduction is
indeed defined a closed rational 1-form. In general, one does not expect to be
able to lift this information back to characteristic zero, since foliations on complex
projective surfaces defined by closed 1-forms are quite rare. Nevertheless, under
the additional assumption that TF is semi-stable and KF is numerically trivial we
prove the following Theorem.

Theorem 2. Let (X,H) be a n-dimensional polarized projective complex manifold,
and F be a semi-stable foliation of codimension one on X. If KF ·Hn−1 = 0 then
at least one of the following assertions hold true

(a) for almost every maximal prime p ⊂ R, the reduction modulo p of F is
p-closed;

(b) F is induced by a closed rational 1-form with coefficients in a flat line
bundle and without divisorial components in its zero set.

In case (a) of Theorem 2, we expect that the foliation F admits a rational first
integral in characteristic zero. We are not alone in this hope. Ekehdal, Shepherd–
Barron, and Taylor conjectured that this is the case for any foliation of any codimen-
sion [28]. Indeed their conjecture is a non-linear version of a previous conjecture by
Grothendieck–Katz about the reduction modulo p of rational flat connections. To
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the best of our knowledge, and despite of the recent advances [9], both conjectures
are still wide-open up-to-date.

In a number of cases, we can deal with the p-closedness given by item (a) using
some (basic) index theory for singularities of holomorphic foliations. For example,
when there exists an ample divisor such that KX2 ·Hn−2 > 0 we can prove that
leaves of foliations as in (a) are covered by rationally connected varieties, see Section
3.4.

1.4. Number of reducible fibers of first integrals. Let F be a codimension
one foliation on a projective manifold X defined by the levels of a rational map
F : X 99K C from X to some algebraic curve C. If we further assume that F has
irreducible generic fiber (what can always be done after replacing F by its Stein
factorization) and, following [66], define its base number as

r(F) = r(F ) =
∑

x∈C

(
#{ irreducible components of F−1(x)} − 1

)
.

then we obtain a rather strong bound on r(F) under the additional assumption
that TF is stable/semi-stable and has zero/positive first Chern class.

Theorem 3. Let F be such a codimension one foliation on a polarized projective
manifold (X,H) of dimension at least three. If TF is H-semi-stable and KF ·
Hn−1 < 0, or TF is H-stable and KF ·Hn−1 = 0, then

r(F) ≤ rankNS(X)− 1 ,

where NS(X) is the Neron-Severi group of X. In particular, if X = Pn, n ≥ 3,
then r(F) = 0.

Combining this result with a classical Theorem by Halphen about pencils on
projective spaces (which we generalize to simply connected projective manifolds in
Theorem 4.3) we are able to control the first integrals of (semi)-stable foliations
on Fano manifolds with rank one Picard group having (negative) zero canonical
bundle. This immediately gives the classification of foliations withKF < 0 on these
3-folds, see Proposition 4.7, and will be essential in the classification of foliations
with KF = 0 in the same class of manifolds.

1.5. Spaces of foliations on Fano 3-folds. Unfortunately Theorem 2 does not
give a very clear picture of the structure of foliations with numerically trivial KF ,
unless we assume that Ekehdal–Sheperd–Barron–Taylor conjecture holds true. Nev-
ertheless it is sufficient to obtain a pretty precise description of these foliations on
Fano 3-folds with rank one Picard group.

Theorem 4. Let X be a Fano 3-fold with Pic(X) = Z, and let F be a codimension
one foliation on X with trivial canonical bundle. If F is unstable then X = P3 and
F is the linear pull-back of a degree two foliation on P2. If F is semi-stable then
at least one of the following assertions holds true:

(1) TF = OX ⊕OX and F is induced by an algebraic action;
(2) F is tangent to an algebraic action by C or C∗ with non-isolated fixed points;
(3) F is given by a closed rational 1-form without divisorial components in its

zero set.
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Manifold Irreducible component dim

Projective space P3

Rat(1, 3) 21
Rat(2, 2) 16

Log(1, 1, 1, 1) 14
Log(1, 1, 2) 17
LPB(2) 17
Aff 13

Hyperquadric Q3
Rat(1, 2) 17
Log(1, 1, 1) 14

Aff 8

Hypersurface of degree 6 in P(1, 1, 1, 2, 3) Rat(1, 1) ≃ P2 2

Hypersurface of degree 4 in P(1, 1, 1, 1, 2) Rat(1, 1) ≃ Gr(2, 4) 4

Cubic in P4 Rat(1, 1) ≃ Gr(2, 5) 6

Intersection of quadrics in P5 Rat(1, 1) ≃ Gr(2, 6) 8

X5
Rat(1, 1) ≃ Gr(2, 7) 10

Aff ≃ P1 1

Mukai-Umemura 3-fold Aff ≃ P1 1
Table 1. Irreducible components of the space of foliations with
KF = 0 on Fano 3-folds with rank one Picard group.

From this result, combined with Theorem 3, we are able to obtain a new proof
of Cerveau-Lins Neto classification of foliations with KF = 0 on P3, and generalize
it to the other Fano 3-folds with rank one Picard group. We summarize the results
in the Table 1. We are also able to recover Cerveau-Lins Neto classification of
foliations of degree 2 on Pn, n ≥ 4; and to classify Poisson Fano 3-folds with rank
one Picard group.

1.6. A criterium for uniruledness. Perhaps the first examples of foliations with
KF = 0 that come to mind are those with trivial tangent bundle. Foliations with
trivial tangent bundle are exactly those induced by (analytic) actions of complex
Lie groups which are locally free outside an analytic subset of codimension at least
two. If the action is not locally free then it is well-known that the manifold must
be uniruled. We are able to generalize this well-known fact, confirming a recent
conjecture of Peternell [55, Conjecture 4.23].

Theorem 5. Let X be a projective manifold and L be a pseudo-effective line bundle
on X. If there exists v ∈ H0(X,

∧p TX ⊗ L∗) vanishing at some point then X is
uniruled. In particular, if there exists a foliation F on X with c1(TF) pseudo-
effective and sing(F) 6= ∅ then X is uniruled.

Theorem 5 brings the task of classifying codimension one foliations with
c1(KF) = 0 to the realm of uniruled manifolds, as smooth foliations satisfying
these assumptions have already been classified by the third author. It is a conse-
quence of Boucksom-Demailly-Paun-Peternell characterization of uniruledness [10]
combined with the following result.
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Theorem 6. Let X be a projective manifold with KX pseudo-effective and L be a
pseudo-effective line bundle on X. If v ∈ H0(X,

∧p
TX⊗L∗) is a non-zero section

then the zero set of v is empty. Moreover, if D is a codimension q distribution on X
with c1(TD) = 0 then D is a smooth foliation (i.e. TD is involutive) with torsion
canonical bundle, and there exists another smooth foliation G of dimension q on X
such that TX = TD ⊕ TG.

Theorem 6 also holds true in the Kähler realm, except for the claim that KD is
torsion as we use Simpson’s Theorem [61], which is only available in the algebraic
category, to prove it.

Using similar ideas we are able to prove that codimension one foliations with
c1(KF) = 0 having the so called division property are automatically smooth, see
Theorem 6.6. In particular, if sing(F) 6= ∅ then it has an irreducible component of
codimension two with non-vanishing Baum-Bott index. This corollary will be used
in the proof of Theorem 1, and gives some evidence (rather weak we might say)
toward Beauville’s generalization of Bondal’s conjecture on the degeneracy locus of
holomorphic Poisson structures, see Remark 6.8.

1.7. Foliations on uniruled manifolds. On a uniruled variety we know there
exist morphisms f : P1 → X such that f∗TX is generated by global sections
– the so called free morphisms. At a neighborhood of any free morphism f the
irreducible component M = Mf of Mor(P1, x) containing f is smooth and has
dimension h0(P1, f∗TX). A foliation F on X naturally defines a foliation Ftang on
Mf . Intuitively, its leaves correspond to maximal families of morphisms which map
points on P1 to leaves of F . The dimension of Ftang is equal to h0(P1, f∗TF) where
f is a generic element of the irreducible component of Mor(P1, X) containing it.
When c1(KF) = 0, we promptly see that h0(P1, f∗TF) ≥ n− 1, n = dim(X), and
it is natural to expect that the study of Ftang should shed light into the structure
of F . Indeed, this is true even if we do not assume KF = 0. All we have to ask is
the non-triviality of Ftang, i.e. dimFtang > 0, to be able to infer properties of the
original foliation F .

Theorem 7. Let F be a codimension one foliation on a n-dimensional uniruled pro-
jective manifold X. If f : P1 → X is a generic free morphism, δ0 = h0(P1, f∗TF),
and δ−1 = h0(P1, f∗TF ⊗ OP1(−1)) then at least one of the following assertions
hold true.

(a) The foliation F is transversely projective.
(b) The foliation F is the pull-back by a rational map of a foliation G on a

projective manifold of dimension ≤ n− δ0 + δ−1, and if δ−1 > 0 then F is
uniruled.

Moreover, if X is rationally connected and f is an embedding with ample normal
bundle then we can replace transversely projective by transversely affine in item (a).

To prove this result we use techniques germane to our previous joint works with
Cerveau and Lins Neto [16, 17] combined with Bogomolov-McQuillan’s graphic
neighborhood [7]. In the case of rationally connected manifolds we add to the
mixture a study of the variation of projective structures, see §8.5, together with
Hartshorne’s results on extension of meromorphic functions [35]. Using a Lefschetz-
type Theorem due to Kollar [44], we derive from Theorem 7 the following conse-
quence.
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Corollary 8. Let F be a codimension one foliation on a rationally connected man-
ifold X. If KF = 0 then F is uniruled or defined by a closed rational 1-form.

While it is still not our final word about the structure of foliations with c1(KF) =
0, the result above goes a long way in that direction, proving Theorem 1 when the
ambient manifold is rationally connected.

Theorem 7 also admits as a Corollary a refinement of a recent result by Cerveau
and Lins Neto [18] on the structure of foliations on P3 with KF = OP3(1) (foliations
of degree three). They proved that a foliation of degree 3 on P3 is either a pull-back
of a foliation on P2 by a rational map, or is transversely affine.

Corollary 9. Let F be a codimension one foliation on Pn of degree d. If 3 ≤ d ≤
2n−3 then F is a pull-back by a rational map of a foliation on a projective manifold
of dimension at most d

2 + 1 or F is defined by a closed rational 1-form.

Our generalization is not only more precise, as we say defined by a closed rational
1-form while they say transversely affine, but also more general since it applies to
projective spaces of every dimension greater than or equal to three.

1.8. Ingredients of the proof of Theorem 1. The results obtained from re-
duction modulo p (Theorem 2) together with the ones obtained from the study of
deformations of free rational curves (Theorem 7) do not seem to imply directly The-
orem 1. To deal with the cases not covered by them, we use Theorem 2 to restrain
the type of singularities, and explore the existence of a projective structure given
by Theorem 7 to infer the existence of an invariant divisor with good combinatorial
properties which allow us to conclude. To conclude we explore methods similar to
the ones used in the proof of our criterium for uniruledness (Theorem 5).

1.9. Plan of the paper. In Section 2 we have collected basic results about folia-
tions that will be used in the sequel. Section 3 is devoted to the reduction modulo
p of foliations with KF = 0. It starts by recalling results from [17] about the
existence of invariant hypersurfaces and then proceeds to the proof of Theorem
2. This sections finishes with the study of singularities of p-closed foliations and
its implications to the structure of foliations with KF = 0. Section 4 studies the
relationship between the existence of invariant hypersurfaces and the semi-stability
of the tangent sheaf. Besides the proof of Theorem 3, it contains a generalization
of a classical result of Halphen, and the classification of the irreducible components
of the space of foliations with KF < 0 on Fano 3-folds with rank one Picard group.
Section 5 deals with the classification of foliations with KF = 0 in Fano 3-folds
with rank one Picard group. It starts with the proof of a rough classification (The-
orem 4), and proceeds to a case-by-case analysis in order to detail the classification
according to the index of Fano 3-folds. Section 6 establishes our uniruledness cri-
terium (Theorem 5). Section 7 reviews some of the theory of transversely projective
foliations preparing the ground for Sections 8 and 9. Section 8 starts by recalling
the basic theory of deformation of free morphisms from P1 to projective manifolds,
then it uses this theory to obtain naturally defined foliations on the space of such
morphisms. The study of these foliations uncover some of the structure of the
original foliation, and allow us to obtain Theorem 7. In Section 9 we put together
information provided by Theorems 2, 5, and 7 and theirs proofs in order to establish
our Theorem 1. In Section 10 we present a conjecture refining Theorem 1, together
with some evidence toward it.
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2. Preliminaries

2.1. Foliations as subsheaves of the tangent and cotangent bundles. A
foliation F on a complex manifold is determined by a coherent subsheaf TF of the
tangent sheaf TX of X which

(1) is closed under the Lie bracket (involutive), and
(2) the inclusion TF → TX has torsion free cokernel.

The locus of points where TX/TF is not locally free is called the singular locus of
F , denoted here by sing(F).

Condition (1) allow us to apply Frobenius Theorem to ensure that for every
point x in the complement of sing(F), the germ of TF at x can be identified with
relative tangent bundle of a germ of smooth fibration f : (X, x) → (Cq, 0). The
integer q = q(F) is the codimension of F . Condition (2) is of different nature and
is imposed to avoid the existence of removable singularities. In particular it implies
that the codimension of sing(F) is at least two.

The dual of TF is the cotangent sheaf of F and will be denoted by T ∗F . The
determinant of T ∗F , i.e. (∧pT ∗F)∗∗ where dim(X) = n = p+ q, in its turn is what
we will call the canonical bundle of F and will be denoted by KF .

There is a dual point of view where F is determined by a subsheaf N∗F of
the cotangent sheaf Ω1

X = T ∗X of X . The involutivity asked for in condition
(1) above is replace by integrability: if d stands for the exterior derivative then
dN∗F ⊂ N∗F ∧ Ω1

X at the level of local sections. Condition (2) is unchanged:
Ω1

X/N
∗F is torsion free.

The normal bundle of F is defined as the dual of N∗F . Over the smooth locus
X − sing(F) we have the following exact sequence

0 → TF → TX → NF → 0 ,

but this is no longer true over the singular locus. Anyway, as the singular set has
codimension at least two we obtain the adjunction formula

KX = KF ⊗ detN∗F

valid in the Picard group of X .
The definitions above adapt verbatim to define algebraic foliations on smooth

algebraic varieties defined over an arbitrary field. But be aware that the geometric
interpretation given by Frobenius Theorem will no longer hold, especially over fields
of positive characteristic.

2.2. Foliations as q-forms and spaces of foliations. If F is a codimension q
foliation on a complex variety X then the q-th wedge product of the inclusion

N∗F −→ Ω1
X

determines a differential q-form ω with coefficients in the line bundle detNF =
(∧qNF)∗∗ having the following properties:

• Local decomposability: the germ of ω at the generic point of X decom-
poses as the product of q germs of holomorphic 1-forms

ω = ω1 ∧ · · · ∧ ωq.
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• Integrability: the decomposition of ω at the generic point of X satisfies
Frobenius integrability condition

dωi ∧ ω = 0 for every i = 1, . . . , q .

The tangent bundle of F can be recovered as the kernel of the morphism

TX → Ωq−1
X ⊗ detNF

defined by contraction with ω.
Reciprocally, if ω ∈ H0(X,Ωq ⊗L) is a twisted q-form with coefficients in a line

bundle L which is locally decomposable and integrable then the kernel of ω has
generic rank dimX − q, and it is the tangent bundle of a holomorphic foliation F .
Moreover, if the zero set of ω has codimension at least two then L = detNF .

Example 2.1 (Foliations on Pn and homogeneous forms). Let F be a codimension
q-foliation on Pn given by ω ∈ H0(Pn,Ωq

Pn ⊗ L). If i : Pq → Pn is a generic
linear immersion then i∗ω ∈ H0(Pq,Ωq

Pq ⊗ L) is a section of a line bundle, and its
zero divisor reflects the tangencies between F and i(Pq). The degree of F is, by
definition, the degree of such tangency divisor. It is commonly denoted by deg(F).
Since Ωq

Pq ⊗ L = OPq (deg(L)− q − 1), it follows that L = OPn(deg(F) + q + 1).
The Euler sequence implies that a section ω of Ωq

Pn(deg(F)+q+1) can be thought
as a polynomial q-form with homogeneous coefficients of degree deg(F) + 1, which
we will still denote by ω, satisfying (*) iRω = 0 where R = x0

∂
∂x0

+ · · · + xn
∂

∂xn

is the radial vector field. Thus the study of foliations of degree d on Pn reduces to
the study of locally decomposable, integrable homogeneous q-forms of degree d+1
on Cn+1 satisfying the relation (*).

For a fixed variety X , and a fixed line bundle N we will consider the space of
foliations of codimension q having detNF = N onX as the locally closed subvariety
Folq(X,N) ⊂ PH0(X,Ωq

X ⊗N) corresponding to locally decomposable, integrable
q-forms having zero set of codimension at least two. The study of irreducible
components of these spaces has been initiated by Jouanolou in [39], where the

irreducible components of Fol1(Pn,OPn(2)) (codimension one foliations of degree
zero) and Fol1(Pn,OPn(3)) (codimension one foliations of degree one) are described.

The irreducible components of Fol1(Pn,OPn(4)), n ≥ 3, have been classified by
Cerveau and Lins Neto in [15]. In §5.6.1 we generalize Jouanolou’s classification of
degree one foliations on Pn to arbitrary codimensions, and we give an alternative
proof of Cerveau-Lins Neto classification in §5.3 (degree two foliations on P3) and
§5.6 (degree two foliations on Pn, n > 3).

2.3. Harder-Narasimhan filtration. Let E be a torsion free coherent sheaf on a
n-dimensional smooth projective variety X polarized by the ample line bundle H .
The slope of E (more precisely the H-slope of E) is defined as the quotient

µ(E) = c1(E) ·Hn−1

rank(E) .

If the slope of every subsheaf E ′ of E satisfies µ(E ′) < µ(E) (respectively µ(E ′) ≤
µ(E)) then E is called stable (respectively semi-stable). A sheaf which is semi-stable
but not stable is said to be strictly semi-stable.
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If E is not semistable then there exists a unique filtration of E by torsion free
subsheaves

0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E
such that Gi := Ei/Ei−1 is semistable, and µ(G1) > µ(G2) > . . . > µ(Gr) . This
filtration is called the Harder–Narasimhan filtration of E . Usually one writes
µmax(E) = µ(G1) and µmin(E) = µ(Gr). The sheaf E1 is called the maximal desta-
bilizing subsheaf of E .

When E is the tangent sheaf of a foliation F , the proof of [42, Chapter 9, Lemma
9.1.3.1] implies the following result.

Proposition 2.2. Let F be a foliation on a polarized smooth projective variety
(X,H) satisfying µ(TF) ≥ 0. If TF is not semi-stable then the maximal destabiliz-
ing subsheaf of TF is involutive. Thus there exists a semi-stable foliation G tangent
to F and satisfying µ(TG) > µ(TF) .

Proof. Let E be the maximal destabilizing subsheaf of TF . Since TF is involutive,
the Lie bracket of local sections of E lies in TF . Thus the Lie bracket defines a
morphism of OX -modules

[·, ·] :
2∧
E −→ TF

E .

On the one hand µ(
∧2 E) = 2µ(E) and, since E is semi-stable,

∧2 E is semi-stable.
On the other hand µmax(TF/E) < µmax(TF). Therefore µ(TF) ≥ 0 implies µ(E) >
0 and, consequently

µmin(
2∧
E) = µ(

2∧
E) > µ(E) = µmax(TF) > µmax(TF/E) .

But µmin(A) > µmax(B) implies HomOX
(A,B) = 0 for any pair of torsion free

sheaves. We conclude that E is involutive and must be equal to the tangent sheaf
of a foliation G. �

Example 2.3. If F is a foliation of Pn then the slope of TF is

µ(TF) =
dim(F)− deg(F)

dim(F)
.

Therefore TF is semi-stable if and only if for every distribution D tangent to F we

have deg(D)
dim(D) ≥ deg(F)

dim(F) . Of course, TF is stable if and only if the strict inequality

holds for every distribution D.
If F is unstable and deg(F) ≤ dim(F) then there exists a foliation G contained

in F satisfying
deg(G)
dim(G) <

deg(F)

dim(F)
.

2.4. Miyaoka-Bogomolov-McQuillan Theorem. The result stated below is a
particular case of a more general result by Bogomolov and McQuillan proved in [7]
. It generalizes a Theorem of Miyaoka, see [51, Theorem 8.5], [42, Chapter 9], or
[40].

Theorem 2.4. Let F be foliation on a projective manifold X. If there exists a
curve C ⊂ X disjoint from the singular set of F for which TF|C is ample then
the leaves of F are algebraic and the closure of a generic leaf of F is a rationally
connected variety.
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We recall that a variety Y is rationally connected if through any two points
x, y ∈ Y there exists a rational curve C in Y containing x and y. Foliations
satisfying the conclusions of Miyaoka-Bogomolov-McQuillan Theorem will be called
rationally connected foliations. Notice that this does not mean that every leaf is
rationally connected but that the generic leaf is rationally connected. For example,
if we consider the codimension one foliation on P3 determined by a pencil of cubics
generated by 3H , an hyperplane with multiplicity three, and a cone V over a smooth
planar cubic transverse to H then the generic leaf is a smooth cubic surface, and
therefore rationally connected, but V is not rationally connected but only rationally
chain–connected. Thus this foliation is rationally connected but it has one leaf
which is not.

We will use Theorem 2.4 in the following form, closer to Miyaoka’s original
statement.

Corollary 2.5. Let F be a semi-stable foliation on a n-dimensional polarized pro-
jective variety (X,H). If KF ·Hn−1 < 0 then F is a rationally connected foliation.

Proof. If m ≫ 0 and C is a very generic curve defined as a complete intersection
of elements of |mH | then TF|C is a semi-stable vector bundle of positive degree.
Therefore every quotient bundle of TF|C has positive degree and we can apply [34,
Theorem 2.4] to see that TF|C is ample. We apply Theorem 2.4 to conclude. �

In the particular case of Pn this corollary reads as below.

Corollary 2.6. Let F be a semi-stable foliation on Pn. If deg(F) < dim(F) then
F is a rationally connected foliation.

2.5. Tangent subvarieties and pull-backs. Let F be a singular foliation on a
projective manifold X of dimension n. We will say that F is the pull-back of a
foliation G defined on a lower dimensional variety Y , say of dimension k < n, if
there exists a dominant rational map π : X 99K Y such that F = π∗G. In this case,
the leaves of F are covered by algebraic subvarieties of dimension n− k, the fibers
of π.

Actually, the converse holds true. Suppose that through a generic point of X
there exists an algebraic subvariety tangent to F . Since tangency to F imposes a
closed condition on the Hilbert scheme, it follows that the leaves of F are covered
by q-dimensional algebraic subvarieties, q = n− k. More precisely, there exists an
irreducible algebraic variety Y and an irreducible subvariety Z ⊂ X × Y such that
the natural projections

Z
π2 //

π1

��

Y

X

are both dominants; the generic fiber of π2 has dimension q; and the generic fiber
of π2 projects to X as a subvariety tangent to F . By resolution of singularities and
Stein factorization Theorem, we can moreover assume that Z and Y are smooth
and π2 has generic irreducible fibers. Keep in mind that Z is no more in X × Y
after doing so, but it is still birational to its image by π1 × π2 : Z → X × Y .

Throughout the paper we will make use of the following result.
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Lemma 2.7. Let F be a foliation on a projective manifold X of dimension n.
Assume that F is covered by a family of (n− k)-dimensional algebraic subvarieties
as above. Then F is the pull-back of a foliation defined on a variety Y having
dimension ≤ k.

When π1 : Z → X is birational, which means that through a generic point passes
exactly one subvariety Zy of the family, then π2 ◦ π−1

1 : X 99K Y is the pull-back
map. On the other hand, when π1 is not finite, or even finite but not of degree 1,
then the pull-back dimension jumps to lower dimension < k as we shall see in the
proof.

Proof. We want to prove that there is an intermediate family of algebraic subvari-
eties (containing the Zy = π−1

2 (y) and contained into the leaves of F) that foliate
(through a generic point passes exactly one subvariety); in other words, there is a
rational map π : Y → Y ′ such that π1 maps the image π1× (π ◦π2)(Z) birationally
to X .

Since a generic Zy is irreducible, any two points x, x′ ∈ X \ sing(F) belonging to
Zy are contained into the same leaf for F . The idea is to consider the equivalence
relation onX\sing(F) generated by the Zy’s. For this, we consider, for any positive
integers n, the set:

Σn =



z = (z1, . . . , z2n) ∈ Z2n ;

π1(zk) ∈ X \ sing(F)
π2(z2k−1) = π2(z2k)
π1(z2k) = π1(z2k+1)





which are irreducible quasi-projective subvarieties of Z2n. Now define

π : Σ → X
z 7→ π1(z1)

and
π′ : Σ → X
z 7→ π1(z2n)

and set
Rn := π × π′(Σn)

which are thus irreducible quasi-projective subvarieties Rn ⊂ X × X . By con-
struction, a pair (x, x′) ∈ (X − sing(F))2 belongs to Rn if and only if x and x′

can be connected in their common leaf by a chain of n elements Zy of the family
(intersecting outside of sing(F)). It is then easy to check that the relation

x ∼Rn
x′ ⇔ (x, x′) ∈ Rn

is reflexive (Rn contains the diagonal) and symmetric (Rn is invariant under
(x, x′) 7→ (x′, x)); moreover, we have inclusions Rn ⊂ Rn+1 and R = ∪nRn is cer-
tainly the graph of the equivalence relation generated by the Zi’s on X \sing(F). In
fact, if some Rn = Rn+1, then Rn = R already defines the equivalence relation; this
actually occurs and the reason is that dim(Rn+1) > dim(Rn) whenever Rn+1 6= Rn,
by irreducibility: the dimension is bounded by dim(X ×X).

Finally, the equivalence relation, whose graph is algebraic, defines a singular
foliation by algebraic subvarieties on X ; following [30], there exists a rational map
π′′ : X → Y ′ whose fibers coincide with the (connected) cosets on X \ sing(F). By
construction, F is the pull-back of a foliation G on Y ′. �

Lemma 2.8. Given a codimension one foliation F on a projective manifold X
of dimension n, let π : (X,F) 99K (Y,G) be a pull-back having minimal dimension
k = dim(Y ). By Stein Factorization Theorem, one can assume that π has connected
fibers (after lifting π to a finite cover of Y ). Then, π is the minimal pull-back in the
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following sense: if π′ : (X,F) 99K (Y ′,G′) is another pull-back map with connected
fibers, then it factors through a rational map φ : (Y ′,G′) 99K (Y,G).

In other words, the fibers of π form the unique family of subvarieties ofX tangent
to F having maximal dimension.

Proof. If the fibers of π′ : X 99K Y ′ are contained in those of π : X 99K Y , then we
get a factorization like in the statement. If not, then the fibers of π′ project on Y
as dimension > 0 submanifolds contained into the leaves of G. We can apply the
previous lemma and this contradict the minimality of π. �

We immediately deduce that the minimal pull-back dimension is invariant under
dominant rational maps: if π : (X,F) 99K (Y,G) is such a map, then F and G have
the same minimal pull-back dimension.

3. Reduction modulo p

In this section we start our study of foliations with numerically trivial canonical
bundle on projective manifolds. We are bound to restrict ourselves to the algebraic
category as our results do depend on the reduction modulo p of foliations defined
on complex projective manifolds.

3.1. A few words about reduction modulo p. Let F be a foliation defined on a
complex projective manifold X . The variety X and the subsheaf TF ⊂ TX , can be
both viewed as objects defined over a ring R of characteristic zero finitely generated
over Z. If p ⊂ R is a maximal ideal then R/p is a finite field k of characteristic
p > 0. The reduction modulo p of F is the foliation Fp determined by the subsheaf
TFp = TF ⊗R k of the tangent sheaf of the projective variety Xp = X ⊗R k. In
layman terms, we are just reducing modulo p the equations (which have coefficients
in R) defining X and F . For more on the reduction modulo p see, [28] and [52,
Chapter 1, §2.5].

Here we will use reduction modulo p to in order to find invariant hypersurfaces
and integrating factors for semi-stable complex foliations with numerically trivial
canonical bundle. We will implicitly make use of the following result.

Proposition 3.1. Let F be a foliation on a polarized projective manifold (X,H).
If there are integers M,m, and an infinite set of primes P such that Fp has an
invariant subvariety of dimension m and degree at most M for every p ∈ P then F
has an invariant hypersurface of dimension m degree at most M .

Proof. For a fixed Hilbert polynomial χ, the subschemes of X invariant by F with
Hilbert polynomial χ form a closed subscheme Hilbχ(X,F) of Hilbχ(X), see [19].
Moreover, its formation commutes with base change. Thus Hilbχ(X,F) is non-
empty if and only if Hilbχ(Xp,Fp) is non-empty for infinitely many primes p, see
for instance [52, Lecture I, Proposition 2.6]. To conclude it suffices to remind that
irreducible reduced subvarieties of Xp of bounded degree have bounded Hilbert
polynomial, independently of p. �

If v is vector field on a manifold of positive characteristic then its p-th power is
also a vector field since it satisfies Leibniz’s rule:

vp(f · g) =
p∑

i=0

(
p

i

)
vi(f)vp−i(g) = fvp(g) + vp(f)g mod p .
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A foliation F on a manifold X defined over a field of characteristic p > 0 is said to
be p-closed if and only if for every local section v of TF its p-th power vp is also
a local section of TF . The p-closed foliations of codimension q are precisely those
that can be defined by q rational functions f1, . . . , fq in the sense that df1∧ . . .∧dfq
is a non-zero rational section of detN∗F ⊂ Ωq

X . This illustrates what is perhaps
the most astonishing contrast between foliations in positive/zero characteristic: the
easiness/toughness to decide whether or not F has first integrals.

If F is a foliation on a projective manifold defined over a finitely generated Z-
algebraR ⊂ C then the behavior ofXp and Fp may vary wildly when p varies among
the maximal primes of R. Thus in order to have some hope to read properties of F
on its reductions modulo p one has to discard the bad primes. When a foliation F on
a complex projective manifold has p-closed reduction modulo p for every maximal
prime ideal p lying in an open subset U ⊂ Spec(R) then we will simply say that F
is p-closed.

As already mentioned in the Introduction, Ekehdal, Shepherd-Barron, and Tay-
lor [28] conjectured that p-closed foliations are foliations by algebraic leaves. This
generalizes a previous conjecture by Grothendieck and Katz about the reduction
modulo p of flat connections. Despite the recent advances, notably [9], both con-
jectures are still wide open.

3.2. Integrating factors in positive characteristic. In this section we collect
some preliminary results, simple variations of the ones in [17, Section 5], which will
be essential in what follows.

Lemma 3.2. Let X be a smooth affine variety of dimension n defined over an
algebraically closed field of arbitrary characteristic. If ω is an integrable q-form
which is non zero at a closed point x ∈ X then there exists n − q regular vector
fields v1, . . . , vn−q at an affine neighborhood of x such that

(1) v1 ∧ · · · ∧ vn−q(x) 6= 0;
(2) [vi, vj ] = 0 for every i, j ∈ {1, . . . , n− q};
(3) iviω = 0 for every i ∈ {1, . . . , n− q}.

Proof. As ω is integrable and ω(x) 6= 0, we can write

ω = ωn ∧ ωn−1 ∧ · · · ∧ ωn−q+1

where ωi are rational 1-forms regular at a neighborhood of x. Let f1, . . . , fn−q ∈
k(X) be rational functions, regular at a neighborhood of x, such that

(ω ∧ df1 ∧ · · · ∧ dfn−q)(x) 6= 0 .

If we set ωi = dfi, for i = 1, . . . , n− q then {ωi}ni=1 form a basis of the k(M)-vector
space of rational 1-forms over X , and {ωi(x)}ni=1 for a basis of the k-vector space
T ∗
pX .
Let {vi}ni=1 be a basis of the space of rational vector fields on X dual to {ωi}ni=1,

i.e., ωi(vj) = δij . It is clear that iviω = 0 for every i = 1 . . . n − q. We claim that
[Xi, Xj ] = 0 for every i, j = 1 . . . n− q. It is sufficient to show that

(1) ωk([Xi, Xj]) = 0 for every k = 1 . . . n
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For k > n − q the integrability of ω implies that (1) holds. For k ≤ n − q we
have that

ωk([Xi, Xj ]) = Xi(ωk(Xj))−Xj(ωk(Xi)) + dωk(Xi, Xj) =

= Xi(δkj)−Xj(δki) + d2fk(Xi, Xj) = 0 .

The lemma follows. �

The underlying idea in the next result is that p-th powers of vector fields tangent
to a integrable q-form give rise to infinitesimal automorphisms, and the abundance
of these allow us to find integrating factors.

Proposition 3.3. Let X be a smooth variety defined over a field k of characteristic
p > 0 and ω be a rational q-form on X. If ω is integrable and there exists rational
vector fields ξ1, . . . , ξq such that

(1) iξiω = 0 for every i = 1, . . . , q; and
(2) F = ω(ξp1 , . . . , ξ

p
q ) 6= 0

then the q-form F−1 · ω is closed.

Proof. Let n be the dimension of X and v1, . . . , vn−q be the rational vector fields

given by Lemma 3.2. Thus ξi =
∑n−q

j=1 aijvj for suitable rational functions

aij . By a formula of Jacobson [37, page 187] we can write ξpi =
∑n−q

j=1 a
p
ijv

p
j +

P (ai,1v1, . . . , ai,n−qvn−q) with P being a Lie polynomial. Since [vi, vj ] = 0 it fol-
lows that

ξpi =

n−q∑

j=1

apijv
p
j , mod < v1, . . . , vn−q > .

As we are interested in contracting ξpi with ω we will replace ξpi by ζi =
∑n−q

j=1 a
p
ijv

p
j .

Notice that [ζi, vj ] = 0 for i ∈ {1, . . . , q}, j ∈ {1, . . . , n − q}; and [ζi, ζj ] = 0 for
i, j ∈ {1, . . . , q}.

Set Ξi = (−1)iζ1 ∧ · · · ∧ ζ̂i ∧ · · · ∧ ζq and αi = F−1 · iΞi
ω. The 1-forms αi are

integrable, i.e. αi ∧ dαi = 0 and, up to a non-zero multiplicative constant, the
following identity holds true

F−1ω = α1 ∧ · · · ∧ αq .

To prove the proposition it suffices to show that the 1-forms αi are closed.
Fix an arbitrary i ∈ {1, . . . , q}. The integrability of αi together with αi(ξ

p
i ) =

αi(ζi) = 1 implies

0 = iζi(αi ∧ dαi) = dαi − αi ∧ iζidαi .

Hence to prove αi is closed, it suffices to verify that the 1-form iζidαi is zero. As
the vector fields v1, . . . , vn−q, ζ1, . . . , ζq commute, then for every vector field w in
the previous list we have

iζidαi(w) = αi([ζi, w])− ζi(αi(w)) + w(αi(ζi)) = 0 .

This ensures dαi = 0 and settles the proposition. �

Corollary 3.4. Hypothesis as in Proposition 3.3. If ξ̃1, . . . , ξ̃q is another collection
of rational vector fields satisfying (1) and (2) then the rational functions F =

ω(ξp1 , . . . , ξ
p
q ) and F̃ = ω(ξ̃p1 , . . . , ξ̃

p
q ) differ by the multiplication of a p-th power of

a rational function, i.e., F = HpF̃ , for some rational function H.
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3.3. Lifting integrating factors. We will now focus on foliations of codimension
one.

Theorem 3.5. Let (X,H) be a polarized projective complex manifold, and F a
semi-stable foliation of codimension one on X. If KF ·Hn−1 = 0 then at least one
of the following assertions holds true

(1) the foliation F is p-closed;
(2) F is induced by a closed rational 1-form with coefficients in a flat line

bundle and without divisorial components in its zero set.

Proof. Suppose the set of primes P for which Fp – the reduction mod p of F – is
not p-closed is infinite, and fix p ∈ P .

To raise germs of vector fields v in TFp to theirs p-th powers provides a non-zero
global section Sp of

HomOX
(F ∗TFp, NFp) = (F ∗TFp)

∗ ⊗NFp

where F is the absolute Frobenius.
Let us explicitly describe Sp at sufficiently small Zariski open subsets Ui disjoint

from the singular set of Fp. Let v1,i, ...., vn−1,i be n − 1 vector fields tangent to
the foliation and such that v1,i ∧ ... ∧ vn−1,i does not vanish on Ui. We can also
assume that Fp is defined on the same domain by a 1-form ωi without divisorial
components in its singular set. Take another open set Uj with the same properties.
On overlapping charts, we have




v1,i
...

vn−1,i


 =Mij




v1,j
...

vn−1,j




where the matrix cocycle {Mij} represents the cotangent bundle T ∗Fp of the foli-
ation outside sing(Fp).

As a consequence, using Jacobson’s formula [37], we obtain



vp1,i
...

vpn−1,i


 = Nij




vp1,j
...

vpn−1,j


 mod TFp

where the matrix Nij is obtained fromMij by replacing each entry by its pth power.
If we set sk,i = ωi(v

p
k,i) then we gain the following equality




s1,i
...

sn−1,i


 = gijNij




s1,j
...

sn−1,j




where gij is the cocycle representing the normal bundle of Fp. The collection of
vector {(s1,is2,i . . . sn−1,i)

T } represents Sp on Xp − sing(Fp).
Let Dp be the zero divisor of the section Sp. Over Ui, Dp is given by the common

zeros of s1,i, . . . , sn−1,i. Since Fp is not p-closed, there is at least one among these
functions which do not vanish identically. Choose one and denote it by si. Corollary
3.4 implies that over Ui∩Uj, si = gijh

p
ijsj for some rational function hij in Ui∩Uj.

Therefore
dsi
si

− dsj
sj

=
dgij
gij

.
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If Cp is an arbitrary irreducible curve on Xp then

(2) Dp · Cp = NFp · Cp mod p

as one can verify by writing gij = gi/gj as a quotient of sufficiently general rational
functions and applying the Residue formula to the logarithmic 1-form ηp obtained

by patching together the 1-forms dsi
si

− dgi
gi
. Notice that if we set ω = ωi/gi then

dω = ω ∧ ηp and dηp = 0 .

In order to obtain further restrictions on Dp, we will use the following result by
Shepherd-Barron, [60, Corollary 2p] and [42].

Lemma 3.6. (char p) Suppose that E is a semi-stable vector bundle of rank r over

a curve C of genus g. Consider F ∗E = Ẽ, the pull-back of F under the absolute
Frobenius, then there exists M =M(r, g) > 0 independent of p such that

µmax(Ẽ)− µmin(Ẽ) ≤M

Now, return to the original F on the complex manifold X . Consider a general
complete intersection curve C cut out by elements of |mH | ( m≫ 0 ) for which the
TF|C is semi-stable. Notice that this semi-stability is preserved under specialization
mod p for almost all p.

Restricting Sp to Cp and cleaning up its zero divisor we get a section of

HomOCp
(F ∗Fp|Cp

, NFp|Cp
⊗OCp

(−Dp)).

Since HomOX
(A,B) = 0 whenever µminA > µmaxB, we deduce that

µmin(F
∗Fp|Cp

) ≤ µmax(NFp|Cp
)−Dp · Cp .

Lemma 3.6 and the fact that µmax(F
∗F|Cp

) ≥ 0 implies

Dp · Cp ≤M +NFp · Cp

with M uniform in p. Combined with (2) this last inequality implies Dp is numeri-
cally equivalent to NFp. In particular, the degree of Dp is uniformly bounded, and
the same holds true for the degree of the polar locus of ηp. Thus we can lift the
integrating factor ηp to characteristic zero and obtain a logarithmic 1-form η such

that η + dgi
gi

has residues in Z>0 . Therefore, in characteristic zero, the 1-form

ω

exp
∫
η

is a rational 1-form with isolated zeros and coefficients in a flat line bundle. �

3.4. Singularities of p-closed foliations. McQuillan observed in [49, Proposition
II.1.3] that isolated singularities of p-closed foliations of dimension one with non-
nilpotent linear part are fairly special. We state below his result.

Lemma 3.7. Let F be a p-closed foliation by curves on a projective variety X. If
x ∈ sing(F) is an isolated singularity with non-nilpotent linear part then there exist
formal coordinates at x where F is generated by the linear vector field

v =

n∑

i=1

λixi

where λ1, . . . , λn are non-zero integers.
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Theorem 3.8. Let (X,H) be a polarized projective complex manifold and F be
a codimension one semi-stable foliation on X with numerically trivial canonical
bundle. Suppose c1(TX)2 ·Hn−2 > 0. If F is p-closed then

(1) F is a rationally connected foliation, i.e., the generic leaf of F is a rationally
connected algebraic variety; or

(2) F is strictly semi-stable and there is a rationally connected foliation H
tangent to F and with KH ·Hn−1 = 0.

Proof. As c1(TF) = 0, we have that c1(TX) = c1(NF). Thus c1(TX)2 ·Hn−2 =
c1(NF)2 · Hn−2 > 0 and Baum-Bott index Theorem implies the existence of a
codimension two component S of the singular set of F which has positive Baum-
Bott index.

Take a generic surface Σ ⊂ X intersecting S transversally. As p-closedness is
preserved by birational transformations and restrictions to subvarieties, it follows
from Lemma 3.7 that the singularities of F|Σ on S ∩Σ either have zero linear part
or are linearizable with quotient of eigenvalues rational positive.

Therefore, if we first resolve the singularities of S and then blow-up its strict
transforms sufficiently many times we obtain a sequence of blow-ups π : Y → X
such that the canonical bundle of G = π∗F is of the form

KG = π∗KF − E −D ,

where E is an effective divisor supported on an irreducible hypersurface such that
π(E) = S and D is a divisor (not necessarily effective) such that π(|D|) ⊂ sing(S).
In particular π(|D|) has codimension at least three.

Let A be an ample line bundle on Y . We claim that for ε > 0 sufficiently small,
the divisor Hε = π∗H + εA satisfies (KG) ·Hn−1

ε < 0. Indeed,

(KG) ·Hn−1
ε = KF ·Hn−1 + ε(n− 1)(π∗H)n−2 ·A · (−D − E) mod ε2.

Since π(|D|) has codimension at least three, the intersection of (π∗H)n−2 · A with
D is zero. The claim follows.

If G is Hε-stable for some choice of A and ε > 0 then Theorem 2.4 implies
that the leaves of G are rationally connected varieties. If not then H, the maximal
destabilizing foliation of G, will satisfy

µ(TH) < µ(TG)
where the slope µ is computed as a function of A and ε. Making ε arbitrarily small
we deduce that µ(π∗H) ≤ µ(TF) (now µ is computed using H), and we deduce
that F is strictly semi-stable. The Theorem follows. �

From the proof of Theorem 3.8 we can promptly deduce the following result.

Corollary 3.9. Let F be a p-closed foliation with c1(KF) = 0 on a projective
manifold X. If F is not uniruled and S is an irreducible component of sing(F) of
codimension two then at a generic point of S the foliation F is locally defined by a
holomorphic 1-form of type

pxdy + qydx

with p, q relatively prime positive integers.

Later in Section 6 we will show that under the same hypothesis of the corollary
above we can ensure the existence of at least one irreducible component of sing(F)
having non-zero Baum-Bott index, i.e., on this component p 6= q.
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4. First integrals of (semi)-stable foliations

Miyaoka-Bogomolov-McQuillan Theorem (Theorem 2.4) tells us that semi-stable
foliations with negative canonical bundle have algebraic leaves and that the generic
one is rationally connected. The goal of this section is to complement this result
for codimension one foliations by giving more information about the first integral.
We also deal with stable foliations with numerically trivial canonical bundle having
rational first integrals, and the results here presented will play an important role
in proof of the classification of codimension one foliations with KF = 0 on Fano
3-folds with rank one Picard group.

4.1. Invariant hypersurfaces and subfoliations. Let F be a foliation of codi-
mension q on a compact Kähler manifoldX . Let Div(F) ⊂ Div(X) be the subgroup
of the group of divisors of X generated by irreducible hypersurfaces invariant by F .
The arguments used in [31] to prove Jouanolou’s theorem lead us to the following
result.

Lemma 4.1. Suppose the dimension of F is greater than or equal to two. If
D ∈ Div(F) satisfies c1(D) = m · c1(NF) for a suitable m ∈ Z then at least one of
the following assertions holds true:

(a) the integer m is non-zero and F is, after a ramified abelian covering of
degree m and a bimeromorphic morphism, defined by a meromorphic closed
q-form with coefficients in a flat line bundle; or

(b) the integer m is zero and F is tangent to a codimension one logarithmic
foliation with poles at the support of D and integral residues; or

(c) there exists a foliation G of codimension q + 1 tangent to F with normal
sheaf satisfying

detNG = detNF ⊗OX(−∆)

for some effective divisor ∆ ≥ 0.

Proof. Let N = detNF and ω ∈ H0(X,Ωq
X ⊗N) be a twisted q-form defining F .

Write D as
∑
λαHα with λα ∈ Z.

Our hypothesis ensure the existence of an open covering of U = {Ui} where

Hα ∩ Ui = {h(i)α = 0} and
∑

λα

(
dh

(i)
α

h
(i)
α

− dh
(j)
α

h
(j)
α

)
= m

dgij
gij

where {gij} ∈ H1(U ,O∗
X) is a cocycle defining N , i.e. ω is defined by a collection

of q-forms {ωi ∈ Ωq
X(Ui)} which satisfies ωi = gijωj.

On Ui, set ηi =
∑
λα

dh(i)
α

h
(i)
α

and define

θi = ηi ∧ ωi +m · dωi .

As the hypersurfaces Hα are invariant by F , θi is a holomorphic (q+1)-form. It is
also clear that θi is locally decomposable and integrable. Moreover, on Ui ∩ Uj we
have the identity

θi =

(
ηj −m

dgij
gij

)
∧ gijωj +m · d(gijωj) = gijθj .



20 F. LORAY, J.V. PEREIRA AND F. TOUZET

Hence the collection {θi} defines a holomorphic section θ of Ωq+1
X ⊗N . If this section

is non-zero then it defines a foliation G with detNG = detNF ⊗ OX(−(θ)0). We
are in case (c).

Suppose now that θ is identically zero. If m = 0 then ηi = ηj on Ui ∩Uj and we
can patch then together to obtain a logarithmic 1-form η with poles at the support
of D. Clearly we are in case (b).

If m 6= 0 then, on Ui the (multi-valued) meromorphic q-form

Θi = exp

(∫
1

m
ηi

)
ωi =

(∏
hλα/m
αi

)
ωi

is closed. Moreover, if Ui ∩ Uj 6= ∅ then Θi = µijΘj for suitable µij ∈ C∗. It is a
simple matter to see that we are in case (a). �

4.2. Number of reducible fibers of first integrals. Let F be a codimension one
foliation on a polarized projective manifold (X,H) having a rational first integral.
Stein’s factorization ensures the existence of a rational first integral F : X 99K C
with irreducible generic fiber. We are interested in bounding the number of non-
irreducible fibers of f . More precisely we want to bound the number

r(F) = r(F ) =
∑

x∈C

(
#{ irreducible components of F−1(x)} − 1

)
.

This problem, for rational functions F : X 99K P1 has been investigated by A.
Vistoli and others. In [66] he obtains a bound in function of the rank of the Neron-
Severi group of X and what he calls the base number of F . In particular, when X is
Pn, he proves that r(F ) ≤ deg(F )2−1 where deg(F ) is the degree of a generic fiber
of F . Our result below gives much stronger bounds for the first integrals obtained
through Theorem 2.4 when dimX ≥ 3.

Theorem 4.2. Suppose the dimension X is at least three. If F is semi-stable and
c1(TF) ·Hn−1 > 0, or F is stable and c1(TF) ·Hn−1 = 0 then

r(F) ≤ rankNS(X)− 1 ,

where NS(X) is the Neron-Severi group of X. In particular, if X = Pn, n ≥ 3,
then r(F) = 0.

Proof. Let x1, . . . , xk be the points of C for which F−1(x) is non-irreducible, and
let n1, . . . , nk be the number of irreducible components of F−1(xi). Choose ni − 1
irreducible components in each of the non-irreducible fibers and denote them by
F1, . . . , Fr(F). If r(F) ≥ rankNS(X) then an irreducible fiber F0 is numerically
equivalent to a Q-divisor supported on F1∪· · · ∪Fr(F). Therefore we can construct
a logarithmic 1-form η with polar divisor supported on F0, F1, . . . , Fr(F). According
to Lemma 4.1 either there exists a codimension two foliation G contained in F with
detNG = NF(−∆), for some ∆ ≥ 0; or F is defined by η. We will now analyze
these two possibilities.

If there exists G as above and c1(TF) ·Hn−1 < 0 then

0 < c1(TF) ·Hn−1 = (c1(TG)−∆) ·Hn−1 ≤ c1(TG) ·Hn−1 ,

which implies µ(TF) < µ(TG). Similarly, when c1(TF) · Hn−1 = 0 we deduce
µ(TF) ≥ µ(TG). In both cases we have a contradiction.

Suppose now that F is defined by η. As the generic fiber of F is irreducible, there
exists a logarithmic 1-form η′ on C such that η = F ∗η′. But this implies that the
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polar set of η is set-theoretically equal to union of fibers of F . This contradicts the
choice of the irreducible components of the fibers of F , and concludes the proof. �

4.3. Multiple fibers of rational maps to P1. A classical result of Halphen [33,
Chapitre 1] says that a rational map F : Pn

99K P1 with irreducible generic fiber
has at most two multiple fibers. In this section we follow closely the exposition of
Lins Neto [46] to establish the following generalization.

Theorem 4.3. Let X be a simply-connected compact Kähler manifold and F :
X 99K P1 be meromorphic map. If the generic fiber of F is irreducible then F has
at most two multiple fibers.

We will say that a line bundle L is primitive if its Chern class c1(L) ∈ H2(X,Z)
generates a maximal rank 1 submodule of H2(X,Z). To adapt Lins Neto’s proof of
Halphen’s Theorem to other manifolds we will need the following lemma.

Lemma 4.4. Let X be a simply-connected compact complex manifold. If L ∈
Pic(X) is a primitive line bundle on X then the total space of L minus its zero
section is simply-connected.

Proof. Let E be the total space of L minus its zero section. As E is a C∗-bundle,
we can use Gysin sequence

H1(X,Z) → H1(E,Z) → H0(X,Z)
∧c1(L)−→ H2(X,Z)

to deduce that the fundamental group of E is torsion. If E is not simply-connected
then its universal covering is a C∗-bundle over X , and the associated line bundle
divides L. This contradicts the primitiveness of L. �

Proof of Theorem 4.3. Let L be a primitive line bundle such that L⊗k =
F ∗OP1(1), for some positive integer k. If E is the total space of the C∗-bundle
defined by L∗ then sections of L and its positive powers naturally define holomor-
phic functions on E. Moreover, if f ∈ H0(X,L⊗k) then the element of H0(E,OE)
determined by f , which we still denote by f , is homogeneous of degree k with
respect to C∗-action on E given by fiberwise multiplication.

Now let F : X 99K P1 be a rational map with three multiple fibers, of multiplicity
p, q, r. Assume that they are over the points [0 : 1], [1 : 0], [1 : −1]. Thus we can
write F = fp/gq with

(3) fp + gq + hr = 0,

and fp, gq, hr ∈ H0(X,L⊗k). If we interpret f, g, h now as functions on E then
taking the differential of the relation (3) we get

pfp−1df + qgq−1dg + rhr−1dr = 0 .

Taking the wedge product with df, dg and dh we deduce the following equalities
between holomorphic 2-forms

df ∧ dg
hr−1

=
dg ∧ dh
fp−1

=
df ∧ dh
gq−1

where we have deliberately omitted irrelevant constants. Let now R be a vector field
tangent to the C∗-action on E. The contraction of this 2-form with R induce a non-
zero section of Ω1

X ⊗ La for a suitable integer a. As they are holomorphic we have
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that a ≥ 0. Moreover, since X is Kähler and simply-connected, H0(X,Ω1
X) = 0

and, consequently, a > 0. Therefore

k

p
+
k

q
− (r − 1)k

r
=
k

q
+
k

r
− (p− 1)k

p
=
k

p
+
k

r
− (q − 1)k

q
= a > 0

which implies

1

p
+

1

q
+

1

r
= 1 + a > 1 .

Therefore the triple (p, q, r), after reordering, must be one of the following:
(2, 2,m), (2, 3, 3), (2, 3, 4), or (2, 3, 5). If Sp,q,r = {(x, y, z) ∈ C3 \ {0}|xp+ yq + zr =
0} then Sp,q,r is the quotient of C2 \ {0} by one of the following subgroups
G ⊂ SL(2,C) (see for instance [46, Example 1.11])

• a dihedral group of order 2m when (p, q, r) = (2, 2,m);
• the tetrahedral group when (p, q, r) = (2, 3, 3);
• the octahedral group when (p, q, r) = (2, 3, 4); and
• the icosahedral group when (p, q, r) = (2, 3, 5).

Since E is simply-connected and the base locus of F has codimension two, we
can lift the map

ϕ : E \ {f = g = 0} −→ Sp,q,r

x 7−→ (f, g, h) .

to C2 \ {0}, the universal covering of Sp,q,r. Since the lift of F to E factors through
ϕ, we deduce that F : X 99K P1 fits into the diagram

P1

��
X

>>
~

~
~

~ F //___ P1

where the vertical arrow has positive degree. Therefore the generic fiber of F is not
irreducible. With this contradiction we conclude the proof. �

4.4. Codimension one stable foliations with first integrals. Having Theorem
4.3 at hand we are able to give precisions about the structure of the first integrals
of semi-stable foliations of codimension one having negative canonical bundle on
projective manifolds with rank one Picard group.

Proposition 4.5. Let X be a projective manifold with Pic(X) = Z and F be a
codimension one foliation on X. Suppose

(a) F is semi-stable and KF < 0, or
(b) F is stable, has a rational first integral, and KF = 0.

Then F admits a rational first integral of the form (fp : gq) : X 99K P1 where f, g
are sections of line bundles L1,L2 which satisfy

L⊗p
1 = L⊗q

2 and NF = L1 ⊗ L2.

In particular F is defined by a logarithmic 1-form without divisorial components in
its zero set.
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Proof. Let F : X 99K P1 be a rational first integral for F with generic irreducible
generic fiber. Notice that the target has to be P1 since Pic(X) = Z. Theorem 4.2
implies that every fiber of F is irreducible, and Theorem 4.3 tells us that there are
at most two non-reduced fibers. Assume that they are over 0,∞ ∈ P1 and write
F−1(0) = pH0, F

−1(∞) = qH∞ where H0 and H∞ are reduced and irreducible
hypersurfaces. If we take the logarithmic 1-form on P1 given in homogeneous co-
ordinates by dx/x − dy/y and we pull-back it by F then the resulting logarithmic
1-form, which defines F , has polar divisor equal to H0 +H∞ and empty zero divi-
sor. Therefore NF = OX(H0 +H∞) and the F can be written as (fp : gq) with
f ∈ H0(X,OX(H0)), g ∈ H0(X,OX(H∞)). The proposition follows. �

Corollary 4.6. Let F be a semi-stable codimension one foliation on Pn, n ≥ 3. If
deg(F) < n− 1 then F admits a rational first integral of form (F p : Gq) where F
and G are homogeneous polynomials and p, q are relatively prime positive integers
such that p deg(F ) = q deg(G) and deg(F ) + deg(G) − 2 = deg(F).

4.5. Very negative foliations on Fano manifolds. A projective manifold X is
Fano if its anticanonical bundle −KX is ample. Let H be an ample generator of
the Picard group of a Fano manifold with ρ(X) = 1 (ρ(X) is the rank of the Picard
group of X). The index of X , denoted by i(X), is defined through the relation
−KX = i(X)H . The index of a Fano manifold of dimension n is bounded by
n+ 1 and the extremal cases are Pn (i(X) = n+ 1) and hyperquadrics Qn ⊂ Pn+1

(i(X) = n), see [41].
A codimension one foliation of degree one on Pn has canonical bundle KF equal

to OPn(2−n), see Example 2.1. Our next result can be thought as a generalization
of Jouanolou’s classification of codimension one foliations of degree one on Pn to
arbitrary Fano manifolds with ρ(X) = 1.

Proposition 4.7. Let X be a Fano manifold of dimension n ≥ 3 and Picard
number ρ(X) = 1. Let H be an ample generator of Pic(X). If F is a codimension
one foliation on X with KF = (2−n)H then F is a foliation of degree one on Pn,
or F is the restriction of a pencil of hyperplanes on Pn+1 to a hyperquadric Qn.

Proof. Assume first that F is semi-stable. Theorem 2.4, or rather Corollary 2.5,
implies F has a rational first integral. Proposition 4.5 implies NF ≥ 2H . Since
KX = KF − NF , it follows that KX ≤ −nH . Therefore KX = −(n + 1)H ,
NF = 3H and X = Pn, or KX = −nH , NF = 2H and X = Qn. Proposition 4.5
implies F is a pencil of quadrics with a non-reduced member in the first case, and
a pencil of hyperplane sections of Qn in the second case.

Suppose now that F is unstable and let G be its maximal destabilizing foliation.
Therefore

−KG = c1(TG) >
−KF
dim(F)

· dim(G) ≥ (dim(G)− 1)H .

and, consequently, −KG ≥ dim(G)H and we can produce a non-zero section of
∧dim(G)TX ⊗OX(− dim(G)H). It follows from [2, Theorem 1.2] that X = Pn and
G is a foliation of degree zero on Pn. Therefore F is the linear pull-back of a foliation
of degree one on Pn−dim(G). �
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5. Foliations on Fano threefolds with rank one Picard group

The goal of this section is to classify codimension one foliations with KF = 0
on Fano 3-folds with ρ(X) = 1. We will also describe the irreducible components
of the corresponding moduli spaces.

5.1. Rough Classification. Before dealing with specific examples, we will prove
the following rough classification.

Theorem 5.1. [Theorem 4 of the Introduction] Let X be a Fano 3-fold with
Pic(X) = Z, and let F be a codimension one foliation on X with trivial canon-
ical bundle. If F is unstable then X = P3 and F is the linear pull-back of a degree
two foliation on P2. If F is semi-stable then at least one of the following assertions
holds true:

(1) TF = OX ⊕OX and F is induced by an algebraic action;
(2) F is tangent to an algebraic action of C or C∗ with non-isolated fixed points;
(3) F is given by a closed rational 1-form without divisorial components in its

zero set.

5.1.1. Division Lemma. To prove Theorem 5.1 we will use the following division
lemma.

Lemma 5.2. Let X be a projective 3-fold, G be a one-dimensional foliation on
X with isolated singularities, and F a codimension one foliation containing G. If
H1(X,KX⊗KG⊗−2⊗NF) = 0 then TF ∼= TG⊕TH for a suitable one-dimensional
foliation H.

Proof. Let v ∈ H0(X,TX ⊗KG) be a twisted vector field defining G. By hypoth-
esis v has isolated singularities. Therefore (see for instance [27, Exercise 17.20])
contraction of differential forms with v defines a resolution of the singular scheme
sing(G) of G:

0 → Ω3
X → Ω2

X ⊗KG Φ−→ Ω1
X ⊗KG⊗2 → KG⊗3 → Osing(G) → 0 .

After tensoring by NF ⊗ K⊗−2
G , we obtain from the exact sequence above the

following exact sequences

0 → ImΦ⊗KG⊗−2 ⊗NF → Ω1
X ⊗NF → KG ⊗NF ,

and

0 → Ω3
X ⊗KG⊗−2 ⊗NF → Ω2 ⊗NF ⊗KG−1 → ImΦ⊗KG⊗−2 ⊗NF → 0 .

If ω ∈ H0(X,Ω1
X ⊗ NF) defines F then, since F contains G, ω belongs to the

kernel of

H0(X,Ω1
X ⊗NF) → H0(X,KG ⊗NF) .

The first sequence tells us that we can lift ω to H0(X, ImΦ⊗KG⊗−2 ⊗NF). The
second exact sequence, together with our cohomological hypothesis, ensures the
existence of θ ∈ H0(X,Ω2

X ⊗NF ⊗KG−1) such that ω = ivθ. Clearly θ defines the
sought foliation H. �
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5.1.2. Automorphisms of a foliation. Let F be a codimension one foliation on a
projective manifold X . The automorphism group of F , Aut(F), is the subgroup
of Aut(X) formed by automorphisms of X which send F to itself. It is a closed
subgroup of Aut(X), and therefore the connected component of the identity is a
finite dimensional connected Lie group. We will denote by aut(F) its Lie algebra,
which can be identified with a subalgebra of aut(X) = H0(X,TX). If F is defined
by ω ∈ H0(X,Ω1

X ⊗ NF) then we define the fix(F) as the subalgebra of aut(F)
annihilating ω, i.e.

fix(F) = {v ∈ aut(F) | ivω = 0} .
Notice that fix(F) is nothing more than H0(X,TF). We also point out that fix(F)
is an ideal of aut(F), and that subgroup Fix(F) ⊂ Aut(F) generated by fix(F) is
not necessarily closed.

Lemma 5.3. The following assertions hold true:

(1) If fix(F) = aut(F) then F is tangent to an algebraic action.
(2) If fix(F) 6= aut(F) then F is generated by a closed rational 1-form without

divisorial components in its zero set.

Proof. The connected component of the identity of Aut(F) is closed. If fix(F) =
aut(F) then Fix(F) is also closed and therefore correspond to an algebraic subgroup
of Aut(X). Item (1) follows. To prove Item (2), let v be a vector field in aut(F)−
fix(F). If ω ∈ H0(X,Ω1

X ⊗NF) is a twisted 1-form defining F then [54, Corollary
2] implies (ivω)

−1ω is a closed meromorphic 1-form. Since the singular set of ω has
codimension at least two, the same holds for (ivω)

−1ω. �

Proof of Theorem 5.1. If TF is unstable then Proposition 2.2 implies the exis-
tence of a foliation by curves G tangent to F and with TG > 0. Consequently G
is defined by a vector field vanishing along an ample divisor. According to Wahl’s
Theorem [67], X is isomorphic to P3 and TG = OP3(1). Thus G is a foliation of
degree zero and, consequently, its leaves are the lines through a point p ∈ P3. It
follows that F is a pullback under the linear projection π : P3

99K P2 determined
by G.

Suppose now that TF is stable. If F is not p-closed then Theorem 3.5 implies
that F is defined by a closed rational 1-form without divisorial components in its
zero set, since the only flat line bundle over X is the trivial one. If F is p-closed
then Theorem 3.8 implies F has a rational first integral. Corollary 4.6 implies that
also in this case F is defined by a logarithmic 1-form without codimension one
components in its zero set. Thus if TF is stable, F is given by a closed rational
1-form without divisorial components in its zero set.

Finally, we will deal with the case where TF is strictly semistable. Now we have
a foliation by curves G tangent to F with TG = OX . In other words, G is induced
by a vector field v ∈ H0(X,TX) with zeros of codimension at least two. Notice
that Cv ⊂ fix(F).

Suppose fix(F) = aut(F). If fix(F) = Cv then we claim G is defined by an
algebraic action of C or C∗ with non-isolated fixed points. Indeed Lemma 5.3
implies F is tangent to action of a one-dimension Lie group. Moreover, if the
action has only isolated fixed points then we can apply Lemma 5.2 to deduce that
the tangent bundle of F is OX ⊕OX . Notice that the hypothesis of Lemma 5.2 are
satisfied since KX ⊗KG⊗−2 ⊗ NF = OX and H1(X,OX) = 0 for varieties with
discrete Picard group.
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If we still assume fix(F) = aut(F) but now with dim fix(F) > 1 then, as v has
no divisorial components in its zero set, any two elements in it will generate TF .
Thus TF = OX ⊕ OX in this case and F is defined by an algebraic action since
Aut(F) is closed.

Finally, if fix(F) 6= aut(F) then Lemma 5.3 implies F is given by a closed mero-
morphic 1-form with zero set of codimension at least two. �

5.2. Closed 1-forms without divisorial components in theirs zero sets.
Below we collect a couple of useful results concerning foliations defined by closed
rational 1-forms. The first is a straightforward adaptation of [15, Lemma 8].

Lemma 5.4. Let X be a projective manifold with H0(X,Ω1
X) = 0. Let F be

codimension one foliation on X defined by a closed rational 1-form ω with zero set

of codimension at least two and polar divisor (ω)∞ =
∑k

i=1 riDi. Then there exists
a holomorphic family of foliations Ft, t ∈ (C, 0), such that

(1) F0 = F ;

(2) NFt = NF = OX(
∑k

i=1 riDi) for every t ∈ C; and
(3) Ft is defined by a logarithmic 1-form for every t 6= 0.

The next proposition will allow us to guarantee that the irreducible components
of the space of foliations with KF = 0 on Fano 3-folds of index two are indeed
smooth.

Proposition 5.5. Let X be a manifold with Pic(X) = ZH of dimension at least
three. If h0(X,OX(H)) > 1 then the set of foliations defined by a closed 1-form
without codimension one zeros and with polar divisor linearly equivalent to 2H is
a smooth and irreducible subvariety of PH0(X,Ω1

X ⊗ OX(2H)) isomorphic to the
Grassmannian Gr(2, h0(X,OX(H)).

Proof. Consider the linear map

Ψ :

2∧
H0(X,OX(H)) → H0(X,Ω1

X(2H))

F ∧G 7→ FdG−GdF .

We claim that the kernel of Ψ intersects the set of decomposable elements of∧2H0(X,OX(H)) only at zero. If Ψ(F ∧ G) = 0 then the rational map ϕ =
(F : G) : X 99K P1 must be constant since FdG − GdF = ϕ∗(x0dx1 − x1dx0).
Therefore F = λG for some λ ∈ C. Thus Ψ induces a linear projection from∧2

H0(X,OX(H)) to P(X,Ω1
X(2H)) with center disjoint from the Grassmannian

Gr = Gr(2, h0(X,OX(H))).
Notice that OX(H) is a primitive line bundle. Thus for every non-zero F ∧G ∈∧2
H0(X,Ω1

X), every fiber of the rational map ϕ = (F : G) : X 99K P1 is reduced
and irreducible. If Ψ(F1∧G1) = Ψ(F2∧G2) then the set of fibers of ϕ1 = (F1 : G1)
and ϕ2 = (F2 : G2) must be equal, and consequently the rational maps must differ
by a right composition with an automorphism of P1. Thus F1 ∧G1 = λF2 ∧G2 for
some λ ∈ C. In other words, the linear projection induced by Ψ has kernel disjoint
from the secant variety of Gr

Sec(Gr) =
⋃

x,y∈Gr2,x 6=y

ℓx,y , where ℓx,y is the line joining x and y .
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Notice that elements in the projective tangent space of Gr ⊂ P
∧2

H0(X,OX(H))
at [F ∧G] can be written as [F ∧G+ F ∧G′ + F ′ ∧G] = [F ∧ (G+G′) + F ′ ∧G]
and therefore are in the secant variety of Gr. Thus Sec(Gr) = Sec(Gr) is a closed

subvariety of P
∧2

H0(X,OX(H)) disjoint from the center of the linear projection
determined by Ψ. It follows that [Ψ] : Gr → PH0(X,Ω1

X(2H)) is an embedding. �

5.3. Foliations on P3. We will now proceed to present our proof of the classifi-
cation of foliations on P3 with KF = 0 originally due to Cerveau and Lins Neto
[15].

Theorem 5.6. The irreducible components of the space of foliations on P3 with
KF = 0 are:

(1) Rat(2, 2) : the generic element is a pencil of quadrics with irreducible ele-
ments;

(2) Rat(1, 3) : the generic element is a pencil of cubics having a triple hyper-
plane as a member;

(3) Log(1, 1, 1, 1): the generic element is defined by a logarithmic 1-form with
poles on four hyperplanes;

(4) Log(2, 1, 1): the generic element is defined by a logarithmic 1-form with
poles on two hyperplanes and a quadric;

(5) Exc(2): the generic element is isomorphic to the foliation defined by the
natural action of Aff(C) on P3 = Sym3 P1;

(6) LPB(2): every element is the pull-back of a degree 2 foliation on P2 under
a linear projection.

5.3.1. Foliations tangent to algebraic actions. We start by analyzing the foliations
tangent to algebraic C∗-actions.

Proposition 5.7. Let F be a codimension one foliation on P3 with KF = 0. If F
is tangent to an algebraic C∗-action with non-isolated fixed points then F is given
by a closed rational 1-form without divisorial components in its zero set.

Proof. Let ϕ : C∗ × P3 → P3 by a C∗-action. For a suitable choice of coordinates
this action is determined by a homogeneous vector field

ξ =

3∑

i=0

λixi
∂

∂xi

with the coefficients λi ∈ Z, which we can assume ordered λ0 ≤ λ1 ≤ λ2 ≤ λ3.
Adding −λ0R to ξ, we can further assume that λ0 = 0. With this assumption the
foliation Lv determined by v is defined on the affine neighborhood {x0 = 1} by the
vector field

v = λ1x
∂

∂x
+ λ2y

∂

∂y
+ λ3z

∂

∂z
.

We have the following possibilities for the triple (λ1, λ2, λ3):

(a) 0 < λ1 < λ2 < λ3;
(b) 0 < λ1 = λ2 < λ3;
(c) 0 < λ1 < λ2 = λ3;
(d) 0 = λ1 < λ2 = λ3.

In case (a) the action has isolated fixed points contrary to our assumptions. In the
remaining cases we do have non-isolated fixed points. As the three remaining cases
can be treated by similar arguments, we will analyze in detail only case (b).
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We start by constructing a rational map with generic fibers equal to orbits of
ϕ. In the affine neighborhood x0 = 1, we can take the natural quotient map
Φ : C3

99K P(λ1, λ1, λ3) where P(λ1, λ1, λ3) stands for the corresponding weighted
projective space. Recall from [25, 36] that, as a projective variety, P(λ1, λ1, λ3) is
isomorphic to P(1, 1, λ3) and can hence be identified with a cone over the rational
normal curve of degree λ3. The blow-up of the vertex of this cone yields Hirzebruch’s
surface Fλ3 = P(OP1 ⊕OP1(λ3)). Explicitly, we can present Φ as the rational map

Φ : P3
99K P(λ1, λ1, λ3) ⊂ Pλ3+1

(x : y : z : w) 7→ (xλ3 : xλ3−1y : xλ3−2y2 : · · · : yλ3 : zλ1wλ3−λ1)

Notice that

(1) the indeterminacy locus of Φ is composed by two points (0 : 0 : 0 : 1) and
(0 : 0 : 1 : 0);

(2) the pre-image of the vertex is the line {x = y = 0}; and
(3) the divisorial components of its critical locus are {z = 0} (only when λ1 > 1)

and {w = 0} (only when λ3 − λ1 > 1). Both components are mapped to
the curve C ⊂ Fλ3 which has self-intersection λ3 > 1.

It will be more convenient to blow-up the vertex and work with the induced
rational map from P3 to Fλ3 which we will still denote by Φ. We will denote the
unique section of Fλ3 with self-intersection −λ3 (which is the pre-image of the
vertex under the blow-up) by σ0.

Let G be a foliation on Fλ3 such that F = Φ∗G. Its normal bundle can be written
as NG = aF + bσ0, where F is a general fiber of the natural fibration π : Fλ3 → P1

and a, b are integers. If G coincides with the foliation defined by π then NG = 2F
and Φ∗G is the pencil of hyperplane containing the line {x = y = 0}. Otherwise,
the general fiber is not G-invariant and we can write, see for instance [11, Chapter
2, Proposition 2],

b = NG · F = χ(F ) + tang(G, F ) = 2 + tang(G, F ) ≥ 2

with equality holding if and only if G is a Riccati foliation with respect to the
natural fibration.

If σ0 is not G-invariant then
(4) NG · σ0 = a− bλ3 = 2 + tang(G, σ0) ≥ 2 =⇒ a ≥ 2 + bλ3 .

If instead σ0 is G-invariant then
(5) NG · σ0 = a− bλ3 = σ2

0 + Z(G, σ0) =⇒ a = λ3(b − 1) + Z(G, σ0) .
Since all the divisorial components of the critical locus of Φ are mapped to C,

the pull-back of G under Φ has normal bundle given by

(6) NΦ∗G =

{
OP3(a) when C is not G-invariant
OP3(a− λ3 + 2) when C is G-invariant .

If we impose that Φ∗G is a foliation of degree two, NΦ∗G = OP3(4), then we
deduce from (4), (5), and (6) that σ0 must be G-invariant, and
(b.1) if C is not G-invariant then a = 4 and b = Z(G, σ0) = λ3 = 2; and
(b.2) if C is G-invariant then a = λ3 + 2 and b = Z(G, σ0) = 2.

Notice that G is a Riccati foliation (b = 2), and that there are one or two fibers
of π invariant under G (b = Z(G, σ0)).
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In case (b.1) we have that the pull-back of G is in the irreducible component
Log(2, 1, 1). Indeed, a generic element in PH0(F2,Ω

1
F2
(4F + 2σ0) is defined by a

logarithmic one-form with poles in σ0, two distinct fibers of π and another section of
π distinct from σ0. The pull-back of σ0 is not a divisor, the pull-back of the fibers are
two distinct hyperplanes, and the pull-back of the other section is a quadric. Putting
all together we deduce that the pull-back foliation lies in Log(2, 1, 1). Similarly,
in case (b.2), we have that the pull-back of G is in the irreducible component
Log(1, 1, 1, 1). In either cases we deduce that F is defined by a closed rational
1-form (not necessarily logarithmic) without divisorial components in theirs zero
sets.

It is perhaps worth noticing that in the first case we have that almost every
element of Log(2, 1, 1) is projectively equivalent to the pull-back of some G, while
in case (b.2) this is no longer true: there is a resonance between the residues of the
hyperplanes z = 0 and w = 0. �

We will now carry a similar analysis for foliations tangent to algebraic C-actions.

Proposition 5.8. Let F be a codimension one semi-stable foliation on P3 with
KF = 0. If F is tangent to an algebraic C-action with non-isolated fixed points
then F is given by a closed rational 1-form without divisorial components in its zero
set.

Proof. We start by pointing out that algebraic C-actions on P3 are of the form

ϕ : C× P3 −→ P3

(t, x) 7−→ exp(tξ)(x)

where the vector field ξ is nilpotent. In suitable homogeneous coordinates it takes
one of the following forms:

(a) ξ = x1
∂

∂x0
; or

(b) ξ = x1
∂

∂x0
+ x2

∂
∂x1

+ x3
∂

∂x2
; or

(c) ξ = x1
∂

∂x0
+ x2

∂
∂x1

; or

(d) ξ = x1
∂

∂x0
+ x3

∂
∂x2

.

If F is a codimension one foliation on P3 tangent to an action as in (a) then F
is tangent to the radial foliation by lines determined by ξ. Thus F is the linear
pull-back of a foliation G on P2 and, in particular, F is unstable contrary to our
assumptions. In case (b) all the fixed points of the action are isolated also contrary
to our assumptions. The remaining cases are subtler, though rather similar to
foliations invariant by C∗-actions and will be briefly analyzed below.

Case (c): ξ = x1
∂

∂x0
+ x2

∂
∂x1

. The orbits of ϕ are tangents to the fibers of the
rational map

Φ : P3 −→ P(1, 1, 2) ⊂ P3

(x0 : x1 : x2 : x3) 7−→ (x22 : x2x3 : x23 : x21 − 2x0x2) .

Notice that P(1, 1, 2) is nothing more than a cone over a conic, and its minimal
resolution is the Hirzebruch surface F2 = P(OP1 ⊕ OP1(2)). The indeterminacy
locus of Φ is the point x1 = x2 = x3 = 0, the pre-image of the vertex is the line
x2 = x3 = 0, and Φ has no divisorial components in its critical locus.
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We will now argue as in the proof of Proposition 5.7. If G is a foliation on F2

with normal bundle equal to NG = aF + bσ0 then the normal bundle of F = Φ∗G
is OP3(a). Consequently we must have a = 4, σ0 must be G-invariant, and b = 2.
It follows that F is in Log(2, 1, 1).

Case (d): ξ = x1
∂

∂x0
+ x3

∂
∂x2

. We are in a situation very similar to case (c). Now,
the orbits of ϕ are tangent to the fibers of

Φ : P3 −→ P(1, 1, 2) ⊂ P3

(x0 : x1 : x2 : x3) 7−→ (x21 : x1x3 : x23 : x1x2 − x0x3) .

The indeterminacy locus of Φ and the pre-image of the vertex are both set-
theoretically equal to the line x1 = x3 = 0, and Φ has no divisorial components in
its critical locus as in the previous case. Thus, as before, if F is a degree 2 foliation
tangent to the fibers of Φ then it must be in Log(2, 1, 1). �

Proof of Theorem 5.6. Let F be a foliation of degree 2 on P3. Theorem 5.1 tell
us that F is (a) given by a closed meromorphic 1-form with codimension two zero
set, or (b) F is the linear pull-back of a foliation on P2, or (c) F is induced by an
algebraic action of a two dimensional Lie group and dim iso(F) = dim aut(F) = 2.
If we are in case (a) then Lemma 5.4 implies that F can be deformed to a foliation
defined by a logarithmic 1-form. Thus F belongs to (at least) one of the following
irreducible components: Rat(2, 2),Rat(1, 3),Log(1, 1, 1, 1),Log(2, 1, 1). If we are in
case (b) then F belongs to LPB(2).

Assume that we are in case (c). If the Lie algebra f = fix(F) ⊂ aut(P3) = sl(4,C)
is abelian then writing down Jordan normal forms for the generators of f as in [24,
page 54] we see that f is contained in an abelian subalgebra a of sl(4,C) having
dimension at least three. Notice that a is contained in aut(F). Therefore when f is
abelian we have iso(F) 6= aut(F). Lemma 5.3 implies that F is induced by a closed
meromorphic 1-form without divisorial components in its zero set.

Suppose now that f is the affine Lie algebra generated by x, y ∈ sl(4,C) satisfying
[x, y] = y with y nilpotent. There are four possible Jordan normal forms for y:
one with rank 3, two with rank 2, and one with rank one. The case of rank
one corresponds to a vector field in H0(P3, TF) ⊂ H0(P3, TP3) vanishing on a
hyperplane. This case is excluded because TF is assumed to be semi-stable. The
other cases have been analyzed in detail in [24, pages 58–65]. In particular it can
be verified that there is only one case up to conjugacy where aut(F) = fix(F):

x =
1

3

(
−3x0

∂

∂x0
− x1

∂

∂x1
+ x2

∂

∂x2
+ 3x3

∂

∂x3

)
and

y = x1
∂

∂x0
+ x2

∂

∂x1
+ x3

∂

∂x2
.

It is a simple matter to verify that the foliation corresponds to the natural action of
Aff(C) in PC3[x] = P3. In all the remaining cases, fix(F) $ aut(F) and therefore,
according to Lemma 5.3, F is induced by a closed meromorphic 1-form without
divisorial components in its zero set. In particular, these foliations fit not only in
case (c) but also in case (a), which has already been analyzed. �

5.4. Foliations on Q3. We will now classify the foliations with KF = 0 on the
3-dimensional quadric. We start by presenting an example.
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Example 5.9. Identify P4 with the set of 4 unordered points in P1. This identi-
fication gives a natural action of PSL(2,C) ≃ Aut(P1) on P4. Let p0 ∈ P4 be the
point defined by the set {1,−1, i,−i} ⊂ P1. The closure of the PSL(2,C)-orbit
of p0 is a smooth quadric Q3 ⊂ P4, see [53]. This quadric can be decomposed as
the union of three orbits of PSL(2,C): a closed orbit of dimension one isomorphic
to a rational normal curve of degree 4 corresponding to points on P1 counted with
multiplicity 4; an orbit of dimension two corresponding to two distinct points on P1,
one with multiplicity three and the other with multiplicity one; and the open orbit
of dimension three corresponding to 4 distinct points isomorphic to {1,−1, i,−i}
The affine subgroup Aff(C) ⊂ Aut(P1) acts on Q3 and defines on it a codimension
one foliation F with trivial tangent bundle. Notice that the singular set of F has
three irreducible components: a rational normal curve of degree 4 corresponding to
four equal points; a twisted cubic corresponding to points of the form 3p+∞; and
a line corresponding to points of the form p+ 3∞.

Besides the example above there are only two further families of foliations with
KF = 0 on Q3.

Theorem 5.10. The irreducible components of space of codimension one foliations
with KF = 0 on the hyperquadric Q3 are:

(1) Rat(2, 1): the generic element is a pencil of hypersurfaces of degree 4 and
having a double hyperplane section as element;

(2) Log(1, 1, 1): the generic element is defined by a logarithmic 1-form with
poles on three hyperplane sections;

(3) Aff: the generic element is conjugated to the foliation presented in Example
5.9.

The strategy of proof is the same as before. Theorem 5.10 follows from the next
three propositions combined with Lemma 5.4.

Proposition 5.11. Let F be a codimension one foliation on Q3 with KF = 0.
If F is tangent to an algebraic C∗-action with non-isolated fixed points then F is
given by a closed rational 1-form without divisorial components in its zero set.

Proof. We can assume that Q3 ⊂ P4 is given by the equation {x20+x1x2+x3x4 = 0}
and that C∗ ⊂ Aut(Q3) is a subgroup of the form

ϕλ(x0 : x1 : x2 : x3 : x4) = (x0 : λax1 : λ−ax2 : µbx3 : µ−bx4), ,

with a, b ∈ N relatively prime, since Aut(Q3) = PO(5,C) has rank two. If both a
and b are distinct non-zero natural numbers then the fixed points of the action are
isolated. Thus we have to analyze only two cases: (a, b) = (0, 1) and (a, b) = (1, 1).

Let us start with the case (a, b) = (0, 1). Consider the rational map

Φ : P4
99K P(1, 1, 1, 2) ⊂ P6

(x0 : x1 : x2 : x3 : x4) 7→ (x20 : x0x1 : x0x2 : x21 : x1x2 : x22 : x3x4) ,

which identifies P(1, 1, 1, 2) with a cone over the Veronese surface in P5. Notice
that the quadric Q3 is mapped to a hyperplane section of P(1, 1, 1, 2) not passing
through the vertex (0 : 0 : 0 : 0 : 0 : 0 : 1), which is of course isomorphic to
P2. We will denote by Φ0 the induced rational map Φ0 : Q3

99K P2. The generic
fiber of Φ0 is an orbit of ϕ, and therefore the foliation F must be the pull-back
of a foliation H on P2. Notice also that Φ∗

0OP2(1) is equal to OQ3(1). A simple
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computation shows that the critical set of Φ0 has codimension greater than two.
Thus OQ3(3) = NF = Φ∗

0NH. It follows that NH = OP2(3), i.e., H has degree
one. Since every foliation of degree one on P2 is induced by a closed meromorphic
1-form with isolated singularities the proposition follows in this case.

Suppose now that (a, b) = 1, and consider the rational map

Φ : P4
99K P4

(x0 : x1 : x2 : x3 : x4) 7→ (x20 : x1x2 : x1x4 : x2x3 : x3x4) .

Its image is contained in a cone over a smooth quadric surface in P3. The quadric
Q3 is mapped into a smooth hyperplane section of this cone which is isomorphic
to P1 × P1. If we denote by Φ0 : Q3

99K P1 × P1 the induced rational map then
Φ∗

0OP1×P1(c, d) = OQ3(c+d). It can be checked that the only divisorial component
of the critical set of Φ0 is the intersection of the hyperplane {x0 = 0} with Q3. The
image of this critical set is a (1, 1) curve C in P1 ×P1. If G is a foliation on P1×P1

with normal bundle NG = OP1×P1(c, d) then

NΦ∗
0G =

{
OQ3(c+ d) if C is not G-invariant
OQ3(c+ d− 1) if C is G-invariant .

Therefore if F = Φ∗
0G and NF = OQ3(3) then c = d = 2 and C is G-invariant. A

foliation G on P1 × P1 with NG = OP1×P1(2, 2) is given by a closed rational 1-form
ω = π∗

1ω1 + π∗
2ω2 where π1, π2 : P1 × P1 → P1 are the natural projections and the

1-forms ωi have polar set of degree two. Since the (1, 1)-curve C is G-invariant, we
must have ω1 = −ω2 = dx0/x0 − dx1/x1 in a suitable choice of coordinates where
C = {x0y1 − y0x1 = 0}. Therefore

ω =
dx0
x0

− dx1
x1

− dy0
y0

+
dy1
y1

.

Notice that ω is proportional to

α =

(
d(x0y1 − y0x1)

x0y1 − y0x1
− dx0

x0
− dy1

y1

)
.

and the pull-back of α under Φ0 is closed 1-form without divisorial components in
its zero set. �

Proposition 5.12. Let F be a codimension one foliation on Q3 with KF = 0. If
F is tangent to an algebraic C-action with non-isolated fixed points then F is given
by a closed rational 1-form without divisorial components in its zero set.

Proof. Let ϕ : C× Q3 → Q3 be an algebraic C-action. As such, it must be of the
form ϕ(t) = exp(t · n) when n ∈ aut(Q3) = so(5,C). In so(5,C) there are exactly
three Aut(Q3) = PO(5,C)-conjugacy classes of non-zero nilpotent elements. The
Jordan normal forms of the corresponding matrices in End(C5) have: (1) only one
Jordan block of order 5; (2) one Jordan block of order 3 and two trivial (order one)
Jordan blocks ; or (3) two Jordan blocks of order 2 and one trivial Jordan block.

Case (1) is excluded by hypothesis. To deal with case (2) we can assume that
n = x1

∂
∂x0

+ x2
∂

∂x1
and that the quadric Q3 is {x21 − 2x0x2 + x23 + x24 = 0}. The

generic fiber of the rational map

Φ : P4
99K P6

(x0 : x1 : x2 : x3 : x4) 7→ (x21 − 2x0x2 : x22 : x2x3 : x2x4 : x23 : x3x4 : x24)
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coincides with an orbit of ϕ, and sends P4 to a cone over the second Veronese
embedding of P2. The image of the quadric Q3 avoids the vertex of this cone and
is isomorphic to P2. Moreover, the critical set of Φ0 : Q 99K P2 (the restriction of
Φ to Q) has no divisorial components. Therefore every foliation F on Q3 tangent
to ϕ is of the form Φ∗

0G for some foliation on P2 and its normal bundle satisfies
NF = Φ∗

0NG. Since Φ∗
0OP2(1) = OQ(1), it follows that F is the pull-back of a

foliation G on P2 of degree one and, as such, is given by a closed 1-form without
zeros of codimension one.

Case (3) is very similar to case (2). Now the vector field n is of the form
x1

∂
∂x0

+ x3
∂

∂x2
, the quadratic is Q = {x0x3 −x1x2 +x24 = 0} and the quotient map

is

Φ : P4
99K P6

(x0 : x1 : x2 : x3 : x4) 7→ (x0x3 − x1x2 : x21 : x1x3 : x1x4 : x23 : x3x4 : x24) .

The restriction of Φ to Q has critical set of codimension at least two, and therefore
the conclusion is the same: F is the pull-back under Φ|Q of a foliation on P2 of
degree one. �

Proposition 5.13. Let F be a codimension one foliation on Q3 with trivial canon-
ical bundle. Suppose that F is induced by an algebraic action of a two dimensional
Lie subgroup of Aut(Q3). Then F is defined by a closed 1-form without zeros of
codimension one, or F is conjugated to the foliation presented in Example 5.9.

Proof. Let G ⊂ Aut(Q3) be the subgroup defining F , and g ⊂ so(5,C) the cor-
responding Lie subalgebra. If G is abelian then it must be of the form C∗ × C∗,
C × C∗, or C × C. In the first case every element in g, the Lie algebra of G, is a
semi-simple element of so(5,C). Since the rank of so(5,C) is two, g is a Cartan
subalgebra of so(5,C). Therefore, we can find C∗ ⊂ G inducing an algebraic action
with non-isolated fixed points tangent to F . We can apply Proposition 5.11 to con-
clude that F is induced by a closed 1-form without codimension one zeros. In the
two remaining cases, g contains a nilpotent element n which defines an algebraic
subalgebra C ⊂ G. If the corresponding action has non-isolated fixed points then
Proposition 5.12 implies F is defined by a closed rational 1-form without divisorial
components in its zero set.

If the corresponding action has only isolated fixed points then we can assume
that Q is defined by the quadratic form q = x22 − 2x1x3 + 2x0x4 and that n, seen
as an element of so(q,C), have only one Jordan block of order 5. The centralizer
C(n) of n in so(q,C) is thus formed by nilpotent matrices of the form




0 α 0 β 0
0 0 α 0 β
0 0 0 α 0
0 0 0 0 α
0 0 0 0 0



.

In particular, since g ⊂ C(n), g contains another nilpotent element which defines a
C-action with non-isolated fixed points. Proposition 5.12 implies F is defined by a
closed 1-form without codimension one zeros.

Suppose now that G is not abelian. Its Lie algebra g is isomorphic to the affine
Lie algebra Cx ⊕ Cy with the relation [x, y] = y. This relation implies that y is a
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nilpotent element of so(5,C) ⊂ sl(5,C). As before, using Proposition 5.12, we can
reduce to the case where y is in Jordan normal form and has only one Jordan block
of order 5. The elements x ∈ so(q,C) satisfying [x, y] = y are of the form




2 α 0 β 0
0 1 α 0 β
0 0 0 α 0
0 0 0 −1 α
0 0 0 0 −2



.

After one last conjugation by an element of SO(q,C) we can suppose that β = 0
is in the form above. We have just proved that there is only one foliation defined
by an algebraic action of an algebraic subgroup G ⊂ Aut(Q3) which is not tangent
to an algebraic action without isolated fixed points. Therefore it must be equal to
the foliation described in Example 5.9. �

5.5. Foliations on Fano 3-folds with index ≤ 2. It remains to deal with foli-
ations with KF = 0 on Fano 3-folds of index one and two. Unlikely in the cases
where the index is four (projective space) or three (quadric), these 3-folds have
moduli. As will be seen below the space of foliations with KF = 0 on them be-
haves rather uniformly with respect to the moduli, with only two exceptions. The
exceptions are the quasi-homogeneous PSL(2,C)–manifolds of index one and two.

5.5.1. Index two. Let X be a Fano 3-fold with Pic(X) = ZH and index i(X) = 2
which means, by definition, −KX = 2H . In this case the classification is very
precise and says that X is isomorphic to a 3-fold fitting in one of the following
classes:

(1) H3 = 1. Hypersurface of degree 6 in P(1, 1, 1, 2, 3);
(2) H3 = 2. Hypersurface of degree 4 in P(1, 1, 1, 1, 2);
(3) H3 = 3. Cubic in P4;
(4) H3 = 4. Intersection of two quadrics in P5;
(5) H3 = 5. Intersection of the Grassmannian Gr(2, 5) ⊂ P9 with a P6.

Although not evident from the description above, the 3-folds falling in class (5)
are all isomorphic to a 3-fold X5 ⊂ P6. In [53] X5 is described as an equivariant
compactification of Aut(P1)/Γ where Γ is the octahedral group. Explicitly, if we
consider the point p0 ∈ Sym6 P1 defined by the polynomial xy(x4 − y4) then X5 is
the closure of the Aut(P1)-orbit of p0 under the natural action.

Theorem 5.14. Let X be a Fano 3-fold with Pic(X) = ZH and index i(X) = 2.
If X 6= X5 then the space of codimension one foliations on X with trivial canonical
bundle is smooth and irreducible. If X = X5 then the space of codimension one
foliations on X with trivial canonical bundle is smooth and has two irreducible
components.

As we will see from its proof the result is much more precise as it describes quite
precisely the irreducible components. We summarize the description in the Table
below.
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Manifold Irreducible component dim

Hypersurface of degree 6 in P(1, 1, 1, 2, 3) Rat(1, 1) ≃ P2 2
Hypersurface of degree 4 in P(1, 1, 1, 1, 2) Rat(1, 1) ≃ Gr(2, 4) 4
Cubic in P4 Rat(1, 1) ≃ Gr(2, 5) 6
Intersection of quadrics in P5 Rat(1, 1) ≃ Gr(2, 6) 8

X5
Rat(1, 1) ≃ Gr(2, 7) 10

Aff ≃ P1 1

Lemma 5.15. The dimension of H0(X5, TX5) is 3, and every v ∈ H0(X5, TX5)
has isolated singularities.

Proof. Let Σ be the variety of lines contained in X5. According to [29], Σ is isomor-
phic to P2. The induced action of Aut(P1) on it has one closed orbit isomorphic to
a conic C ⊂ P2, and one open orbit isomorphic to P2 \C. It can be identified with
the natural action of Aut(P1) in Sym2 P1 ≃ P2. If an automorphism of X5 induces
the identity on Σ then it must be identity since through every point of every line
contained in X5 passes at least another line, loc. cit. Corollary 1.2. This suffices
to show that h0(X5, TX5) = 3.

Let now v ∈ H0(X5, TX5) be a non-zero vector field, and H = exp(Cv) ⊂
Aut(X5) be the one-parameter subgroup generated by it. The description of the
induced action of Aut(X) on Σ implies that the induced action of H on Σ has
isolated fixed points. Therefore, if the zero set of v has positive dimension then it
must be contained in a finite union of lines. If we take ℓ as one of these lines then
the action of H on Σ would fix all the lines intersecting ℓ. This contradicts the
description of the induced action of Aut(X) on Σ. �

Lemma 5.16. Let P = P(q0, q1, q2, q3, q4) be a well-formed weighted projective space
of dimension four with q0 ≤ q1 ≤ q2 ≤ q3 ≤ q4, and X ⊂ P be a smooth hypersur-
face. If deg(X) ≥ q2 + q3 + q4 then h0(X,TX) = 0.

Proof. Set d = deg(X) and Q =
∑4

i=0 qi. By [25, Theorem 3.3.4], Ω3
X = OX(d−Q).

Consequently TX = Ω2
X ⊗OX(Q− d). From the long exact sequence associated to

0 → Ω1
X ⊗N∗

X ⊗OX(Q − d) → Ω2
PX(Q− d) → Ω2

X(Q− d) → 0

we see that h0(X,TX) = 0 when h0(X,Ω2
PX(Q− d)) = h1(X,Ω1

X(Q− 2d)) = 0.

To compute h1(X,Ω1
X(Q − 2d)), consider the conormal sequence of X ⊂ P ten-

sored by OX(Q− 2d)

0 → N∗
X(Q− 2d) → Ω1

PX(Q− 2d) → Ω1
X(Q− 2d) → 0 .

On the one hand, as the intermediary cohomology of OX(n) vanishes for every
n ∈ Z [25, Theorem 3.2.4 (iii)], H2(X,N∗

X(Q − 2d)) = H2(X,OX(Q − 3d)) = 0.
On the other hand H1(X,Ω1

PX(Q− 2d)) can be computed with the exact sequence

0 → Ω1
P
(Q− 3d) → Ω1

P
(Q− 2d) → Ω1

P|X(Q− 2d) → 0 .

Now [25, Theorem 2.3.2] tell us that H2(P,Ω1
P
(n) = 0 for every n ∈ Z, and

H1(P,Ω1
P
(n)) = 0 if and only if n 6= 0. But d ≥ q2 + q3 + q4, as we have as-

sumed, implies 2d > Q. Thus H1(X,Ω1
PX(Q − 2d)) = 0 as wanted.

It remains to show that H0(X,Ω2
P|X(Q − d)) = 0. To do it, consider the exact

sequence

0 → Ω2
P
(Q− 2d) → Ω2

P
(Q − d) → Ω2

P|X(Q− d) → 0 .
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The vanishing of H1(P,Ω2
P
(Q− 2d)) is insured by [25, Theorem 2.3.4]. Finally, [25,

Corollary 2.3.4] implies H0(P,Ω2
P
(Q− d)) 6= 0 if and only if

d < Q− q0 − q1.

The Lemma follows. �

We deduce from the classification of Fano 3-folds of index two the following
corollary.

Corollary 5.17. If X is a Fano 3-fold with ρ(X) = 1 and i(X) = 2 then
h0(X,TX) 6= 0 if and only if X is isomorphic to X5.

Proof of Theorem 5.14. Let X be a Fano 3-fold of index two with Pic(X) = Z ·H ,
whereH is an ample divisor, and F a codimension one foliation on X with KF = 0.
IfH3 ≤ 4 then Corollary 5.17 implies X has no vector fields. Therefore by Theorem
5.1 any foliation onX withKF = 0 is given by a closed 1-form without codimension
one zeros and with polar divisor linearly equivalent to 2H . The result follows in this
case from Proposition 5.5. Notice that the dimension of H0(X,OX(H)) is equal
to H3 + 2, [43, Chapter V, Exercise 1.12.6]. Therefore the irreducible component

Rat(1, 1) on X is isomorphic to the Grassmannian of lines on PH3+1.
Suppose now that H3 = 5, i.e., X = X5. Lemma 5.15 implies that every

algebraic action of C or C∗ has isolated fixed points. Theorem 5.1 tells us that a
foliation onX5 with trivial canonical bundle is either induced by an algebraic action
of two dimensional Lie group or is given by a closed 1-form without codimension
one zeros and with polar divisor linearly equivalent to 2H . The Lie algebra of
regular vector fields on X5 is isomorphic to sl(2,C) (Lemma 5.15) and the two
dimension subalgebras are all PSL(2,C)-conjugated, and isomorphic to the affine
Lie algebra aff(C). Let F be a foliation of X5 determined by any of the affine
Lie algebras contained into sl(2,C). The induced action of Aff(C) ⊂ Aut(X) on
PH0(X,Ω1

X(H)) has only one fixed point, therefore Aff(C) is tangent to only one
hyperplane section of X5 ⊂ P6. It follows that F is not defined by a closed 1-form
without codimension one zeros since in this case the action would have to preserve
a pencil of hyperplane sections. As there is a smooth P1 of affine Lie subalgebras
of sl(2,C) we conclude that the space of foliations on X5 with KF = 0 has two
disjoint irreducible components: one corresponding to foliations defined by closed
1-forms and the other defined by affine subalgebras of aut(X5). Notice that they
are both smooth, with the second one corresponding to a closed orbit of Aut(X5)
in PH0(X5,Ω

1
X5

(2H)). �

5.5.2. Index one. Much of the work for the classification of foliations with KF = 0
on Fano 3-folds with Pic(X) = Z and of index one has already been done by Jahnke
and Radloff in [38]. In [38, Proposition 1.1] it is proved that h0(X,Ω1

X(1)) 6= 0
implies that the genus of X , which by definition is g(X) = h0(X,−KX) + 2 =
1
2KX

3+1, is 10 or 12. This considerably reduces the amount of work to prove the
final bit in the classification of foliations with KF = 0 on Fano 3-folds with rank
one Picard group.

Theorem 5.18. If F is a codimension one foliation with trivial canonical bundle
on a Fano 3-fold with Pic(X) = Z and i(X) = 1 then X is Mukai-Umemura 3-fold
and F is induced by an algebraic action of the affine group.
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Proof. In [57] the Fano 3-folds of index one and g ≥ 7 carrying vector fields are
classified. There are two rigid examples (Mukai-Umemura 3-fold with Aut0(X) =
PSL(2,C) and a 3-fold with Aut0(X) = (C,+)) and a one parameter family of
examples with Aut0(X) = (C∗, ·). All the cases can be obtained from X5, the Fano
3-fold of index two and degree 5, by means of a birational transformation defined
by a linear system on X5 of the form |3H − 2Y | where Y is the closure of a (C,+)
or (C∗, ·)-orbit in X5. Thus Lemma 5.15 implies that the vector fields in X have,
exactly as the vector fields in X5, isolated fixed points.

Theorem 5.1 implies that any codimension one foliation on X with KF = 0 must
be induced by an algebraic group. It follows that X is Mukai-Umemura 3-fold and
that F is induced by an action of the affine group. �

Remark 5.19. In the main result of [38] there is an imprecision. They claim that
a general section of H0(X,Ω1

X(1)) for a general deformation of Mukai-Umemura
3-fold is integrable. This cannot happen since h0(X,Ω1

X(1)) = 3 for any sufficiently
small deformation of Mukai-Umemura 3-fold ([38, Proposition 2.6]) and therefore
the closedness of Frobenius integrability condition would imply that every element
of H0(X,Ω1

X(1)) ≃ (sl2)
∗ is integrable. Apparently, their mistake is at the proof of

their Proposition 2.16. More specifically, at the determination of the integer a from
the exact sequence 0 → OP1 → OP1(2)⊕OP1 ⊕OP1(−1) → OP1(−a+ 1)⊕ τ → 0,
where τ is a torsion sheaf.

5.6. Classification of codimension one foliations of degree 2 on Pn, n > 3.
Our methods also allow us to recover the classification of codimension one foliations
of degree 2 on Pn, n > 3, due to Cerveau and Lins Neto [15].

Theorem 5.20. The irreducible components of the space of codimension one fo-
liations on Pn, n > 3, with KF = 0 are Rat(2, 2), Rat(1, 3), Log(1, 1, 1, 1),
Log(2, 1, 1), LPB(2), and Exc(2). The generic element of Exc(2) is a linear pull-
back from the foliation on PC3[x] induced by the natural action of the affine group.

Its proof will use the classification of degree one foliations of arbitrary codimen-
sion on Pn which we now proceed to present.

5.6.1. The space of foliations on Pn of degree zero and one (arbitrary codimension).
Foliations of degree zero have been classified by Cerveau and Deserti [24, Théorème
3.8]: a codimension q foliation of degree zero on Pn is defined by a linear projection
from Pn to Pq. The classification of foliations of degree one can be easily deduce
from Medeiros classification of locally decomposable integrable homogeneous q-
forms of degree one stated below.

Theorem 5.21. [23, Theorem A] If ω is a locally decomposable integrable homo-
geneous q-form of degree 1 on Cn+1 then

(a) there exist q− 1 linearly independent linear forms L1, . . . , Lq−1 and a qua-
dratic form Q such that ω = dL1 ∧ · · · ∧ dLq−1 ∧ dQ , or

(b) there exist a linear projection π : Cn+1 → Cq+1, and a locally decomposable
integrable homogeneous q-form ω̃ of degree 1 on Cq+1 such that ω = π∗ω̃.

Theorem 5.22. If F be a foliation of degree 1 and codimension q on Pn then we
are in one of following cases:
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(1) F is defined a dominant rational map Pn
99K P(1q, 2) with irreducible

generic fiber determined by q linearly independent linear forms and one
quadratic form; or

(2) F is the linear pull back of a foliation of induced by a global holomorphic
vector field on Pq+1.

Proof. Let ω be a locally decomposable, integrable homogeneous q-form on Cn+1

defining F . Since F has degree 1, the degree of the coefficients of ω is 2. It
is immediate from the definitions that the differential of a locally decomposable
integrable q-form is also locally decomposable and integrable. Therefore we can
apply Theorem 5.21 to dω. To recover information about ω we will use that iRω = 0
implies iRdω = (q + 2) · ω .

If dω is case (a) of Theorem 5.21, i.e.

dω = dL1 ∧ dL2 ∧ · · · dLq ∧ dQ
then dω is the pull-back of dx0 ∧ · · · ∧ dxq under the map

Cn+1 ∋ (x0, . . . , xn) 7→ (L1, . . . , Lq, Q) ∈ Cq+1,

and (q + 2)ω = iRdω is the pull-back of iR(1q,2)dy0 ∧ · · · ∧ dyq where R(1q, 2) =

y0
∂

∂y0
+ · · ·+ yq

∂
∂yq

+ 2yq+1
∂

∂yq+1
. We are clearly in case (a) of the statement with

rational map from Pn
99K P(1q, 2) described in homogeneous coordinates as above.

It still remains to check that the generic fiber is irreducible. As ω has zero set of
codimension at least two, the same holds true for dω and consequently the map
considered does not ramify in codimension one. Since Pn is simply-connected, the
irreducibility of the generic fiber follows.

If dω is case (b) of Theorem 5.21 then, in suitable coordinates, dω depends only
on q+2 variables, say x0, . . . , xq+1. Being a (q+1)-form with coefficients of degree
1, there exists a linear vector field X such that dω = iXdx0 ∧ · · · ∧ dxq+1. The
result follows. �

Corollary 5.23. The space of foliations of degree 1 and codimension q on Pn has
two irreducible components.

Proof of Theorem 5.20. Notice that when n > 3, a foliation of degree two has
negative canonical bundle. Thus, if F is semi-stable Proposition 4.5 implies that F
is either a pencil of quadrics or a pencil of cubics with a hyperplane of multiplicity
three as a member.

Suppose now that F is unstable and let G be its maximal destabilizing foliation.
Recall from Example 2.3 that

deg(G)
dim(G) <

deg(F)

dim(F)
.

Therefore deg(G) < 2. If G has degree zero then F is a linear pull-back of a
foliation of degree two on a lower-dimensional projective space and we can proceed
inductively. Suppose now that the degree of G is one. The classification of foliations
of degree one, Theorem 5.22, implies that the semi-stable foliations of degree one are
either defined by a rational map to P(1q, 2) or have dimension one. The maximal
destabilizing foliation G, which is semi-stable by definition, does not fit into the
former case as we would have 1 < deg(F)/ dim(F). Thus G must be defined by a
rational map to P(1q, 2). It is not hard to verify that in this case the foliation F
must be in the component Log(1, 1, 2). �
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Manifold Irreducible component dim

Projective space P3
Rat(1, 1)× S2 13
Log(1, 1, 1)× S1 14
Rat(1, 2)× S1 14

Hyperquadric Q3 Rat(1, 1)× S1 10
Table 2. Poisson structures on Fano 3-folds with rank one Picard

group degenerating on hypersurfaces. In the description of the irre-

ducible components the product stands for a Segre like embedding with

Si being |OX (i)|.

5.7. Holomorphic Poisson structures. A (non-trivial) holomorphic Poisson

structure on projective manifold X is an element of [Π] ∈ PH0(X,
∧2

TX) such
that [Π,Π] = 0, where [·, ·] is the Schouten bracket. In dimension three, a Poisson
structure is equivalent to a pair (F , D) where F is a codimension one foliation with
KF = OX(−D) and a divisor D ≥ 0. Our classifications of irreducible compo-
nents of the space of foliations with KF very negative (Proposition 4.7) and with
KF = 0 on Fano 3-folds of rank one implies at once a description of the irreducible
components of the space of Poisson structures

Poisson(X) =

{
Π ∈ PH0(X,

2∧
TX)

∣∣∣ [Π,Π] = 0

}

on these manifolds.

Theorem 5.24. If X is a Fano 3-fold with rank one Picard group then Poisson(X)
has 9 irreducible components when X = P3; 4 irreducible components when X = Q3;
2 irreducible components when X = X5; 1 irreducible component when X Mukai-
Umemura 3-fold; 1 irreducible component when X has index two and is distinct
from X5; and is empty when X has index one and is not Mukai-Umemura 3-fold.

6. Criterium for Uniruledness

We now turn back to the problem of describing the structure of an arbitrary
codimension one foliation with numerically trivial canonical bundle. The main
goal of this section is to obtain information about the ambient manifold when the
singular set of F is not empty.

6.1. Pseudo-effectiveness of the canonical bundle implies smoothness. A
particular case of the result below (p = dimX − 1) already appeared in [65]. The
arguments here are a simple generalization of the arguments therein.

Theorem 6.1 (First part of Theorem 6 of the Introduction). Let X be a compact
Kähler manifold with KX pseudo-effective, L be a flat line bundle on X, p a positive
integer and v ∈ H0(X,

∧p
TX ⊗ L) a non-zero section; then the zero set of v is

empty.

Proof. To not overburden the notation we will suppose that L is trivial. There are
no extra difficulties to prove the general case. Let {Ui} be an open covering of X ,
Ωi ∈ KX(Ui) be holomorphic n-forms trivializing KX . If we write Ωi = g−1

ij Ωj
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then {gij} is a cocycle defining KX . Let ωi be the contraction of v with the n-form
Ωi. Notice that the collection {ωi} defines a holomorphic section of Ωq

X ⊗ KX∗

with q = n− p.
The pseudo-effectiveness of KX implies the existence of singular hermitian met-

ric on it with non-negative curvature. Concretely, there exists plurisubharmonic
functions ϕi on Ui such that

|gij |2 = exp(ϕi − ϕj) .

Thus the (q, q)-form

η =
√
−1 exp(ϕi)ωi ∧ ωi

is a global well-defined real (q, q)-form with coefficients in L∞
loc. Demailly, in [22],

proved that the identity of currents dωi = −∂ϕi ∧ ωi holds true, see also the
proof of [12, Proposition 2.1] for the case of distributions. Consequently, dη = 0
as a current, and η defines a class in Hq,q(X,R). By Serre duality there exists
[β] ∈ Hn−q,n−q(X,R) such that [η] ∧ [β] 6= 0.

Decompose η as the product
(
−
√
−1 exp(ϕi)ωi

)
∧
(
ωi

)
. Since the identity

exp(ϕi)ωi = |gij |2 exp(ϕj) gij
−1ωj = gij exp(ϕj)ωj .

holds true, the first factor is a ∂-closed (0, q)-form with values on KX . Similarly
the second factor is a holomorphic q-form with values on KX∗. Notice that

0 6= [
√
−1 exp(ϕi)ωi] ∧ [ωi ∧ β]

and that we can interpret the first factor as a class in H0,q

∂
(KX), and the second

factor as a class in Hn,n−q

∂
(KX∗). Serre duality provides a non-zero zero class in

H0,n−q

∂
(KX ⊗KX∗) = H0,n−q

∂
(X).

Let γ be a harmonic representative of [ωi ∧ β] in H0,n−q

∂
(X). Hodge symmetry

implies γ is a holomorphic (n− q)-form. Therefore

[
√
−1 exp(ϕi)ωi ∧ γ] 6= 0

and consequently {γ ∧ ωi} is a non-zero section of KX ⊗ KX∗ = OX . It follows
that ωi has no zeros, and the same holds for v. �

Theorem 6.2 (Second part of Theorem 6 of the Introduction). Let D be a distribu-
tion of codimension q on a compact Kähler manifold X. If c1(TD) = 0 and KX is
pseudoeffective then D is a smooth foliation. Moreover, there exists a smooth folia-
tion G on X of dimension q such that TX = TD⊕ TG. Finally, if X is projective,
then the canonical bundle of D is torsion.

Proof. The integrability follows from [22]. The previous theorem implies that
sing(D) = ∅ and that there exists a holomorphic (n − q)-form γ which restricts
to a volume form on the leaves of the foliation defined by D.

In order to prove the result we just need to modify γ to obtain that its kernel
is the expected complementary subbundle defining G. This can be done as follows.
There is a natural monomorphism of sheaves

ψ :

n−q−1∧
TD → Ω1

X ,
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defined by the contraction of γ with n−q−1 vectors fields tangent to D. Notice that
the projection morphism of Ω1

X onto T ∗D is actually an isomorphism in restriction
to Im ψ. Its inverse provides a splitting of the exact sequence

0 → N∗D → Ω1
X → T ∗D → 0 .

Since det T ∗D is numerically trivial, Im ψ is an integrable subbundle of Ω1
X . This

subbundle defines the conormal bundle of the sought foliation G.
Let L = KD∗ and γ ∈ H0(X,Ωp

X ⊗ L), p = n− q, be a twisted p-form defining
G. After passing to a finite étale covering we can assume that the integral Chern
class of L is zero, i.e., L ∈ Pic0(X).

Since L is flat, Hodge symmetry implies that H0(X,Ωp
X ⊗L) ∼= Hp(X,L∗). Let

m = hp(X,L∗) and consider the Green-Lazarsfeld set

S = {E ∈ Pic0(X) |hp(X,E) ≥ m} .
According to [61], if X is projective then S is a finite union of translates of subtori
by torsion points. To conclude the proof of the Theorem it suffices to show that
L∗ is an isolated point of S. Let Σ ⊂ Pic0(M) be an irreducible component of S
passing through L. If P is the restriction of the Poincaré bundle to Σ × X and
π : Σ×X → Σ is the natural projection then, by semi-continuity, Rpπ∗P is locally
free at a neighborhood of L. Therefore we can extend the element Hp(X,L∗)
determined by γ to a holomorphic family of non-zero elements with coefficients in
line bundles E ∈ Σ close to L∗. Hodge symmetry gives us a family of holomorphic p-
forms with coefficients in the duals of these line bundles. Taking the wedge product
of these p-forms with a q-form defining D we obtain, by transversality of D and G,
non-zero sections of H0(X,KX⊗ND⊗E∗) for E varying on a small neighborhood
of L∗ at Σ. Since KX ⊗ND ⊗ E∗ ∈ Pic0(X), this implies that E ∈ Σ if and only
if E = KX ⊗ND = L∗. Thus Σ reduces to a point. �

Remark 6.3. On the same vein, one can prove that the flat line bundle L in theo-
rem 6.1 is actually a torsion one (under the exta assumption that X is projective).
The Theorem above provides evidence toward the following conjecture of Sommese
([62]): if F is a smooth foliation of dimension p with trivial canonical bundle on a
compact Kähler manifold X then there exists a holomorphic p-form on X which is
non-trivial when restricted to the leaves of F .

Theorem 6.2 reduces the classification of codimension one foliations with numer-
ically trivial canonical bundle on Kähler manifolds with pseudo-effective canonical
bundle to the work done by the third author in [63] and recalled in the Introduction.
The case of smooth foliations of higher codimension with numerically trivial canoni-
cal bundle on compact Kähler manifolds have also been treated by the third author
in [64], but the results are not as complete as in the codimension one case. As
shown by Peternell in his recent preprint ([55]) already mentioned in the introduc-
tion, such foliations arise naturally, at least on non uniruled projective manifolds,
when the cotangent bundle fails to be generically ample. The same author makes
also some conjectures about the structure of those manifolds, generalizing former
results by Lieberman, and which are confirmed in very special cases in [64]. We
redirect the interested reader to the above mentioned papers.

6.2. Criterium for uniruledness. The structure of projective manifolds carrying
non-zero holomorphic vector fields are fairly well understood, see for instance [1,
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Theorem 0.1]. In particular, projective manifolds having a non-zero vector field
with non-empty zero set are uniruled. A similar result was proved by Lieberman
in the compact Kähler case (loc. cit. Section 1). More recently, Campana and
Peternell proved the following result [13, Corollary 1.12]: if the m-th tensor power
TX⊗m of the tangent sheaf of a projective manifold X admits a subsheaf E of rank
r such that det E is pseudo-effective and the induced section ∧rTX⊗m ⊗ det E∗

vanishes along a divisor then X is uniruled. Theorem 6.1 allow us to deduce a
strictly related result which confirms [55, Conjecture 4.23].

Theorem 6.4 (Theorem 5 of the Introduction). Let X be a projective manifold and
L be a pseudo-effective line bundle on X. If there exists v ∈ H0(X,

∧p
TX ⊗ L∗)

vanishing at some point then X is uniruled. In particular, if there exists a foliation
F on X with c1(TF) pseudo-effective and sing(F) 6= ∅ then X is uniruled.

Proof. If X is not uniruled then KX is pseudo-effective [10, Corollary 0.3].
Miyaoka’s Theorem (Corollary 2.5) together with Mehta-Ramanathan Theorem
[50] imply that the Harder-Narasimhan filtration of the restriction of TX to curves
obtained as complete intersections of sufficiently ample divisors has no subsheaf
of positive degree. Therefore the same holds true for

∧p
TX , and consequently L

cannot intersect ample divisors positively. This property together with its pseudo-
effectiveness imply c1(L) = 0. Theorem 6.1 implies sing(v) = ∅. This contradiction
concludes the proof. �

6.3. Division property implies smoothness.

Proposition 6.5. Let F be a codimension one foliation with numerically trivial
canonical bundle on a Kähler manifold X. If h1(X,N∗F) 6= 0 then F is smooth or
there exists a foliation G by rational curves tangent to F .

Proof. Let θ ∈ H1(X,N∗F) be a non-zero element. Serre duality produces a non-
zero element in Hn−1(X,KX ⊗ NF) ∼= Hn−1(X,KF). Since KF is numerically
trivial by hypothesis, we can apply Hodge symmetry to obtain a non-zero element
vθ ∈ H0(X,Ωn−1

X ⊗−KF) ∼= H0(X,TX⊗N∗F). Contract vθ with a twisted 1-form
ω ∈ H0(X,Ω1

X ⊗ NF) defining F to obtain a section of OX . It is either nowhere
zero or identically zero. In the first case F must be smooth and in the second we
have a foliation by curves G tangent to F with canonical bundle KG = N∗F −∆,
where ∆ is the divisor of zeros of vθ. If KG is pseudo-effective then the same is true
for N∗F = KX (numerically) and we can apply Theorem 6.1 to conclude. If KG
is not pseudo-effective then G must be a foliation by rational curves according to
Brunella’s Theorem (if X is projective then we can apply Miyaoka’s Theorem). �

Theorem 6.6. Let F be a codimension one foliation with numerically trivial canon-
ical bundle on a Kähler manifold X defined by ω ∈ H0(X,Ω1

X ⊗NF). If for every
point x ∈ X there exists a germ of holomorphic 1-form η at x such that dω = η ∧ω
holds in a neighborhood of x then F is smooth.

Proof. Since KF is numerically zero we obtain that KX is numerically equivalent
to N∗F .

Let {Ui} be an open covering of X and ωi ∈ Ω1
X(Ui) local representatives of ω.

At the intersections ωi = gijωj, where {gij} is a cocycle defining NF in H1(X,O∗
X).

Notice that the logarithmic derivative
dgij
gij

represents (up to a constant factor) the
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Chern class of N∗F in H1(X,Ω1
X). If c1(N

∗F) = 0 then KX is numerically equiv-
alent to zero; in particular, it is pseudo-effective, and we can thus apply Theorem
6.1 to deduce the smoothness of F . From now on, we will assume that N∗F has
non-zero Chern class.

We will now use the division property to obtain another representative in
H1(X,Ω1

X) for c1(N
∗F). By hypothesis there exists ηi ∈ Ω1

X(Ui) satisfying
dωi = ηi ∧ ωi. A simple computation shows that the 1-forms

θij =
dgij
gij

− (ηi − ηj)

vanish along the leaves of F . Therefore the collection {θij} defines an element
θ ∈ H1(X,N∗F) with image in H1(X,Ω1

X) equal to the first Chern class of N∗F ,
in particular h1(X,N∗F) 6= 0. We can apply Proposition 6.5 to ensure that F is
smooth, or there exists a foliation by rational curves G tangent to F . To conclude
the proof it remains to exclude the latter possibility.

Let i : P1 → X be a generically injective morphism to a generic leaf of G. Since
it is tangent to F , then the 1-forms i∗θij vanish identically. Therefore i∗N∗F is
the trivial line bundle. Consequently i∗KX = i∗KF ⊗ i∗N∗F is also trivial. On
the other hand, since i(P1) moves in a family of rational curves which cover X ,

i∗TX = OP1(a1)⊕OP1(a2)⊕ · · · ⊕ OP1(an)

with a1 ≥ 2 and a1 ≥ a2 ≥ . . . ≥ an ≥ 0. Thus i∗KX = OP1(−∑ ai) contradicting
its triviality. Therefore the foliation by rational curves G cannot be contained in
F . �

Corollary 6.7. Let F be a foliation of codimension one with c1(KF) = 0 on a
projective manifold X. If sing(F) 6= ∅ then it has an irreducible component of
codimension two.

Proof. If sing(F) 6= ∅ and codim sing(F) ≥ 3 then F satisfies the division property
of Theorem 6.6 thanks to de Rham-Saito Lemma [58] and we get a contradiction.

�

Remark 6.8. Among the examples of codimension one foliations with c1(KF) = 0,
one finds the foliations defined by Poisson structures of corank one. Corollary 6.7
implies that these either have constant rank or that the rank drops in a codimen-
sion two subvariety. Therefore it generalizes and gives a conceptual proof of [5,
Proposition 4 item 3] as asked by Beauville. It is also in accordance with Bondal’s
conjecture [5, Conjecture 4].

Combining Corollaries 3.9 and 6.7 we obtain the following result which will be
useful later.

Corollary 6.9. Let F be a p-closed codimension one foliation with c1(KF) = 0 on
a projective manifold X. If F is not uniruled and sing(F) 6= ∅ then there exists an
irreducible component S of sing(F) having codimension two and at a generic point
of S the foliation F is locally defined by a holomorphic 1-form of type

pxdy + qydx

with p, q relatively prime distinct positive integers.
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7. Projective structures and transversely projective foliations

7.1. Projective structures on P1. On a Riemann surface, a projective structure
is defined by an atlas taking values in P1 with transition charts in Aut(P1). On P1

there is only one projective structure. Therefore it is natural to allow meromor-
phic singularities. There are at least two equivalent ways to define a meromorphic
projective structure on P1. One can first define it by a rational quadratic form η.
The poles are the singular points of the structure. Given a linear coordinate x, one
can write η = φ(x)dx2 and the charts ϕ of the structure are the solutions of the
equation

{ϕ, x} = φ

where {ϕ, x} stands for the Schwarzian derivative of ϕ with respect to x:

{ϕ, x} =

(
ϕ′′

ϕ′

)′

− 1

2

(
ϕ′′

ϕ′

)2

.

This is the classical approach which can be traced back to Schwarz and Poincaré.
One can also define the structure by the data of a P1-bundle P → P1, a Riccati

foliation H on P (i.e. a singular foliation on the ruled surface P which is transversal
to a generic fibre of the ruling) and a section σ : P1 → P which is not H-invariant.
At the neighborhood of a fibre transversal to H, one can find coordinates (x, z)
such that x defines the ruling, and z ∈ P1 defines the foliation. Then ϕ := z ◦
σ is a chart of the structure. If (P ′,H′, σ′) is derived in the natural way by a
birational modification P 99K P ′ of the bundle, it then defines the same projective
structure. From this point view, a singular projective structure is the data of
the triple (P,H, σ) up to birational modification. There is however a representative
which is well-defined up to bundle isomorphisms. It is characterized by the following
conditions :

(1) the (effective) polar divisor has minimal degree,
(2) the section σ does not intersect the singular locus of H.

This is the minimal model discussed in [48]. The first condition characterizes the
relative minimal model for (P,H) discussed in [11], chapter 5; there are countably
many except in some particular cases and the second condition fixes this freedom.

The equivalence between the two point of view described above is as follows.
Given the quadratic form η defining the projective structure, one can associate the
foliation H defined on the trivial bundle P1 × P1 with coordinates (x, z) by the

Riccati equation dz
dx + z2 + φ(x)

2 = 0 and the section z = ∞.
Conversely, given a triple (P,H, σ), one can assume, up to birational transfor-

mation, that P is the trivial bundle with coordinate z and moreover σ is defined
by z = ∞. The foliation H is thus defined by a 1-form

Ω = dz + (f(x)z2 + g(x)z + h(x))dx .

Using a birational map of the form (x, z) 7→ (x, a(x)z+b(x)), we are able to suppose
that f(x) = 1 and g(x) = 0. Precisely, if

ϑ : P1 × P1
99K P1 × P1

(x, z) 7−→
(
x,

2z + f ′

f − g

2f

)
(7)
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then

ϑ∗Ω =
1

f

(
dz +

(
z2 +

φ(x)

2

)
dx

)

where

(8) φ = {f, x}+ 2fh− g′ + g
f ′

f
− 1

2
g2.

One easily check from relative minimal models of singular fibres described in [11]
p.52-56 that the order of poles of η at a singular fibre of H is 2(κ + 1) where κ is
the Katz index: in the relative minimal model, the order of the pole is κ+1 in the
unramified case (non nilpotent fibre) and κ+ 3

2 in the ramified (nilpotent) case; the
other poles of η are double, at each tangency point of σ with H.

For a more thorough account of the material presented here see [47].

7.2. Transversely projective, affine, and Euclidean foliations. We now turn
to transversely projective foliations following [59, 16, 17, 48]. A transversely pro-
jective structure for a foliation F on a projective manifold X is the data (P,H, σ)
of a P1-bundle P → X , a Riccati foliation H on P , and a meromorphic section
σ : X 99K P such that σ∗H = F .

Another triple (P ′,H′, σ′) defines the same transversely projective structure if
it is derived from the initial one by a birational bundle transformation P 99K P ′.
Up to such birational bundle transformation, one can always assume that P is the
trivial bundle X × P1 with vertical coordinate z and σ is the section {z = 0} at
infinity. The foliation H is defined by a 1-form

(9) dz + ω0 + ω1z + ω2z
2

where ω0, ω1, ω2 are rational 1-forms on X . The integrability of H is equivalent to
the equations

(10)




dω0 = ω0 ∧ ω1

dω1 = 2ω0 ∧ ω2

dω2 = ω1 ∧ ω2

Here, F is defined by ω0. A foliation F on Pn is transversely projective if, and only
if, there exist rational 1-forms ω0, ω1, ω2 on X satisfying (10) where ω0 defines the
foliation F .

If there exists a transversely projective structure (P,H, σ) for F in which ω2 = 0,
or equivalently, there exists a section σ̃ : X 99K P invariant by G, then we say that
F is a transversely affine foliation.

If there exists a transversely projective structure (P,H, σ) for F in which ω2 =
ω1 = 0 then F is a transversely Euclidean foliation. In particular, a foliation F is
transversely Euclidean if and only if F is given by a closed rational 1-form.

Let C be a smooth curve and f : C → X a morphism which is generically
transverse to a foliation F . If (P,H, σ) is a transverse projective structure and
the image of f is not contained in the indeterminacy locus of σ : X 99K P then
the naturally defined triple (f∗P, f∗H, f∗σ) gives a projective structure on C. In
Section 8 we are going to explore this fact in order to define a foliation P on
Mor(P1, X) with leaves corresponding to morphisms inducing the same projective
structure on P1. There we will need a couple of basic facts about transversely
projective, affine, and Euclidean foliations that we state below as lemmas.
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Lemma 7.1. Let F : Y 99K X be a dominant rational map between projective
manifolds, F be a codimension one foliation on X, and G = F ∗F be the foliation
on Y induced by F . Then the following assertions hold true.

(1) The foliation G is transversely projective if and only if F is transversely
projective.

(2) The foliation G is transversely affine if and only if F is transversely affine.

We note that G might be transversely Euclidean while F being only transversely
affine.

Proof. If F is transversely projective (resp. affine or Euclidean) then G = F ∗F is
transversely projective (resp. affine or Euclidean) since such a structure (P,H, σ)
for F pulls back to a similar structure (F ∗P, F ∗H, F ∗σ) for G.

Suppose now that G is transversely projective (resp. affine). Restrict G and its
projective structure to a sufficiently general submanifold having the same dimension
as X . This reduces the problem to case where F is a generically finite rational map
and we can apply [14, Lemme 2.1, Lemme 3.1] to conclude. �

8. Deformation of free morphisms along foliations

8.1. Deformation of free morphisms. Let X be a projective manifold of di-
mension n. The morphisms from P1 to X are parametrized by a locally Noetherian
scheme Mor(P1, X), [43, Theorem I.1.10]. The Zariski tangent space of Mor(P1, X)
at a given morphism f : P1 → X is canonically identified with H0(X, f∗TX) [20,
Proposition 2.4] [43, Theorem I.2.16]. To understand this, suppose Mor(P1, X) is
smooth at a point [f ], and let γ : (C, 0) → Mor(P1, X) be a germ of holomorphic
curve in Mor(P1, X) such that γ(0) = [f ]. If we fix x ∈ P1 and compute γ′(0)(x)
we obtain a vector at Tf(x)X ≃ (f∗TX)x. Thus γ

′(0) ∈ H0(P1, f∗TX).

For an arbitrary morphism f , the local structure of Mor(P1, X) at a neighbor-
hood of [f ] can be rather nasty, but if h1(X, f∗TX) = 0 then Mor(P1, X) is smooth
and has dimension h0(P1, f∗TX) at a neighborhood of [f ], see [43, Theorem I.2.16]
or [20, Theorem 2.6].

If [f ] ∈ Mor(P1, X) then Birkhoff-Grothendieck’s Theorem implies that f∗TX
splits as a sum of line bundles OP1(a1) ⊕ OP1(a2) ⊕ · · · ⊕ OP1(an) with a1 ≥
a2 ≥ · · · ≥ an. The morphism f is called free when an ≥ 0. Notice that
h1(P1, f∗TX) = 0 when f is a free morphism. Therefore Mor(P1, X) is smooth
of dimension h0(P1, f∗TX) = n+

∑n
i=1 ai at a neighborhood of [f ].

The scheme Mor(P1, X) comes together with an evaluation map

F : P1 ×Mor(P1, X) −→ X

(x, [f ]) 7−→ f(x) .

Let f be a free morphism and M = Mf be the irreducible component of
Mor(P1, X) containing [f ]. The restriction of F to P1 × {[f ]} has maximal rank
at any point of a neighborhood of P1 × {[f ]} in P1 ×M [43, Corollary II.3.5.4].
Indeed, it has maximal rank at a neighborhood of any point of the Aut(P1)-orbit of
[f ] under the natural action of Aut(P1) on Mor(P1, X) defined by right composition.

Example 8.1. When X = Pn and f is a linear embedding, then f∗TX = OP1(2)⊕
OP1(1)⊕ · · · ⊕ OP1(1), f is free and Mf has dimension 2n+ 1.
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8.2. Tangential foliation. Let D be a distribution on X . We will say that a germ
of deformation ft : P1 → X , t ∈ (C, 0) of a free morphism f = f0 : P1 → X is
tangent to D if the curves ft(x) : (C, 0) → X are tangent to the distribution D for
every x in P1. These deformations correspond to germs of curves on M tangent to
a distribution Dtang = Dtang(f) onM which we will call the tangential distribution
of D.

The construction of Dtang is rather simple. From the identification T[f ]M ≃
H0(P1, f∗TX) it follows that TM ≃ π∗F

∗TX . Thus the inclusion TD →֒ TX
gives rise to a morphism π∗F

∗TD → TM . If I denotes its image then we define
Dtang as the distribution on M determined by the saturation of I inside TM , i.e.,
TDtang is the smallest subsheaf of TM containing I and with torsion free cokernel.

Proposition 8.2. For a generic morphism g : P1 → X, [g] ∈ M , any germ of
deformation gt : P1 → X, t ∈ (C, 0), of g = g0 tangent to D gives rise to a germ of
curve [gt] : (C, 0) →M tangent to Dtang.

Proof. By semi-continuity, there exists a non-empty open subset U ⊂M where the
sheaf π∗F

∗TD is locally free. If a germ of deformation gt : P1 → X , t ∈ (C, 0),
of a morphism g = g0 ∈ U is tangent to D then the corresponding germ of curve
gt : (C, 0) →M is clearly tangent to Dtang. �

Proposition 8.3. If the distribution D is closed under Lie brackets then the same
holds true for Dtang.

Proof. It suffices to verify at a neighborhood of a generic morphism [g] ∈ M . We
can assume for instance that the image of g is disjoint from the singular set of D,
thus D foliates a neighborhood of g(P1). If ξ is a germ of section of TDtang at
[g] then the orbits of the corresponding vector field give rise to deformations of
morphisms φt : P1 × (C, 0), [φ0] ∈ (M, [g]), which map x × (C, 0) to the leaves of
D. The involutivity of D promptly implies the involutivity of Dtang. �

8.3. Interpretation. Throughout this section we will suppose f : P1 → X is free
and generically transverse to F , i.e., the generic morphism in M ⊂ Mor(P1, X) is
not tangent to F . In what follows G = F ∗F denotes the pull-back of F under the
evaluation morphism F : P1×M → X and Ftang is the tangential foliation induced
on M as defined above.

According to [8], there is a foliation F tang ⊃ Ftang with algebraic leaves such

that for a generic x ∈ X , the leaf of F tang passing through x is algebraic and
coincides with the Zariski closure of the corresponding leaf of Ftang. We shall

discuss the codimension of Ftang in F tang, and see how it controls the transverse
geometry of G.
Theorem 8.4. The foliation Ftang has codimension at most three in F tang. More-
over,

(1) If Ftang = F tang then G is a pull-back from a manifold of dimension
dimM + 1− dimFtang.

(2) If codim[Ftang : Ftang] = 1 or 2 then G is the pull-back of a transversely
affine Riccati foliation on P1 ×M by a rational map of the form (z, x) 7→
(α(x, z), x). In particular, G is transversely affine.

(3) If codim[F tang : Ftang] = 3 then G is the pull-back of a Ricatti foliation on
P1 ×M by a rational map of the form (z, x) 7→ (α(x, z), x). In particular,
G is transversely projective.
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If f∗NF = OP1(N + 2) then G is defined by a 1-form

(11) Ω =

(
N∑

i=0

aiz
i

)
dz +

N+2∑

i=0

ziωi =: p(z)dz + ω(z)

where p ∈ C(M)[z] is a polynomial in z of degree at most N whose coefficients ai
are rational functions on M and ω0, ω1, . . . , ωN+2 are rational 1-forms on M with
ωN+2 6= 0. Notice that the zeros of p correspond to the tangencies between G and
the fibration P1 ×M → M or, equivalently, to the tangencies between the corre-
sponding morphisms and the foliation F . Due to the natural action of PGL(2,C)
on P1 ×M and the above geometrical interpretation, both leading coefficients aN
and a0 are non zero. After dividing Ω by aN , we can assume p(z) monic (and
a0 6= 0). This will be assumed from now on.

When N = 0, then G is transversal to the fibration P1×M →M , thus a Riccati
foliation. When X = Pn and M is the variety of linear morphisms (the lines of Pn

equipped with a projective coordinate), then N is precisely the degree of F .
The foliation Ftang is the foliation onM defined by the 1-forms ω0, ω1, . . . , ωN+2,

as the restriction of G to P1 × L, where L is a leaf of Ftang, is by construction
determined by the 1-form dz.

The Frobenius integrability condition Ω ∧ dΩ = 0 for G can be reduced to

dΩ = Ω ∧ LvΩ with v =
1

p(z)

∂

∂z

where LvΩ := d(ivΩ) + iv(dΩ) is the Lie derivative of Ω with respect to the vector
field v. Indeed, ivΩ = Ω(v) = 1 and we get

0 = iv(Ω ∧ dΩ) = (ivΩ) · dΩ− Ω ∧ (ivΩ) = dΩ− Ω ∧ LvΩ;

the converse is obvious. If we denote by dM the exterior differential of M and by
′ the derivative with respect to z, then integrability condition can be succinctly
written as

(12) p(z)dMω(z) = ω(z) ∧ ω′(z) + dMp(z) ∧ ω(z).
Let K ⊂ C(M) be the field of first integrals for Ftang.

Lemma 8.5. The coefficients of the polynomial p(z) = zN +
∑N−1

i=0 aiz
i belong to

the field K.

Proof. It suffices to prove that Lvai = 0 for i = 0, . . . , N − 1 for any rational vector
field v on M tangent to Ftang. Such a vector field, characterized by ωi(v) = 0 for
i = 0, . . . , N +2, can be lifted as an horizontal vector field ṽ on P1 ×M tangent to
G. Of course we have Ω(ṽ) = 0. The integrability condition implies

iṽ(Ω ∧ dΩ) = LṽΩ ∧ Ω = 0.

Thus LṽΩ is zero, or it defines the foliation G. But

LṽΩ = Lvp(z)dz + Lvω(z) =

(
N∑

i=0

(Lvai)z
i

)
dz +

N+2∑

i=0

ziLvωi

cannot be a non zero multiple of Ω since Lvp has degree < N (recall that p is
monic). Therefore, we are in the former case and Lvai = 0 for i = 0, . . . , N − 1 as
wanted. �
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Lemma 8.6. For k = 0, . . . , N + 2, we have

dωk =
∑

0≤i<j≤k+1
i+j≤k+1

λijωi ∧ ωj +
∑

0≤i<j≤k
i+j≤k

µijdai ∧ ωj

for suitable λij , µij ∈ K. Moreover, if i+ j = k + 1 then λij is non-zero.

Proof. Equation (12) implies

(13)





a0dω0 = ω0 ∧ ω1 + da0 ∧ ω0 ,
a0dω1 + a1dω0 = 2ω0 ∧ ω2 + da0 ∧ ω1 + da1 ∧ ω0 ,
a0dω2 + a1dω1 + a2dω0 = 3ω0 ∧ ω3 + ω1 ∧ ω2

+ da0 ∧ ω2 + da1 ∧ ω1 + da2 ∧ ω0 ,
... =

...∑k
i=0 aidωk−i =

∑k+1
i=0 (k − i+ 1)ωi ∧ ωk−i+1

+
∑k

i=0 dai ∧ ωk−i

The lemma follows inductively. �

Lemma 8.7. Let n be the codimension of Ftang in M . Then Θ := ω0 ∧ . . .∧ ωn−1

is a non trivial closed n-form defining Ftang. Moreover, for k = n, . . . , N + 2 we

can write ωk =
∑n−1

i=0 fiωi with fi ∈ K.

Proof. Let n be the largest integer such that Θ := ω0 ∧ . . . ∧ ωn−1 6= 0. We have
to prove that Θ ∧ ωi = 0 for any i. From the natural action of PGL(2,C) on
P1×M , we have a 1-parameter transformation group Φt inducing z 7→ z+ t on the
P1-coordinate and say φt : M → M on the basis. This action preserves G as well
as Ω since the dz coefficient of Φ∗

tΩ is still monic. Therefore, for any t ∈ C, the
identity below holds true:

Φ∗
tΩ =

(
N∑

i=0

ai ◦ φt(z + t)i

)
dz +

N+2∑

i=0

(z + t)iφ∗tωi = Ω .

From Taylor formula we have

N+2∑

i=0

(z + t)iφ∗tωi = φ∗tω(z + t) = φ∗t

(
N+2∑

i=0

ziω(i)(t)

)

(where ω(i) denotes the ith derivative of ω(z) with respect to z) and we deduce that
ω(t) ∧ . . . ∧ ω(n)(t) = (φ−1

t )∗(ω0 ∧ . . . ∧ ωn) = 0 for all t. Expanding this equality

in t-powers shows inductively that ω0 ∧ . . . ∧ ωn−1 ∧ ωk = 0 (i.e. ωk =
∑n−1

i=0 fiωi)
for all k = n, . . . , N + 2.

Now, we claim that dωi ∧ Θ̂i = 0 for any i = 0, . . . , n− 1 where

Θ̂i := ω0 ∧ . . . ∧ ω̂i ∧ . . . ∧ ωn−1 = 0

(here, ω̂i means that this term is omitted in the wedge product). In order to see
this, go back to Lemma 8.6 and its proof, and notice that

a0dωk = (k + 1)ω0 ∧ ωk+1 + da0 ∧ ωk + · · ·
where (· · · ) is a sum of wedge products of 1-forms involving at least one ωl, with
l < k (here we assume n > 1). Therefore

dωi ∧ Θ̂i = da0 ∧Θ
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which is zero by Lemma 8.5. On the other hand, if n = 1, then ω0 ∧ ω1 = 0 and

a0dω0 = da0 ∧ ω0 = 0 (same reason). We promptly deduce that dΘ =
∑n−1

i=0 dωi ∧
Θ̂i = 0.

Now, let ωk be any other coefficient of Ω; one can write ωk =
∑n−1

i=0 fiωi for
some (unique) fi ∈ C(M). Then

dωk ∧ ω0 ∧ . . . ∧ ω̂k ∧ . . . ∧ ωn−1 = ±dfk ∧Θ

must be zero by the very same argument, and fk actually belongs to K. �

The field K may now be defined as follows:

K = {f ∈ C(M) ; df ∧Θ = 0}.
It is an integrally closed field and, according to Siegel’s Theorem, there exists
a dominant rational map Φ : M 99K N onto a projective variety N such that
K = Φ∗C(N). The dimension of N coincides with the transcendence degree p :=
[K : C]. The generic fibers of Φ are the (algebraic closures of) the leaves of F tang.
One can choose f1, . . . , fp ∈ K such that the closed p-form df1 ∧ · · · ∧ dfp 6= 0

defines F tang, or equivalently K is the integral closure of C(f1, . . . , fp). Let now

q = codim[F tang : Ftang], n = p+ q. By very similar arguments, one can prove the
alternate K-relative version of the previous lemma.

Lemma 8.8. The foliation Ftang is defined by the non trivial closed n-form

Θ := ω0 ∧ . . . ∧ ωq−1 ∧ df1 ∧ · · · ∧ dfp, q + p = n

while the algebraic closure F tang is defined by df1∧· · ·∧dfp. Moreover, every other

ωk in (11) can be written as ωk =
∑q−1

i=0 biωi +
∑n−1

i=q bidfi−q+1 with bi ∈ K.

Lemma 8.9. The codimension q = codim[F tang : Ftang] is at most 3.

Proof. Following Lemma 8.8, we can write

ωq =

q−1∑

i=0

biωi +

n−1∑

i=q

bidfi−q+1.

According to equation (13), we have

a0dωq−1 + · · ·+ aq−1dω0 = qω0 ∧ ωq + (q − 2)ω1 ∧ ωq−1 + (q − 4)ω2 ∧ ωq−2 + . . .

After plugging the expression of ωq into this equation and differentiating, we get an
equality between 3-forms. They both decompose uniquely in terms of ωi ∧ωj ∧ωk,
ωi ∧ ωj ∧ dfk and ωi ∧ dfj ∧ dfk, where the subscripts of the 1-forms ωi range over
0, . . . , q − 1 and the subscripts of the functions fi range over 1, . . . , p. The term
ω0 ∧ ω2 ∧ ωq−1 does not occur on the left hand side, and Lemma 8.6 implies that
only the terms

0 = · · ·+ (q − 2)dω1 ∧ ωq−1 + · · · − (q − 4)ω2 ∧ dωq−2 + · · ·
contribute on the right hand side. Thus we arrive at the identity

0 = q(q − 3)ω0 ∧ ω2 ∧ ωq−1

which contradicts the integrability conditions if q > 3. �
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8.4. Proof of Theorem 8.4. Suppose first that codim[F tang : Ftang] = 3. Let
us denote by V the K-vector space K〈ω0, ω1, ω2, df1, . . . , dfn〉, W the K-subspace
generated by the dfi’s and V the quotient. By assumption, V has dimension 3. We
note that both V and W are “closed under exterior differential” in the sense that
dV = V ∧V and dW =W ∧W ; it follows that the exterior derivative is well-defined
on the quotient V , which is itself closed as well. It is therefore classical that there
exists a basis η0, η1, η2 for V satisfying the structure equations of sl(2,C) in V :




dη0 = η0 ∧ η1 ,
dη1 = 2η0 ∧ η2 ,
dη2 = η1 ∧ η2 .

modulo W .

We claim that we can choose ηi ∈ V satisfying the same equations in V instead of
V . To prove this claim, let us start by expanding Ω

p(z) in a power series

dz +
ω0 + zω1 + z2ω2 + · · ·+ zn+2ωn+2

a0 + a1z + a2z2 + · · ·+ zn
= dz + η0 + zη1 + z2η2 + z3η3 + · · ·

Then the classes of η0, η1, η2 in V clearly defines a new basis for it. The integrability
conditions in V then become

(14)

dη0 = η0 ∧ η1 ,
dη1 = 2η0 ∧ η2 ,
dη2 = 3η0 ∧ η3 + η1 ∧ η2 ,
dη3 = 4η0 ∧ η4 + 2η1 ∧ η3 ,

...

If η0 ∧ η3 = 0 then we are done. Otherwise Lemma 8.8 allows us to write

η3 = aη0 + bη1 + cη2 +

p∑

i=1

gidfi

with a, b, c, gi ∈ K. If we take the exterior derivative of the third line of (14) we get

0 = d(dη2) = 6c · η0 ∧ η1 ∧ η2 mod W ∧ V ∧ V
which implies c = 0. If f ∈ K and we replace z by z + fz3 in the differential form
dz+ η0+ zη1+ z

2η2+ z
3η3+ · · · then we modify the sequence η2, η3, η4, . . . without

modifying the integrability equations (14). To wit, η2 is changed to η2− 3f ·η0 and
η3 to η3 − 3fη1 + df . We use this operation to obtain a new η3 which takes the
form η3 = aη0 +

∑p
i=1 gidfi ∈ W . Finally, if we take the wedge product of η0 with

the exterior derivative the fourth line of (14) then we get

η0 ∧ dη3 = η0 ∧ η1 ∧
(

p∑

i=1

gidfi

)
.

If we see V as the direct sum V ⊕W then the lefthand side of the equality above lies

in V ∧∧2
W , while the righthand side lies in

∧2
V ∧W . It follows that η3 = aη0,

and the claim is proved.

Now, we can write

Ω̃ =
Ω

p(z)
= dz + a(z)η0 + b(z)η1 + c(z)η2 +

p∑

i=1

gi(z)dfi
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where a, b, c, gi ∈ K(z). If we expand Ω̃ ∧ dΩ̃ then we get

(a+a′b−ab′)η0 ∧η1∧dz+(2b+ b′c− bc′)η0 ∧η2 ∧dz+(c+ b′c− bc′)η1 ∧η2 ∧dz+β
where β is a 3-form with monomials involving at most one of the 1-forms η0, η1, η2.
Therefore

0 = (a+ a′b− ab′) = (2b+ b′c− bc′) = (c+ b′c− bc′) .

The first equality can be rewritten as b′

b − a′

a = 1
b . After setting α(z) = b

a , we get
α
α′

= 1
b and thus

a =
1

α′
and b =

α

α′
.

A combination of the 3 equations yields b2 = ac and we thus get c = α2

α′
. Now, we

can rewrite

α′Ω̃ = dα+ η0 + αη1 + α2η2 +

p∑

i=1

hi(z)dfi

for suitable hi ∈ K(z). Examining again the integrability condition, we obtain

0 = η0 ∧ η1 ∧
(

p∑

i=1

hi(z)dfi

)
+ β

where β is, as before, a 3-form with monomials involving at most one of the 1-forms
η0, η1, η2. Thus the functions hi vanish identically and

α′Ω̃ = dα+ η0 + αη1 + α2η2.

This is sufficient to conclude that G(L) is defined by the pull-back of dz+η0+zη1+
z2η2 under the rational map (z, x) 7→ (α(z), x).

Let us now turn to the case codim[F tang : Ftang] = 2. As the arguments are
very similar to the previous case, we will just sketch them. In this case there are
η0, η1 satisfying

dη0 =η0 ∧ η1 ,
dη1 =2η0 ∧ η2 ,

with η2 = aη1 +
∑p

i=1 gidfi with a, gi ∈ K. After killing the coefficient a by adding
to η1 a convenient K-multiple of η0, the closedness of dη1 gives gi = 0, and thus
dη1 = 0. If we write Ω̃ = p(z)−1Ω = dz + a(z)η0 + b(z)η1 +

∑p
i=1 hi(z)dfi then the

integrability of Ω̃ implies again b′

b − a′

a = 1
b so that we can set a = 1

α′
and b = α

α′

as before. Rewriting the integrability condition for α′Ω̃ gives hi = 0. Therefore

α′Ω̃ = dα+ η0 + αη1

and G(L) is defined by the pull-back of dz + η0 + zη1 under the rational map
(z, x) 7→ (α(z), x).

When codim[F tang : Ftang] = 1, integrability conditions write

dη0 = η0 ∧ η1
with η1 =

∑p
i=1 gidfi. Closedness of dη0 gives dη1 = 0. We can therefore proceed

analogously to the previous case, proving that G(L) is defined by the pull-back of
dz + η0 + zη1 under the rational map (z, x) 7→ (α(z), x).

Finally, when F tang = Ftang, it suffices to notice that the leaves of Ftang lift to
leaves of G, and define a subfoliation of G by algebraic leaves of the same dimension
as Ftang. �
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Remark 8.10. A weaker version of Theorem 8.4 can be deduced in an easier way
as a corollary of [17, Theorem 1.1]. Indeed, write

Ω0 :=
Ω

p(z)
= dz + g1(z)ω1 + · · ·+ gn(z)ωn

where Θ = ω1∧· · ·∧ωn 6= 0. We can assume thatW := Wronskian(g1, . . . , gn) 6= 0,
otherwise we could write Ω0 with less summands. Then a Godbillon-Vey sequence
for G (see [17]) is given by

Ω1 = g′1ω1 + · · ·+ g′nωn ,

Ω2 = g′′1ω1 + · · ·+ g′′nωn ,

Ω3 = g′′′1 ω1 + · · ·+ g′′′n ωn ,

...

Since Ω0∧Ω1∧· · ·∧Ωn =W ·dz∧Θ and Ω0∧Ω1∧· · ·∧Ωn∧Ωn+1 6= 0 we can apply
[17, Theorem 1.1] to deduce that G is either tranversely projective, or pull-back as
in the statement of Theorem 8.4. Actually, our proof above is somehow dual to that
one of [17]: there we dealt with vector fields instead of differential forms. Notice
that here we obtain a stronger result, since we obtain that G is a pull-back of a
Riccati equation in the transversely projective case. In particular, this excludes the
possibility of F being a transversely hyperbolic foliation like the Hilbert modular
foliations, see [17, Section 5.5].

8.5. Variation of projective structure. Let F be a transversely projective on
a projective manifold X . Recall that attached to F we have the datum (P,H, σ)
where p : P → X is P1-bundle overX ,H is a Riccati foliation on P , and σ : X 99K P
is a rational section. We will denote by ∆ the polar divisor of H.

If f : P1 → X is a free morphism which is generically transverse to X then
F , or rather its first integrals, define a (singular) projective structure on X . If we
consider the irreducible component of Mor(P1, X) containing [f ], we get a map from
an open subset of M to the space of rational 1-forms with poles of order at most
deg(f∗∆). Equations (7) and (8) from Section 7 shows that this map is algebraic,
and as such defines a foliation on M with algebraic leaves which we will denote by
P . The foliation Ftang is clearly tangent to the foliation P .

Theorem 8.11. If dimP > dimFtang then for a generic [f ] ∈ M the Riccati
foliation f∗H defined on f∗P is defined by a closed rational 1-form. Moreover, if
f is an embedding then there exists a neighborhood U ⊂ X of f(P1) in the metric
topology where F is defined by a closed meromorphic 1-form.

Proof. Fix a germ of curve γ : (C, 0) → M contained in a leaf of P and transverse
to the leaf of Ftang through γ(0) = [f ]. Let Fγ = F ◦ γ : P1 × (C, 0) → X the
composition of the evaluation morphism with γ.

Pulling back H using Fγ we obtain a Riccati foliation H̃ in P1×(C, 0)×P1 which
is defined by

dz + ω0z
2 + ω1z + ω2

where ω0, ω1, ω2 are 1-forms in the variables (x, t) ∈ P1 × (C, 0) of the basis; and
the section σ defined by z = ∞.
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We can apply a bimeromorphic transformation of the form z 7→ α(x, t)z+β(x, t)
in order to write

Ω = dz + (z2 + φ(x, t))dx + (a(x, t)z2 + b(x, t)z + c(x, t))dt ,

as a 1-form defining H̃. Since we are in a leaf of P we indeed get that ∂tφ(x, t) = 0,
i.e. φ(x, t) = φ(x) does not depend on t. Therefore

Ω = dz + (dx + a(x, t)dt)z2 + (b(x, t)dt)z + (φ(x)dx + c(x, t)dt).

The restriction of H̃ to {z = ∞} is defined by the 1-form dx + a(x, t)dt. It
also coincides with the foliation G(T ) on P1 × T , where G = F ∗F is, as before,
the pull-back of F by the evaluation morphism and G(T ) is the restriction of G to
P1 × T . Since γ : (C, 0) → M is not contained in a leaf of Ftang, it follows that
G(T ) does not coincide with the foliation defined by dx. Thus the function a(x, t)
is not identically zero. Since [f ] ∈ M is generic, we can assume that a(x, 0) is not
identically zero.

Notice that Ω = iviwdt ∧ dx ∧ dz where

v = −∂t + (a(x, t)z2 + b(x, t)z + c(x, t))∂z and w = −∂x + (z2 + φ(x))∂z .

The involutiveness of the T H̃ is equivalent to [v, w] = 0. As w does not depend
on t, it commutes with ∂t. Therefore it also commutes with (a(x, 0)z2 + b(x, 0)z +
c(x, 0))∂z , and this vector field is a infinitesimal automorphism of the Riccati foli-
ation f∗H. Consequently the 1-form

Ω̃ =
dz + (z2 + φ(x))dx

a(x, 0)z2 + b(x, 0)z + c(x, 0)

is a closed rational 1-form defining f∗H.
If f is an embedding then C = f(P1) ⊂ X is smooth curve. Since f is free

we can assume that C intersects the polar divisor of H generically and that it
is disjoint from the indeterminacy locus of σ, see [43, Proposition II.3.7]. Thus
[48, Lemma 4.1] implies that for every point p ∈ C the germ of H at π−1(p)
admits a local product structure. That is, there is a local system of coordinates
(x1, . . . , xn, y) on (X, p) × P1 where the natural projection to X is the morphism
forgetting y, C is defined by x2 = · · · = xn = 0 and the foliation H is defined
by Ωp = a(x1, y)dx1 + b(x1, y)dy. The restriction of Ωp to π−1(C) is a multiple

of Ω̃ and therefore we can write Ω̃ = h(x1, y)Ωp. It follows that h(x1, y)Ωp is an

extension of Ω̃ at the neighborhood of p and it still defines H. Notice that such

extension is unique. Therefore, the 1-form Ω̃ extends as a closed 1-form defining

H at the neighborhood of π−1(C). It suffices to pull-back Ω̃ using σ to obtain a
closed meromorphic 1-form defining F at a neighborhood of C. �

8.6. Graphic neighborhood. The deformations of a morphism f : P1 → X tan-
gent to a foliation F can be interpreted as deformations of another morphism
Γf : P1 → P1 ×X – the graph of f – which are contained in an analytic subvariety
Y of P1 ×X . To keep things simple suppose that the image of f is disjoint from
the singular set of F . On each fiber of P1 ×X → P1 put an unaltered copy of the
foliation F to form a foliation F̂ . Let ∆ be the graph of f in P1 ×X , and U an
arbitrarily small tubular neighborhood of ∆ in the metric topology. If we saturate

∆ by the leaves of F̂|U , we obtain a smooth analytic subvariety of U of dimension
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dimF + 1 which we will call Y . The nice thing about Y is that the normal bundle
of ∆ in Y coincides with the tangent sheaf of F . More precisely,

Γ∗
fNY ∆ = f∗TF .

Bogomolov-McQuillan explored this fact to establish the algebraicity of the leaves
in the proof of Theorem 2.4.

Let π1 : Y → P1 and π2 : Y → X be the natural projections. By construction,
π∗
2F coincides with the foliation on Y defined by the fibers of π1.
Notice that a sufficiently small deformations of ∆ in Y are graphs of morphisms

of P1 which are tangent to F , and reciprocally a deformation of f : P1 → X along
F gives rise to a family of curves on Y .

Proposition 8.12. Let [g] ∈ M ⊂ Mor(P1, X) be a generic element, and k be the
number of summands of g∗TF having strictly positive degree. If x ∈ X is a generic
point then there exists a quasi-projective variety Vx of dimension at least k passing
through x and contained in the leaf of F through x.

Proof. Let Y ⊂ P1 ×X be a graphic neighborhood of g, and ∆ be the graph of g
in Y . If L is the leaf of Ftang through [g] and ϕ : P1 × L → Y ⊂ P1 × X is the
morphism defined by ϕ(z, [g]) = (z, g(z)) then the differential

dϕ : TP1 × TL −→ ϕ∗(TP1 × TX)

of ϕ at (z, [g]) is given by

dϕ(z, [g]) = dg(z) + φ(z, [g])

where φ(z, g) : H0(P1, g∗TF) → g∗TX ⊗ OX/mzOX is the evaluation morphism,
see [43, page 114], and dg is the differential of g. If z ∈ P1 and [g] are generic
enough then on the one hand dϕ(z, [g]) has rank equal to the dimension of Y . On
the other hand the kernel of dϕ(z, [g]) has dimension at least equal to k, the number
of positive summands of g∗TF . Therefore F = ϕ−1(ϕ(z, [g]) has dimension at least
k. The morphisms parametrized by the projection of F ⊂ P1 × L to L have image
contained in Y and containing (z, g(z)). Thus we have a k-dimensional analytic
family of curves T contained in the Hilb(P1 ×X), all of them contained in Y and
containing (z, g(z)). Every subscheme S ∈ Hilb(P1 ×X) in the Zariski closure T of
T in Hilb(P1 ×X) will certainly contain p = (z, g(z)) and will have defining ideal
IS such that IY,p ⊂ IS,p, as both conditions are closed.

If p : UT → T is the universal family over T and ̺ : UT → P1×X is the evaluation
morphism then for a generic y ∈ P1 the analytic variety π2(̺(p

−1(T )) ∩ {y} ×X)
will be contained in the leaf of F through g(y). Recall that π2 : Y → X is nothing
but the projection of Y ⊂ P1 ×X to the second factor. Therefore

Vg(y) = π2(̺(p
−1(T )) ∩ {y} ×X) ∩ (X − sing(F))

makes sense, and is a quasi-projective variety contained in the leaf of F through
g(y). The proposition follows. �

We do not know how to control the geometry of the quasi-projective varieties Vx
constructed by the previous proposition. It is conceivable that a variation of Mori’s
bend-and-break argument would allow us to construct a k-dimensional rationally
connected subvariety tangent to F through a generic point x ∈ X . So far we can
only prove the existence of one rational curve tangent to F through a generic point
of X .
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Proposition 8.13. Let M ⊂ Mor(P1, X) be a irreducible component containing
free morphisms and [g] ∈M be a generic element. Suppose g∗TF has at least one
summand having strictly positive degree. If x ∈ X is a generic point then there
exists rational curve through x and contained in the leaf of F through x.

Proof. The proof is similar to the one of [52, Lemma 5.2, Lecture I]. Let x ∈ X
be a generic point. The existence of a positive summand in the decomposition of
g∗TF implies that we can algebraically deform g along F in such a way that the
point p0 = g−1(g(x)) ∈ P1 is mapped by the deformations to x. More precisely,
there exists a smooth quasiprojective curve C0 ⊂ M contained in a leaf of Ftang

and such that every [g] ∈ C0 maps p0 to x. We can also assume that every [g] ∈ C0

is generically transverse to F otherwise we would have already a rational curve
through x and contained in a leaf of F .

Let C be a smooth projective curve containing C0 as an open subset. The
evaluation morphism F : P1×C0 → X extends to a rational map F : P1×C 99K X .
Generically F must have rank two, as otherwise the deformation would have to move
points along the image g(P1) of one of its member and this is only possible if g(P1)
is tangent to F . Notice also that F ∗F is nothing but the foliation on P1×C defined
by the projection P1 × C → P1.

Since the curve C0 = {p0} × C has self-intersection zero in P1 × C and F has
image of dimension two, there must exist an indeterminacy point of F on C0. By
resolving the indeterminacies of F we obtain a surface S together with a morphism
G : S → X fitting into the diagram

S

π

��

G

((PPPPPPPPPPPPPPPP

P1 × C
F //______ X

P1 × C0
?�

OO
F

77nnnnnnnnnnnnn

where π : S → P1 × C is a birational morphism. Moreover, there is a curve E ⊂ S
contracted by π into a point of C0 whose image under G is a rational curve on X
passing through x. Since the foliation F ∗F is a smooth foliation on P1 × C, every
exceptional divisor of π is also invariant by (F ◦ π)∗F = G∗F . Therefore G(E) is
the sought rational curve tangent to F passing through x. �

8.7. Proof of Theorem 7. If the generic leaf of Ftang is not algebraic then The-
orem 8.4 implies F is transversely projective. If instead every leaf of Ftang is
algebraic then we can conclude applying the next proposition.

Proposition 8.14. Let X be a uniruled projective manifold, M ⊂ Mor(P1, X)
be an irreducible component containing free morphisms, and F be a codimension
one foliation on X. If all the leaves of the foliation Ftang defined M are alge-
braic then the foliation F is the pull-back by a rational map of a foliation G on
a projective manifold of dimension smaller than or equal to n − δ0 + δ−1, where
δ0 = h0(P1, f∗TF), and δ−1 = h0(P1, f∗TF⊗OP1(−1)). Moreover, if δ−1 > 0 then
F is uniruled.

Proof. Let F : P1×M → X be the evaluation morphism, and Htang be the foliation
defined by intersection of F ∗F and the pull-back of Ftang under the projection
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P1 × M → M . Notice that Htang has the same dimension as Ftang and, if the
leaves of Ftang are all algebraic then the same holds true for the leaves of Htang.
Thus under our hypothesisHtang provides a family of algebraic subvarieties tangent
to F ∗F .

The dimension of Htang is exactly δ0, and if we restrict the evaluation map to a
generic leaf of Htang it follows that its rank is exactly δ0−δ−1. Therefore through a
generic point of X there exists an algebraic subvariety of dimension δ0−δ−1 tangent
to F . Lemma 2.7 implies that F is a pull-back from a variety having dimension
at most n − δ0 + δ−1. To produce rational curves tangent to F when δ−1 > 0 it
suffices to apply Proposition 8.13. �

Suppose now that X is rationally connected and f : P1 → X is an embedding
with ample normal bundle. Theorem 8.11 implies that F is defined by a closed
meromorphic 1-form ω at a neighborhood of f(P1). We can apply [35, Theorem
6.7] to extend ω to an algebraic (perhaps multi-valued) 1-form on all ofX . It follows
that F is transversely affine. Indeed the algebraicity of ω implies the existence of a
projective manifold Y together with a generically finite morphism p : Y → X such
that p∗F is defined by a closed rational 1-form. �

8.8. Proof of Corollary 9. If the generic leaf of Ftang is not algebraic then we
can use the same argument as in the proof of Corollary 8, replacing the use of [44]
by the standard Lefschetz’s Theorem, to conclude that F is defined by a closed
rational 1-form.

If all the leaves of Ftang are algebraic then we want to control δ0 − δ−1 for a
generic linear immersion f : P1 → Pn, as F will be a pull-back from a projective
manifold of dimension at most n− δ0 + δ−1 according to Theorem 7. Write f∗TF
as

OP1(1)r ⊕Os
P1 ⊕

(n−1)−r−s⊕

i=1

OP1(bi)

where bi < 0. Therefore δ0−δ−1 = r+s and deg(f∗TF) = (n−1)−d = r+
∑
bi ≤

r − ((n− 1)− (r + s)) = 2r + s− (n− 1). Thus

δ0 − δ−1 = r + s ≥ 1

2
(2r + s) ≥ n− 1− d

2
,

which implies that n− δ0 + δ−1 ≤ d/2 + 1 as wanted. �

9. Foliations with numerically trivial canonical bundle

In this section we will conclude the proof of

Theorem 9.1 (Theorem 1 of the Introduction). Let F be a codimension one foli-
ation with numerically trivial canonical bundle on a projective manifold X. Then
at least one of following assertions hold true.

(a) The foliation F is defined by a closed meromorphic 1-form with coefficients
in a torsion line bundle and without divisorial components in its zero set.

(b) All the leaves of F are algebraic.
(c) The foliation F is uniruled.

Moreover, if F is not uniruled then KF is a torsion line bundle.
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Let us briefly recall what we already know. On the one hand, if F does not
satisfy none of the conclusions of Theorem 9.1 then Corollary 3.9 and Corollary 6.9
imply that the singular set of F has at least one component of codimension two,
and that the generic point of every component of sing(F) the foliation admits a
local holomorphic first integral. On the other hand, Theorem 7 implies that F is
transversely projective. We will use this information to proof the existence of a
divisor satisfying the hypothesis of the Lemma below.

9.1. Logarithmic division implies smoothness or uniruledness.

Lemma 9.2. Let F be a codimension one foliation on a projective manifold X
defined by a twisted 1-form ω ∈ H0(X,Ω1

X ⊗ NF). Suppose there exists a closed
analytic subset R ⊂ X of codimension at least 3, a R-divisor D =

∑
λiHi with

λi > −1 and Hi irreducible F-invariant hypersurface such that for every x ∈ X−R
we can write locally

(15) ω ∧
(∑

λi
dhi
hi

)
= dω

where h1, . . . , hk are local equations for H1, . . . , Hk. Then H1(X,N∗F) 6= 0

Proof. One can assume for simplicity that R = ∅. Indeed, if (15) holds on X \ R,
it holds also on the whole X by extension properties of H1(X \ R,N∗F) through
analytic susets of codimension ≥ 3. Let U = {Uα} be a sufficiently fine open
covering of X . If {gαβ ∈ O∗(Uαβ)} is a cocycle representing NF then, according
to our hypothesis, the collection of holomorphic 1-forms {θαβ ∈ Ω1

X(Uαβ)} defined
by

dgαβ
gαβ

−
(∑

λi
dhi,β
hi,β

−
∑

λi
dhi,α
hi,α

)

vanishes along the leaves of F . Thus we have an induced class in H1(X,N∗F).
If non-zero there is nothing else to prove. Otherwise, we deduce that N∗F is
numerically equivalent to D.

By assumption, there exists near every point x ∈ X a function ϕ expressed locally
as
∑
ϕi with ϕi plurisubharmonic and i

π∂∂ϕi = λi[Hi] as currents. Moreover,
adding if necessary a pluriharmonic function, we get the following equalities

(16) ω ∧ ∂ϕ = dω and ∂ϕ =
∑

λi
dhi
hi

.

Since N∗F is numerically equivalent to D, we can interpret ϕ as a local weight
of a (singular) metric on N∗F . The expression

T = ie2ϕω ∧ ω
gives rise to a closed positive (1, 1)-current on U = X \ sing(F). Indeed, e2ϕ is
locally integrable on U since λi > −1, and T is closed thanks to (16). Beware that
e2ϕ may fail to be integrable near some point of the singular locus. Nevertheless,
T extends uniquely to a closed positive current on X denoted again T by a slight
abuse of notations. Remark that T splits on U as −η ∧ω where η = ie2ϕω is a well
defined (0, 1) ∂-closed current with values in NF∗.

Now, pick a point p ∈ sing(F) and denote by Bp an open ball centered at p. On
Bp, there exists a plurisubharmonic potential ψ for T :

i∂∂ψ = T.
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From i∂(∂ψ ∧ ω) = 0 = −T ∧ ω = 0, we can deduce the existence of a distribution
δ, defined at least on Bp \ sing(F) such that

∂ψ = δω.

Consequently we have, up to a multiplicative constant, the identity

e2ϕω = ∂δ.

Therefore η is ∂-exact on Bp \ sing(F). By Mayer-Vietoris, the class {η} defined in
H1(U,N∗F) extends to a class in H1(X,N∗F). The positivity of T implies that
this class is non–trivial and the lemma follows. �

9.2. Transversely projective structure, Schwartz derivative, and invariant
divisors. Suppose F is a codimension one foliation on a projective manifoldX with
numerically trivial canonical bundle. We will also assume that at the generic point
of every irreducible component of the singular set of F having codimension two,
the foliation is defined by

pxdy + qydx

with p, q relatively prime positive integers. Moreover, we can also assume that for
at least one of the irreducible codimension two components of sing(F) the integers
p and q are distinct thanks to Corollary 6.9. We will now make use of the trans-
versely projective structure given by Theorem 7 to produce a divisor satisfying the
hypothesis of Lemma 9.2. The degeneracy locus of such a structure is of the form
sing(F)∪Σ where Σ is a finite union of F -invariant hypersurfaces. Outside this set,
the foliation is defined by local submersions with values in P1 and transition func-
tions in Aut(P1). We emphasize that the transverse structure gives distinguished
first integrals for the foliation F outside the degeneracy locus of the projective
structure. We will denote the sheaf of such first integrals by I.

Consider a regular point p ∈ X − sing(F) where the foliation is locally given by
a submersion z, z(p) = 0. We can select an open neighborhood U of p and a section
f (possibly multi-valued) of I (which depends only on the z variable) such that the
Schwartz derivative of f with respect to z, {f, z}, is a well defined meromorphic
function on the whole open set U . Hence, we can expand the Schwartz derivative
of f with respect to z as

{f, z} =
∑

i≥i0

aiz
i

with i0 ∈ Z and ai0 6= 0, unless {f, z} vanishes identically. The following facts can
be easily verified.

(1) The first integral f is a submersion if and only if i0 ≥ 0. In particular, if
i0 < 0 then the local invariant hypersurface {z = 0} actually belongs to an
algebraic hypersurface in Σ.

(2) If i0 ≤ −1 then it is independent of the choice of the local coordinate z.
Consequently, i0 is constant along the irreducible hypersurfaces in Σ. If H
is one of such hypersurfaces then we will denote by i0(H) the value of i0
along it. Moreover, if i0 ≥ −2 then the coefficient of 1

z2 is independent of
the coordinate and we define a(H) = a−2.

(3) the function f(z)− log z is holomorphic if and only if i0 = −2 and a−2 = 1
2 .

We will say that H is an irregular singularity of the projective structure if and
only if i0(H) < −2. Otherwise, if i0(H) ∈ {−2,−1} we will say that H is a regular
singularity.
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9.2.1. Passing through corners. Let ω = pydx + qxdy be a germ of 1-form at the
origin of Cn, with p, q relatively prime positive integers. Suppose that the foliation
F induced by ω is endowed with a projective structure. Let f be a multi-valued
section of I defined on the complement of {xy = 0}. Let r = q

p . Set ix = i0({x =

0}) and iy = i0({y = 0}). On the transversals {y = 1} and {x = 1}, we get
respectively

{f, x} =
∑

i≥ix

aix
i and {f, y} =

∑

i≥iy

biy
i .

These two restrictions are related by the so called Dulac’s transform, a (multi-
valued) holonomy transformation between the two transversals, which is explicitly
given by x = h(y) = yr.

The composition rule for the Schwartz derivative

{f ◦ h, z} = {f, h(z)}h′2(z) + {h, z}
applied to x = h(y) = yr, together with the fact that

{h, y} =
1− r2

y2

implies the next lemma.

Lemma 9.3.
(1) If the singularity on {x = 0} is irregular, i.e. ix < −2, then iy = r(ix+2)−2

and biy = aixr
2(6= 0) . Therefore, iy < −2 and the singularity on {y = 0}

is also irregular.
(2) If the singularity on {x = 0} is regular with ix = −2 then iy ≥ −2 and

b−2 = r2(aix − 1
2 ) +

1
2 .

(3) If ix ≥ −1 and r 6= 1 then iy = −2.

It follows that the projective structure determines a canonical logarithmic 1-form
η on {xy = 0} satisfying dω = η ∧ ω as follows.

(1) In case of irregular singularities: η = (−ix − 3)dxx + (−iy − 3)dyy .

(2) In case of regular singularities: η = (|2a−2 − 1| 12−1)dxx +(|2b−2 − 1| 12−1)dyy .

Notice that in both cases the residues are real and strictly greater than −1.

9.3. Proof of Theorem 9.1 (Theorem 1 of the Introduction). Let F be a
transversely projective foliation which is of the form pxdx + qydx (p, q relatively
prime positive integers) at the generic point of every codimension two irreducible
component S of sing(F). We will now construct a divisor D with support on Σ
(the singular set of the transversely projective structure) satisfying the hypothesis
of Lemma 9.2.

Write Σ = Σ1 ∪ . . . ∪ Σℓ as the union of its connected components. Fix an
irreducible component Σj and pick a point p ∈ sing(F) ∪ Σj in a hypersurface
Hp ⊂ Σ.

Assume that i0(Hp) < −2. Then every other hypersurface H in Σj must satisfy
i(H) < −2 according to Lemma 9.3. Then we set

Dj =
∑

H∈Σj

(−i(H)− 3)H.

Notice that Dj satisfies the hypothesis of Lemma 9.2 in a neighborhood of Σj .
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Assume that i0(Hp) = −2 and a(Hp) =
1
2 . Lemma 9.3 implies the same holds

true for every H ∈ Σj . Thus over a generic point of Σj we get a logarithmic first
integral (induced by the projective structure) which gives rise to a well defined local
section η of dI. Indeed, these local sections are logarithmic 1-form with poles on Σj

which are unique up to a multiplicative constant. Using Mayer-Vietoris sequence,
we deduce the existence of a global logarithmic form ηj on a neighborhood V of Σj .
Moreover, one can choose its residues positive real numbers. In this case we set

Dj =
∑

H∈Σj

(resH(η))H.

Assume that i0(Hp) = −2 et a(Hp) 6= 1
2 . In this case, using again lemma 9.3, if

we set

Dj =
∑

H∈Σj

(|2a(H)− 1| 12 − 1)H

then Dj satisfies the hypothesis of Lemma 9.2 in a neighborhood of Σj .
If we sum up the divisors Dj for all the connected components of Σ we obtain

a divisor D satisfying the hypothesis of Lemma 9.2, and consequently we get the
non-vanishing of H1(X,N∗F). Proposition 6.5 implies F is smooth or uniruled.
When F is smooth the explicit description given in [63] (see §1.1) implies that F
is defined by a closed holomorphic 1-form with coefficients in a torsion line bundle.
Therefore to conclude the proof of Theorem 9.1 it remains to show that closed
1-forms given by Theorem 2 have coefficients in a torsion line bundle.

9.3.1. Flat implies torsion. Let F be a non-uniruled foliation with c1(KF) = 0,
given by closed rational form ω without zeroes divisor and with coefficients in a
flat line bundle L. Assume sing(F) 6= ∅ and write (ω)∞ =

∑
λDD as a sum of

irreducible divisors with positive integers coefficients.
Assume first that λD > 1 for every D, i.e. the 1-form ω is locally the differential

of a meromorphic function. We can argue as in Theorem 3.8 to deduce that F is
uniruled, or has a rational first integral (with generic leaf rationally connected), or
every codimension two component of the singular set of F admits a local holomor-
phic first integral of the type xpyq. In the latter case we can apply the arguments
of this section to deduce that F is uniruled or smooth. Therefore Theorem 9.1 is
proved when λD > 1 for every D.

Recall that rationally connected manifolds are simply-connected, and conse-
quently L is trivial in these manifolds. Thus we have only to deal with X uniruled,
with rational quotient RX not reduced to a point, and ω has at least one logarithmic
pole, i.e. there is a divisor D in the support (ω)∞ with λD = 1.

Let us call Frat the codimension q = dim RX foliation with algebraic leaves
induced by the rationnally connected meromorphic fibration

R : X 99K RX .

We know [32] thatRX is not uniruled. Therefore [10] implies that Frat is given by
an holomorphic q-form on X without zeroes in codimension 1 and with coefficients
in a line bundle E such that E∗ is pseudo-effective. The restriction of such q-form
on the leaves defines a non trivial section σ of Ωq

F ⊗ E, where Ωq
F denotes the

q-th wedge power of the cotangent sheaf of F . If F is not uniruled then TF is
semi-stable with respect to any polarization of X . In this case the section σ has
no zeroes in codimension 1. This property forces R|D to be dominant over RX .
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Notice, for later use, that the semi-stability of TF and the pseudo-effectiveness of
E∗ implies that E is flat.

Let us denote by U ⊂ RX the open Zariski subset such that the fibration R over
U is a regular one. Let us pick a small open ball B on U . Over R−1(B) our flat line
bundle L is trivial since the fibers of R are rationally-connected. Therefore we can
represent ω in R−1(U) by a meromorphic 1-form normalized in such a way that its
residue along a branch of D is equal to 1. Since there are only finitely many choices
involved, this enables us to conclude that L is torsion. The proof of Theorem 9.1
(Theorem 1 of the Introduction) is concluded. �

10. Toward a more precise structure theorem

In this section we refine the description of non uniruled codimension one foliations
with numerically trivial canonical bundle when the ambient manifold X admits a
semi-positive smooth (1, 1)-form representing c1(X). For a structure theorem for
this class of manifolds see [21].

Theorem 10.1. Let X be a projective manifold carrying a smooth semi-positive
closed (1, 1)-form which represents c1(X). If F is a codimension one foliation on
X with c1(KF) = 0 then at least one of the following assertions holds true.

(1) The foliation F is uniruled.
(2) Up to a finite etale covering, the maximally rationally connected fibration of

X is a locally trivial smooth fibration over a manifold B with zero canonical
class and F is obtained as a suspension of a representation of π1(B) on
the automorphism group of a codimension one foliation G defined on the
rationally connected fiber F and such that c1(KG) = 0 on F .

(3) Up to a finite etale covering, X is the product of a projective manifold B
with trivial canonical class with a rationally connected projective manifold
F . The foliation F is defined by a closed rational 1-form of the form

ω = α+ β

where α is a closed rational form without divisorial zeroes defining a folia-
tion G on F and β is a closed holomorphic 1-form on B.

We conjecture that the result above holds without the hypothesis on c1(X).
Notice that (3) implies (2) whenever α admits a non trivial infinitesimal sym-

metry; i.e, there exists on F a holomorphic vector field such that α(X) = 1. We do
not know if this holds true in general.

10.1. Smoothness of the rationally connected fibration. The lemma below
can be easily deduced from the structure theorem of [21]. We include a proof here
for the sake of completeness.

Lemma 10.2. Under the assumptions of Theorem 10.1, the rational quotient RX

is smooth with vanishing c1. Moreover, the ambient manifold X is obtained as
a suspension of a representation from π1(RX) to Aut(F ) where F is a fiber of
X → RX .

Proof. The arguments laid down in §9.3.1 imply that the maximal rationally con-
nected fibration is defined, as a foliation, by a holomorphic q-form ξ with values in
a flat line bundle E, where q = dimRX .
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Let us equip E with a metric h such that (E, h) is unitary flat. By assumption
there exists a closed semi-positive (1, 1) form α which represents c1(X). By Yau’s
theorem ([68]), α turns out to be the Ricci form of a Kähler metric g on the whole
manifold X .

Let us endow Ωq(X) with the induced metric gq from the Kähler metric g on
X, and the vector bundle F = Ωq(X) ⊗ E with the metric gq ⊗ h. In this way,
F becomes a Hermitian vector bundle. If we apply Hopf’s maximum principle

and the standard Bochner identity to the Laplacian of the function |α|2 on X , the
curvature condition implies that α is parallel and nowhere vanishing. In particular,
the rationally connected fibration is smooth and the subbundle S of TX defined
by local holomorphic vector fields tangent to the fibers is indeed parallel. Thus we
get, with respect to the metric g, an holomorphic splitting

TX = S ⊕ S⊥

with each member of the summand being an integrable subbundle. Furthermore,
since the fibers of the rationally connected fibration are simply-connected, this
fibration has no multiple fibers. The lemma follows. �

Using the description of Kähler manifolds with vanishing first Chern class ([4]),
we may assume, up to a finite etale covering, that X = Y × V , where V is Calabi-
Yau (KV = OV and π1(V ) = 0) and Y is a locally trivial rationally connected
fibration over a complex torus T of dimension s. Moreover, the splitting S⊕ S⊥ of
TX endows Y with a locally free Cs-action transverse to the rationally connected
fibration.

Lemma 10.3. If H ⊂ TX is the relative tangent bundle of the fibration X → Y
with Calabi-Yau fibers then H ⊂ TF .

Proof. Assume the inclusion does not hold. Then, on a generic fiber F induces a
codimension one foliation FV . Adjunction implies that N∗F |V = KX|V = KV is
indeed trivial and therefore N∗FV is effective. This contradicts the vanishing of
H1(V,C). �

It follows that F is the pull-back of a foliation defined on Y . It is sufficient to
restrict our attention to the case X = Y in order to prove Theorem 10.1.

10.2. Automorphism group of X. Keeping the notation of Section 9.3.1, con-
sider the non-trivial effective divisor

∆ = (ω)∞ =
∑

λDD

Let us call Aut0(X) the connected component of the identity of Aut(X), the
group of biholomorphisms of X . We have a natural action of Aut(X) on Div(X)
compatible with the linear equivalence.

Lemma 10.4. For every g ∈ Aut0(X), g(∆) is linearly equivalent to ∆.

Proof. Following [6], there is a well defined a groups morphism

Aut0(X) → Pic0(X)

sending g to the class of g(∆)−∆.
In our context, there exists by assumption a flat line bundle L, arising from a

morphism ρ : π1(X) → C∗ and a holomorphic section σ of det(TX)⊗ L with ∆ as
zero divisor. This section lifts to a holomorphic section σ̃ of the anticanonical bundle
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of the universal covering X̃ such that h∗σ̃ = ρ(h)σ̃ for every covering transformation
h. Now, let us consider the lift ṽ of any holomorphic vector field v on X . For every
gt = etv in the one parameter subgroup generated by v, we get that g̃t := etṽ

commutes with every covering transformation h. Therefore

g̃t∗h∗σ̃ = h∗g̃t∗σ̃ = ρ(h)σ̃.

The meromorphic function F = σ̃
g̃t∗σ̃

descends to X as a meromorphic function f

such that (f)0 = ∆ and (f)∞ = gt(∆). �

The Cs-action induced by the splitting TX = S ⊕ S⊥ is determined by s com-
muting holomorphic vector fields v1, . . . , vs on X linearly independent everywhere.
Let us call G ∈ Aut0(X) the (non necessarily closed) subgroup determined by the
abelian Lie algebra spanned by v1, ..., vs and G be its Zariski closure in Aut0(X).

According to [45], there is an exact sequence of groups

1 → H → G→ Aut0(T )(= T ) → 1

where H is a linear algebraic group with Lie algebra h contained in the ideal of
holomorphic vectors field tangent to the rationally connected fibration.

Lemma 10.5. Up to replacing v1, ...., vs by v1+ξ1, ..., vs+ξs for suitable ξ1, ...., ξs ∈
h, one may assume that the natural action of G on P(|O(∆)|) is trivial.

Proof. Let ρ be the natural group morphism G → AutP(|O(∆)|). Remark that ρ
is well defined by virtue of lemma 10.4. We call ρ∗ the induced morphism at the
Lie algebra level.

Since T is a torus, every morphism T → ρ(G̃)/ρ(H) is trivial. It follows that
for every 1 ≤ i ≤ s, there exists ξi ∈ h such that ρ∗(vi) + ρ∗(ξi) = 0. The lemma
follows. �

Taking again a finite etale covering if necessary, one can assume that NF is
linearly equivalent to ∆, so the foliation is defined by a rational closed one form ω
such that (ω)0 = (0) and (ω)∞ = ∆. With the same arguments as previously, one
can prove the following lemma.

Lemma 10.6. One can moreover choose ξ1, ..., ξs in the previous lemma such that
G acts trivially on H0(X,Ω1 ⊗ O(∆)) (that is, the space of one rational form η
with (η)∞ ≤ ∆).

10.3. Proof of Theorem 10.1. Using the previous lemmata, we can assert that
ω is invariant under the action of G. Since ω is closed, for every v ∈ g := Lie(G)
we have ω(v) constant. Taking suitable linear combinations, one can assume that
ω(vi) = 0 for i = 1, ..., s− 1. There are two possibilities:

(1) h is non trivial, so there exists v ∈ h such that ω(v) = 1 (otherwise, F
would be uniruled) and we obtain (2), replacing vs by vs − ω(vs)v;

(2) h = {0} and in this case we obtain (3).

Theorem 10.1 follows. �

10.4. The canonical bundle of F is torsion. It is natural to enquire if the
flatness of KF implies that it is torsion. We are not aware of any example where
this is not the case, and we can prove this is the case under the assumptions of
Theorem 10.1.
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Corollary 10.7. Assume that the foliation F fulfills the hypothesis of Theorem
10.1. Then KX ≃ O(−∆) modulo torsion, so KF is actually a torsion line bundle.

Proof. First, observe that we can restrict to the case X = Y in the notation used
in §10.1. The universal covering π : Ỹ → Y has the form Ỹ = Cs × F and
covering transformations act as h(x, y) = (h1(x), h2(y)), where h1 is a translation
and h2 ∈ Aut(F ). We can also assume that h2 lies in the connected component of
the identity (see [6]).

Noticing that ∆ is G invariant (after a suitable modification described in the
previous lemmata), we can conclude that there exists on F an effective divisor ∆′

such that π−1(∆) = ∆′ × Cs, KF ≃ O(−∆′).
Let η a rational meromorphic volume form, expressed as a non trivial section of

KF ⊗O(∆′). Therefore
h∗2η = λh2η,

where λh2 ∈ C. If we take the Zariski closure in Aut(F ) of the group generated by
the second component of the deck transformations then, in case KF is not torsion,
we produce a holomorphic vector field in F such that Lvη = λη for a suitable
λ ∈ C∗. Since η has at least one pole of order 1, the corollary will be a consequence
of the lemma below. �

Lemma 10.8. Let M be a complex compact manifold of dimension n, v an holo-
morphic vector field and η a meromorphic section of the canonical bundle KM
with at least a pole of order one. Assume moreover there exists λ ∈ C such that
Lvη = λη. Then, λ = 0 (equivalently, (etv)

∗
η = η for every t ∈ C).

Proof. Let be D a simple pole of η and assume for a moment that D and only
intersects with normal crossings (η)∞ along simple poles. Then, there is a well
defined non zero residue α, in this context a n− 1 holomorphic form on D (see for
instance [3]). Let λt such that (etv)

∗
η = λtη; we get also

(etv)
∗
α = λtα

with the first term of the equality above making sense because v is necessarily
tangent to D. Using now that

∫
D
α ∧ α is invariant under small biholomorphisms

of D, we obtain that |λt| = 1, for all t ∈ C, hence λt = 1.
The general case can be reduced to the one treated above by taking a suitable

composition of blowing ups with smooth centers contained in the singular set of
(η)∞. �
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