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Abstract

We present a polynomial update time algorithm for the inductive inference of a large
class of context-free languages using the paradigm of positive data and a membership ora-
cle. We achieve this result by moving to a novel representation, called Contextual Binary
Feature Grammars (CBFGs), which are capable of representing richly structured context-
free languages as well as some context sensitive languages. These representations explicitly
model the lattice structure of the distribution of a set of substrings and can be inferred
using a generalisation of distributional learning. This formalism is an attempt to bridge
the gap between simple learnable classes and the sorts of highly expressive representations
necessary for linguistic representation: it allows the learnability of a large class of context-
free languages, that includes all regular languages and those context-free languages that
satisfy two simple constraints. The formalism and the algorithm seem well suited to nat-
ural language and in particular to the modeling of first language acquisition. Preliminary
experimental results confirm the effectiveness of this approach.

Keywords: grammatical inference, context-free language, positive data only, membership
queries

1. Introduction

In natural language processing, many applications require the learning of powerful gram-
matical models. One of the central concerns of generative linguistics is the definition of
an adequate formalism that needs to satisfy two different objectives. On the one hand,
such a formalism must be expressive enough to describe natural languages. On the other
hand, it has to be sufficiently constrained to be learnable from the sort of linguistic data
available to the child learner (Chomsky, 1986). In this context, there are two possible re-
search strategies. One is to take a descriptively adequate formalism such as Tree Adjoining
Grammars (Joshi and Schabes, 1997) or some other mildly context sensitive grammatical
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formalism and try to construct learning algorithms for that class. However, such a strategy
is unlikely to be successful because classes that are so powerful are difficult to handle from a
machine learning point of view. The other approach, which we adopt in this paper, consists
in switching to a formalism that is in some sense intrinsically learnable, and seeing whether
we can represent linguistically interesting formal languages in that representation.

Grammatical inference is the machine learning domain which aims at studying learn-
ability of formal languages. While many learnability results have been obtained for regular
languages (Angluin, 1987; Carrasco and Oncina, 1994), this class is not sufficient to cor-
rectly represent natural languages. The next class of languages to consider is the class
of context-free languages (CFL). Unfortunately, there exists no learnability results for the
whole class. This may be explained by the fact that this class relies on syntactic proper-
ties instead of intrinsic properties of the language like the notion of residuals for regular
languages (Denis et al., 2004). Thus, most of the approaches proposed in the literature
are either based on heuristics (Nakamura and Matsumoto, 2005; Langley and Stromsten,
2000) or are theoretically well founded but concern very restricted subclasses of context-free
languages (Eyraud et al., 2007; Yokomori, 2003; Higuera and Oncina, 2002). Some of these
approaches are built from the idea of distributional learning1, normally attributed to Harris
(1954). The basic principle – as we reinterpret it in our work – is to look at the set of
contexts that a substring can occur in. The distribution of a substring is the linguistic way
of referring to this set of contexts. This idea has formed the basis of many heuristic algo-
rithms for learning context-free grammars (see (Adriaans, 2002) for instance). However, a
recent approach by Clark and Eyraud (2007), has presented an accurate formalisation of
distributional learning. From this formulation, a provably correct algorithm for context-
free grammatical inference was given in the identification in the limit framework, albeit
for a very limited subclass of languages, the substitutable languages. From a more general
point of view, the central insight is that it is not necessary to find the non-terminals of the
context-free grammar (CFG): it is enough to be able to represent the congruence classes of
a sufficiently large set of substrings of the language and to be able to compute how they
combine. This result was extended to a PAC-learning result under a number of different
assumptions (Clark, 2006) for a larger class of languages, and also to a family of classes of
learnable languages (Yoshinaka, 2008).

Despite their theoretical bases, these results are still too limited to form the basis for
models for natural language. There are two significant limitations to this work: first it uses
a very crude measure for determining the syntactic congruence, and secondly the number
of congruence classes required will in real cases be prohibitively large. If each non-terminal
corresponds to a single congruence class (the NTS languages (Boasson and Senizergues,
1985)), then the problem may be tractable. However in general the contexts of different
non-terminals overlap enormously: for instance the contexts of adjective phrases and noun
phrases in English both contain contexts of the form (“it is”, “.”). Problems of lexical
ambiguity also cause trouble. Thus for a CFG it may be the case that the number of
congruence classes corresponding to each non-terminal may be exponentially large (in the

1. Note here that the word distributional does not refer to stochastic distributions, but to the occurrence

of strings into contexts. The distribution of a string corresponds to all the possible contexts in which

the string can appear.
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size of the grammar). But the situation in natural language is even worse: the CFG itself
may have an exponentially large number of non-terminals to start off with! Conventional
CFGs are simply not sufficiently expressive to be cognitively plausible representations of
natural language: to write a CFG requires a multiplication of the numbers of non-terminals
to handle phenomena like subject verb agreement, gender features, displaced constituents, etc.
This requires the use of a formalism like GPSG (Generalised Phrase Structure Grammar)
(Gazdar et al., 1985) to write a meta-grammar — a compact way of specifying a very
large CFG with richly structured non-terminals. Thus we cannot hope to learn natural
languages by learning one congruence class at a time: it is vital to use a more structured
representation.

This is the objective of the approach introduced in this article: for the first time, we
can bridge the gap between theoretically well founded grammatical inference methods and
the sorts of structured representations required for modeling natural languages.

In this paper, we present a family of representations for highly structured context-free
languages and show how they can be learned. This is a paper in learning, but superficially
it may appear to be a paper about grammatical representations: much of the work is done
by switching to a more tractable formalism, a move which is familiar to many in machine
learning. From a machine learning point of view, it is a commonplace that switching to a
better representation – for example, through a non-linear map into some feature space –
may make a hard problem very easy.

The contributions of this paper are as follows: we present in Section 3 a rich grammatical
formalism, which we call Contextual Binary Feature Grammars (CBFG). This grammar
formalism is defined using a set of contexts which play the role of features with a strict
semantics attached to these features. Though not completely original, since it is closely
related to a number of other formalisms such as Range Concatenation Grammars (Boullier,
2000), it is of independent interest. We consider then the case when the contextual features
assigned to a string correspond to the contexts that the string can occur in, in the language
defined by the grammar. When this property holds, we call it an exact CBFG. The crucial
point here is that for languages that can be defined by an exact CBFG, the underlying
structure of the representation relies on intrinsic properties of the language easily observable
on samples by looking at context sets.

The learning algorithm is defined in Section 4. We provide some conditions, both on
the context sets and the learning set, to ensure the learnability of languages that can be
represented by CBFG. We prove that this algorithm can identify in the limit this restricted
class of CBFGs from positive data and a membership oracle.

Some experiments are provided in Section 5: these experiments are intended to demon-
strate that even quite naive algorithms based on this are efficient and effective at learning
context-free languages.

Section 6 contains a theoretical study on the expressiveness of CBFG representations.
We investigate the links with the classical Chomsky hierarchy, some well known grammatical
representations used in natural language processing. An important result about the expres-
sive power of the class of CBFG is obtained: it contains all the context-free languages
and some non context-free languages. This makes this representation a good candidate
for representing natural languages. However exact CBFG do not include all context-free
languages but do include some non context-free ones, thus they are orthogonal with the

3



Clark, Eyraud and Habrard

classic Chomsky hierarchy and can represent a large class of languages. This expressiveness
is strengthened by the fact that exact CBFG contains most of the existing learnable classes
of languages.

2. Basic Definitions and Notations

We begin by some standard notations and definitions used all along the paper.
We consider a finite alphabet Σ as a finite non-empty set of symbols also called letters.

A string (also called word) u over Σ is a finite sequence of letters u = u1 · · ·un. Let |u|
denote the length of u. The set of all strings over Σ is denoted by Σ∗, corresponding to the
free monoid generated by Σ. λ denotes the empty string and Σ+ = Σ∗\{λ}. A language L
is any subset L ⊆ Σ∗.

We will write the concatenation of u and v as uv, and similarly for sets of strings. u ∈ Σ∗

is a substring of v ∈ Σ∗ if there are strings l, r ∈ Σ∗ such that v = lur. Define Sub(u) to be
the set of non-empty substrings of u. For a set of strings S define Sub(S) =

⋃

u∈S Sub(u).
A context is an element of Σ∗ × Σ∗. For a string u and a context f = (l, r) we write

f ⊙ u = lur; the insertion or wrapping operation. We extend this to sets of strings and
contexts in the natural way. We define by Con(w) = {(l, r)|∃u ∈ Σ+ : lur = w} i.e.
the set of all contexts of a word w. Similarly, for a set of strings, we define: Con(S) =
⋃

w∈S Con(w).
We give now a formal definition of the set of contexts since it represents a notion often

used in the paper.

Definition 1 The set of contexts, or context distribution, of a string u in a language L is,
CL(u) = {(l, r) ∈ Σ∗ × Σ∗|lur ∈ L}. We will often drop the subscript where there is no
ambiguity.

Definition 2 Two strings u and v are syntactically congruent with respect to a language
L, denoted u ≡L v, if and only if CL(u) = CL(v).

The equivalence classes under this relation are the congruence classes of the language.

After these basic definitions and notations, we recall here the definition of a context-free
grammar which is a class which is close to the language class studied in this paper.

Definition 3 A context-free grammar (CFG) is a quadruple G = (Σ, V, P, S). Σ is a finite
alphabet of terminal symbols, V is a set of non terminals s.t. Σ∩V = ∅, P ⊆ V × (V ∪Σ)+

is a finite set of productions, S ∈ V is the start symbol.

We denote a production of P : N → α with N ∈ V and α ∈ (V ∪ Σ)+. We will write

uNv ⇒G uαv if there is a production N → α in G.
∗
⇒G denotes the reflexive transitive

closure of ⇒G.
The language defined by a CFG G is L(G) = {w ∈ Σ∗|S

∗
⇒G w}. In the following, we

will consider the CFG are represented in the Chomsky normal form (CNF), i.e. with right
hand side of production rules composed of exactly two non terminals or with exactly one
terminal symbol.

In general we will assume that λ is not a member of any language.
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3. Contextual Binary Feature Grammars (CBFG)

Distributional learning, in our view, involves explicitly modeling the distribution of the
substrings of the language – we would like to model CL(w). Clearly a crucial element of
this distribution is the empty context (λ, λ): (λ, λ) ∈ CL(w) if and only if w ∈ L. Our goal
is to construct a representation that allows us to recursively compute a representation of
the distribution of a string w, CL(w), from the (representations of) the distributions of its
substrings.

The representation by contextual binary feature grammars relies on the inclusion relation
between sets of contexts of language L. In order to introduce this formalism, we propose,
for a start, to present some preliminary results on context inclusion. These results will
lead us to define a relevant representation for modeling these inclusion dependencies by the
notion of contextual binary feature grammars.

3.1 Preliminary Results about Context Inclusion

The objective of this section is to give some information about contexts that will help to
give an intuition about the representation. The basic insight behind CBFGs is that there
is a relation between the contexts of a string w and the contexts of its substrings. This is
given by the following trivial lemma:

Lemma 4 For any language L and for any strings u, u′, v, v′ if C(u) = C(u′) and C(v) =
C(v′), then C(uv) = C(u′v′).

Proof We write out the proof completely as the ideas will be used later on. Suppose
we have u, v, u′, v′ that satisfy the conditions. If (l, r) ∈ C(uv), then (l, vr) ∈ C(u) and
thus (l, vr) ∈ C(u′). As a consequence, (lu′, r) ∈ C(v) and then (lu′, r) ∈ C(v′) which
implies that (l, r) ∈ C(u′v′). Symmetrically, by using the same arguments, we can show
that (l, r) ∈ C(u′v′) implies (l, r) in C(uv). Thus C(uv) = C(u′v′).

This establishes that the syntactic monoid Σ∗/ ≡L is well-defined; from a learnability
point of view this means that if we want to compute the contexts of a string w we can look
for a split into two strings uv where u is congruent to u′ and v is congruent to v′; if we can
do this and we know how u′ and v′ combine, then we know that the contexts of uv will be
exactly the contexts of u′v′. There is also a slightly stronger result:

Lemma 5 For any language L and for any strings u, u′, v, v′ if C(u) ⊆ C(u′) and C(v) ⊆
C(v′), then C(uv) ⊆ C(u′v′).

Proof See proof of Lemma 4.

C(u) ⊆ C(u′) means that we can replace any occurrence in a sentence of u with a u′,
without affecting the grammaticality, but not necessarily vice versa. Note that none of these
strings need to correspond to non-terminals: this is valid for any fragment of a sentence.
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We will give a simplified example from English syntax: the pronoun “it” can occur
everywhere that the pronoun “him” can, but not vice versa2. Thus given a sentence “I gave
him away”, we can substitute “him” for ”it”, to get the grammatical sentence “I gave it
away”, but we cannot reverse the process. For example, given the sentence “it is raining”,
we cannot substitute “him” for “it”, as we will get the ungrammatical sentence “him is
raining”. Thus we observe C(him) ( C(it).

Looking at Lemma 5 we can also say that, if we have some finite set of strings K, where
we know the contexts, then:

Corollary 6 For any language L and for any set of strings K, we have:

C(w) ⊇
⋃

u′,v′:
u′v′=w

⋃

u∈K:
C(u)⊆C(u′)

⋃

v∈K:
C(v)⊆C(v′)

C(uv).

This is the basis of our representation: a word w is characterised by its set of contexts.
We can compute the representation of w, from the representation of its parts u′, v′, by
looking at all of the other matching strings u and v where we understand how they combine
(with subset inclusion). Rather than representing just the congruence classes, we will rep-
resent the lattice structure of the set of contexts using subset inclusion; sometimes called
Dobrušin-domination (Marcus, 1967).

The key relationships are given by context set inclusion. Contextual binary feature
grammars allow a proper definition of the combination of context inclusion.

3.2 Contextual Binary Feature Grammars

The formalism of contextual binary feature grammars has some resemblance with General-
ized Phrase Structure Grammar (GPSG) (Gazdar et al., 1985), and most importantly the
class of Range Concatenation Grammars (RCG) (Boullier, 2000); these relationships will be
detailed in Section 6. As we will see later, note that our formalism defines a class orthogonal
to the class of context-free grammars, indeed the use of subsets inclusion allows to model
non context-free languages (although not all the context-free languages can be represented).

Definition 7 A Contextual Binary Feature Grammar (CBFG) G is a tuple 〈F, P, PL,Σ〉:

• F is a finite set of contexts, (i.e. F ⊂ Σ∗×Σ∗) called features, where we write E = 2F

for the power set of F defining the categories of the grammar, and where (λ, λ) ∈ F .

• P ⊆ E ×E ×E is a finite set of productions that we write x→ yz where x, y, z ∈ E,

• PL ⊆ E × Σ is a set of lexical rules, written x→ a,

• Σ denotes the alphabet.

2. This example does not account for a number of syntactic and semantic phenomena, particularly the

distribution of reflexive anaphors.
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Given a CBFG G we can recursively define a function fG from Σ∗ → E as follows:

fG(λ) = ∅ (1)

fG(w) =
⋃

(c→w)∈PL

c iff |w| = 1 (2)

fG(w) =
⋃

u,v:uv=w

⋃

x→yz∈P :
y⊆fG(u)∧
z⊆fG(v)

x iff |w| > 1. (3)

Given a CBFG G and a string w it is possible to compute fG(w) in time O(|F ||P ||w|3)
using standard dynamic programming techniques. A straightforward modification of the
Cocke-Kasami-Younger algorithm for parsing Context-Free Grammars will suffice.

Thus a CBFG, G, defines for every string u a set of contexts fG(u): this will be a
representation of the context distribution. fG(u) will be a subset of F : we will want fG(u)
to approximate CL(u)∩F . The natural way to define the membership of a string w in L(G)
is to have the context (λ, λ) ∈ fG(w).

Definition 8 The language defined by a CBFG G is the set of all strings that are assigned
the empty context: L(G) = {u|(λ, λ) ∈ fG(u)}.

We give here more explanation about the function fG. A rule x → yz is applied to
analyse a string w if there is a split or cut of the string w into two strings u and v such
that uv = w s.t. y ⊆ fG(u) and z ⊆ fG(v) — recall that y and z are sets of features.

One way of viewing a production x→ yz is as an implication: if two strings u and v are
such that they have the features y and z, then their concatenation will have the features x.
As features correspond to contexts, intuitively, the relation given by the production rule is
linked with Lemma 5: x is included in the set of features of w = uv. From this relationship,
for any (l, r) ∈ x we have lwr ∈ L(G).

The complete computation of fG is then justified by Corollary 6: fG(w) defines all the
possible contextual features associated by G to w with all the possible cuts uv = w (i.e. all
the possible derivations).

Note the relation between the third clause above and Corollary 6. In general we will
apply more than one production at each step of the analysis.

We will discuss the relation between this class and the class of CFGs in some detail
in Section 6. For the moment, we will just make the following points. First, the repre-
sentation is quite close to that of a CFG where the non-terminals correspond to sets of
contexts (subsets of F ). There are, however, crucial differences: the very fact that they are
represented by sets means that the non-terminals are no longer atomic symbols but rather
structures; the formalism can combine different rules together at each step. Secondly, the
function fG can aggregate different trees together. It is not the case that every feature
assigned to w must come from the same split of w into u and v. Rather some features could
come from one split, and some from another: these two sets of features can be combined
in a single derivation even though they come from different trees. It is this property that
takes the class of languages out of the class of context-free languages. In the special case
where all of the productions involve only singleton sets then this will reduce to a CFG —
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the non-terminals will correspond to the individual features, and fG(w) will correspond to
the set of non-terminals that can derive the string w.

Clearly by the definition of L(G) we are forcing a correspondence between the occurrence
of the context (λ, λ) in CL(w) and the occurrence of the feature (λ, λ) in fG(w). But ideally
we can also require that fG defines exactly the possible features that can be associated to a
given string according to the underlying language. Indeed, we are interested in cases where
there is a correspondence between the language theoretic interpretation of a context, and
the occurrence of that context as a feature in the grammar: in this case the features will
be observable which will lead to learnability.

This is formalised via the following definitions.

Definition 9 Given a finite set of contexts F = {(l1, r1), . . . , (ln, rn)} and a language
L we can define the context feature function FL : Σ∗ → 2F which is just the function
u 7→ {(l, r) ∈ F |lur ∈ L} = CL(u) ∩ F .

Using this definition, we now need a correspondence between the language theoretic
context feature function FL and the representation in our CBFG, fG.

Definition 10 A CBFG G is exact if for all u ∈ Σ∗, fG(u) = FL(G)(u).

Example. Let L = {anbn|n > 0}. Let 〈F, (λ, λ), P, PL,Σ〉 a CBFG s.t.
F = {(λ, λ), (a, λ), (aab, λ), (λ, b), (λ, abb)}. The lexical productions in PL are:
{(λ, b), (λ, abb)} → a and {(a, λ), (aab, λ)} → b. Note that these lexical productions are
of the form x → a, where x is a subset of F , that is to say, a set of features. The
rule {(λ, b), (λ, abb)} → a therefore says that the letter a will be assigned both of the
features/contexts (λ, b) and (λ, abb). Since this is the only lexical rule for a, we will have that
fG(a) = {(λ, b), (λ, abb)}. The productions in P , denoted by x→ yz, where x, y, z are again
sets of contexts, are defined as: {(λ, λ)} → {(λ, b)}{(aab, λ)}, {(λ, λ)} → {(λ, abb)}{(a, λ)},
{(λ, b)} → {(λ, abb)}{(λ, λ)}, {(a, λ)} → {(λ, λ)}{(aab, λ)}.

In each of these rules, in this trivial case, the sets of contexts are singleton sets. In
general, these productions may involve sets that have more than one element. This defines
an exact CBFG for L. Indeed, the grammar assigns only (λ, λ) to the elements of the
language; for all elements w of {anbn+1 : n > 1} we have fG(w) = {(a, λ)} = FL(w) and for
all all elements w of {an+1bn : n > 1}, fG(w) = {(λ, b)} = FL(w); The lexical rules assign
correct contexts to each letter.

Exact CBFGs are a more limited formalism than CBFGs themselves; without any limits
on the interpretation of the features, we can define a class of formalisms that is equal to
the class of Conjunctive Grammars (see Section 6.2.3). However, exactness is an important
property because it allows to associate the intrinsic structure of a language to the structure
of the representation. Contexts are easily observable from a sample and moreover it is only
when the features correspond to the contexts that distributional learning algorithms can
infer the structure of the language.

8
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a         a         b         b

f
G

{(λ,b),(λ,abb)} {(λ,b),(λ,abb)} {(a,λ),(aab,λ)} {(a,λ),(aab,λ)}

f
G

f
G

f
G

Rule: (λ,λ) → (λ,b) (aab,λ)

f
G
(ab)  Ù {(λ,λ)}

Rule: (a,λ) → (λ,λ) (aab,λ)

f
G
(abb)  Ù {(a,λ)}

Rule: (λ,λ) → (λ,abb) (a,λ)

f
G
(aabb)  Ù {(λ,λ)}

f G

{(λ,b),(λ,abb)} {(λ,b),(λ,abb)} {(a,λ),(aab,λ)} {(a,λ),(aab,λ)}

f G f G f G

Rule: (λ,λ) → (λ,abb) (a,λ)

f
G
(ab)  Ù {(λ,λ)}

Rule: (λ,b) → (λ,abb) (λ,λ)

f
G
(aab)  Ù {(λ,b)}

Rule: (λ,λ) → (λ,b) (aab,λ)

f
G
(aabb)  Ù {(λ,λ)}

Figure 1: The two derivations to obtain (λ, λ) in fG(aabb) in the grammar G.

3.3 A Parsing Example

To clarify the relationship with CFG parsing, we will give a simple worked example. Con-
sider the CBFG G = 〈{(λ, λ), (aab, λ), (λ, b), (λ, abb), (a, λ)}, P, PL, {a, b}〉 with

PL = { {(λ, b), (λ, abb)} → a,
{(a, λ), (aab, λ)} → b }.

and P = { {(λ, λ)} → {(λ, b)}{(aab, λ)},
{(λ, λ)} → {(λ, abb)}{(a, λ)},
{(λ, b)} → {(λ, abb)}{(λ, λ)},
{(a, λ)} → {(λ, λ)}{(aab, λ)} }.

If we want to parse a string w the usual way is to have a bottom-up approach. This
means that we recursively compute the fG function on the substrings of w in order to check
whether (λ, λ) belongs to fG(w).

For example, suppose w = aabb. Figure 1 graphically gives the main steps of the
computation of fG(aabb). Basically there are two ways to split aabb that allow the derivation
of the empty context: aab|b and a|abb. The first one corresponds to the top part of the figure
while the second one is drawn at the bottom. We can see for instance that the empty context
belongs to fG(ab) thanks to the rule {(λ, λ)} → {(λ, abb)}{(a, λ)}: {(λ, abb)} ⊆ fG(a) and
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{(a, λ)} ⊆ fG(b). But for symmetrical reasons the result can also be obtained using the rule
{(λ, λ)} → {(λ, b)}{(aab, λ)}.

As we trivially have fG(aa) = fG(bb) = ∅, since no right-hand side contains the
concatenation of the same two features, an induction proof can be written to show that
(λ, λ) ∈ fG(w)⇔ w ∈ {anbn : n > 0}.

This is a simple example that illustrates the parsing of a string given a CBFG. This
example does not fully express the power of CBFG since no element of the right hand side
of a rule is composed of more than one context. A more complex example, corresponding
to a context-sensitive language, will be presented in Section 6.1.3.

We stop here the presentation of the CBFG formalism and we present our learning
algorithm in the next section. However, if the reader wishes to become more familiar with
CBFGs a study on their expressiveness is provided in Section 6.

4. Learning Algorithm

We have carefully defined the representation so that the inference algorithm will be almost
trivial. Given a set of strings, and a set of contexts, we can simply write down a CBFG
that will approximate a particular language.

4.1 Building CBFGs from Sets of Strings and Contexts

Definition 11 Let L be a language, F be a finite set of contexts such that (λ, λ) ∈ F ,
K a finite set of strings, PL = {FL(u) → u|u ∈ K ∧ |u| = 1} and P = {FL(uv) →
FL(u)FL(v)|u, v, uv ∈ K}. We define G0(K, L, F ) as the CBFG 〈F, P, PL,Σ〉.

Often K will be closed under substrings: i.e. Sub(K) = K. This grammar is a CBFG,
since K and F are finite, and so P and PL are too by construction. In general it will not
be exact.

We will call K here the basis for the language. The set of productions is defined merely
by observation: we take the set of all productions that we observe as the concatenation of
elements of the small set K.

Let us explain the construction in more detail. PL is the set of lexical productions –
analogous to rules of the form N → a in a CFG in Chomsky normal form. These rules just
assign to the terminal symbols their observed distribution – this will obviously be correct
in that fG(a) = FL(a). P is the interesting set of productions: these allow us to predict
the features of a string uv from the features of its part u and v. To construct P we take all
triples of strings u, v, uv that are in our finite set K. We observe that u has the contexts
FL(u) and v has the set of contexts FL(v): our rule then states that we can combine any
string that has all of the contexts in FL(u) together with any string that has the contexts
in FL(v) and the result will have all of the contexts in FL(uv).

We will now look at a simple example. Let L = {anbn | n > 0}, F , the set of features is
{(λ, λ), (a, λ), (λ, b)} and K, the basis, is {a, b, ab, aa, aab}. For each of the elements of K
we can compute the set of features that it has:

• FL(a) is just {(λ, b)} – this is the only one of the three contexts in F such that
f ⊙ a ∈ L.

10
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• FL(b) = {(a, λ)}

• FL(aa) = ∅

• FL(ab) = {(λ, λ)}

• FL(aab) = {(λ, b)}.

G0 will therefore have the following lexical productions PL = {(λ, b)} → a, {(a, λ)} → b.
We can now consider the productions in P . Looking at K we will see that there are only
four possible triples of strings of the form uv, u, v: these are (aa, a, a), (ab, a, b), (aab, aa, b)
and (aab, a, ab). Each of these will give rise to an element of P :

• The rule given by ab = a ◦ b: {(λ, λ)} → {(λ, b)}{(a, λ)},

• aa = a ◦ a gives ∅ → {(λ, b)}{(λ, b)},

• aab = aa ◦ b gives {(λ, b)} → ∅{(a, λ)},

• aab = a ◦ ab gives {(λ, b)} → {(λ, b)}{(λ, λ)}.

Given K, F and an oracle for L we can thus simply write down a CBFG. However, in
this case, the language L(G0) is not the same as L; moreover, the resulting grammar is not
exact. Applying the rules for the recursive computation of fG, we can see that fG0

(aab) =
{(λ, b)} and fG0

(abb) = fG0
(aabb) = {(λ, b), (λ, λ)} but FL(G0)(abb) = {(a, λ), (λ, b), (λ, λ)}

and thus G0 is not exact. The problem here is caused by the fact that the production
{(λ, b)} → ∅{(a, λ)} allows any string to occur in the place specified by the ∅: indeed since
∅ ⊆ fG0

(aab) and {(a, λ)} ⊆ fG0
(b) the rule holds for aabb and thus {(λ, b)} ⊆ fG0

(aabb).
This is actually caused by the fact that there are no contexts in F that correspond to the
string aa in K.

Fixing L for the moment, clearly the language defined depends on two factors: the set
of strings K and the set of features F . Given K and F , and access to a membership oracle,
we can write down a CBFG with almost no computation, but we still have the problem of
finding suitable K and F – it might be that searching for exactly the right combination of
K and F is intractably hard. It turns out that it is also very easy to find suitable sets.

In the next section we will establish two important lemmas that show that the search
for K and F is fundamentally tractable: first, that as K increases the language defined by
G0(K, L, F ) will increase, and secondly that as F increases the language will decrease.

Let us consider one example that illustrates these properties. Consider the language
L = {anb | n ≥ 0} ∪ {bam | m ≥ 0} ∪ {a}.

First, let K = {a, b, ab} and F = {(λ, λ)}; then, by the definition of G0, we have the
following productions:

• {(λ, λ)} → a

• {(λ, λ)} → b

11
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• {(λ, λ)} → {(λ, λ)}{(λ, λ)}.

It is easy to see that L(G0) = Σ+.
Now, suppose that F = {(λ, λ), (λ, b)} with K unchanged; then, by construction G0 will

have the following productions:

• {(λ, λ), (λ, b)} → a,

• {(λ, λ)} → b,

• {(λ, λ)} → {(λ, λ), (λ, b)}{(λ, λ)}.

The language defined by G0 contains anb and also an since {(λ, λ)} ⊂ {(λ, λ), (λ, b)} allowing
the third production to accept strings ending with an a. Thus, the language has been
reduced such that L(G0) = {anb | n ≥ 0} ∪ {am | m ≥ 0}.

We continue by leaving F = {(λ, λ), (λ, b)} and we enlarge K such that K = {a, b, ab, ba}.
The productions in G0 are:

• {(λ, λ), (λ, b)} → a,

• {(λ, λ)} → b,

• {(λ, λ)} → {(λ, λ), (λ, b)}{(λ, λ)}; the rule given by ab = a ◦ b,

• {(λ, λ)} → {(λ, λ)}{(λ, λ), (λ, b)}; the rule given by ba = b ◦ a.

The addition of the last rule allows the grammar to recognize ban and it can be easily
shown that by a combination of the last two productions anbam belongs to the language
defined by the grammar. Then, L(G0) has been increased such that L(G0) = {anbak |
n, k ≥ 0} ∪ {am | m ≥ 0}.

In this example, the addition of (λ, b), (a, λ) and (λ, a) to F and the addition of aab and
baa to K will then define the correct language. In fact this illustrates one principle of our
approach: in the infinite data limit, the construction G0 will define the correct language.
In the following lemma we abuse notation and use G0 for when we have infinite K, and F :
in this lemma we let K be the set of all non-empty strings and we let F be the set of all
possible contexts (Σ∗ × Σ∗). Recall that in this case for every string w CL(w) = FL(w).

Lemma 12 For any language L, let G = G0(Σ
+, L,Σ∗ × Σ∗). Then for all w ∈ Σ+

fG(w) = CL(w) and therefore L(G) = L.

Proof By induction on the length of w. If |w| = 1, and w = a then there is a lexi-
cal production CL(a) → a and by the definition of fG(a) = CL(a). Suppose this is true
for all w with |w| ≤ k. Let w be some string of length k + 1. Consider any split of w
into u, v such that w = uv. fG(w) is the union over all these splits of a function. We
will show that every such split will give the same result of CL(w). By inductive hypoth-
esis fG(u) = CL(u), fG(v) = CL(v). Since u, v, w are in K = Σ+ we will also have an
element of P of the form CL(w) → CL(u)CL(v), so we know that fG(w) ⊇ FL(w). We
now show that fG will not predict any extra contexts. Consider every production in P ,
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FL(u′v′) → FL(u′)FL(v′), that applies to u, v, i.e. with FL(u′) ⊆ fG(u) = CL(u) and
FL(v′) ⊆ fG(v) = CL(v). Lemma 5 shows that in this case FL(u′v′) ⊆ FL(w) and thus we
deduce that fG(w) ⊆ FL(w), which establishes the lemma.

Informally if we take K to be every string and F to be every context, then we can
accurately define any language. Of course, we are just interested in those cases where this
can be defined finitely and we have a CBFG, in which case L will be decidable, but this
infinite limit is a good check that the construction is sound.

4.2 Monotonicity Lemmas

We now prove two lemmas that show that the size of the language, and more particularly
the features predicted will increase or decrease monotonically as a function of the basis K,
and the feature set F , respectively. In fact, they give also a framework for approaching a
target language from K and F .

Lemma 13 Suppose we have two CBFGs defined by G = G0(K, L, F ) and G′ = G0(K, L, F ′)
where F ⊆ F ′. Then for all u, fG(u) ⊇ fG′(u) ∩ F .

Proof Let G′ have a set of productions P ′, P ′
L, and G have a set of productions P, PL.

Clearly if x → yz ∈ P ′ then x ∩ F → (y ∩ F )(z ∩ F ) is in P by the definition of G0, and
likewise for PL, P ′

L. By induction on |u| we can show that any feature in fG′(u)∩F will be
in fG(u). The base case is trivial since F ′

L(a) ∩ F = FL(a); if it is true for all strings up to
length k, then if f ∈ fG′(u) ∩ F ; there must be a production in F ′ with f on the head. By
the inductive hypothesis, the right hand sides of the corresponding production in P will be
triggered, and so f must be in fG(u).

Corollary 14 Suppose we have two CBFGs defined by G = G0(K, L, F ) and G′ = G0(K, L, F ′)
where F ⊆ F ′; then L(G) ⊇ L(G′).

Proof It is sufficient to remark that if u ∈ L(G′) then (λ, λ) ∈ fG′(u) ⊆ fG(u) and thus
u ∈ L(G).

Conversely, we can show that as we increase K, the language and the map fG will
increase. This is addressed by the next lemma.

Lemma 15 Suppose we have two CBFGs defined by G = G0(K, L, F ) and G′ = G0(K
′, L, F )

where K ⊆ K ′. Then for all u, fG0(K,L,F )(u) ⊆ fG0(K′,L,F )(u).

Proof Clearly the sets of productions of G0(K, L, F ) will be a subset of the set of produc-
tions of G0(K

′, L, F ), and so anything that can be derived by the first can be derived by
the second, again by induction on the length of the string.

A simple result is that when K contains all of the substrings of a word, then G0(K, L, F )
will generate all of the correct features for this word.
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Lemma 16 For any string w, if Sub(w) ⊂ K, and let G = G0(K, L, F ), then FL(w) ⊆
fG(w).

Proof By recursion on the size of w. Let G = G0(K, L, F ) = 〈F, P, PL, Σ〉. First, notice
that if w is of length 1 then we have FL(w) → w in PL and thus the lemma holds. Then
suppose that |w| = k ≥ 2. Let u and v in Σ+ be such that w = uv. As Sub(w) ⊂ K we
have u, v in K. Therefore the rule FL(w) → FL(u)FL(v) belongs to P . As |u| < |w| and
|v| < |w|, by recursion we get FL(u) ⊆ fG(u) and FL(v) ⊆ fG(v). Thus the rule can be
applied and then FL(w) ⊆ fG(w).

In particular if w ∈ L, and Sub(w) ⊆ K, then w ∈ L(G). This means that we can easily
increase the language defined by G just by adding Sub(w) to K. In general we do not need
to add every element of Sub(w) – it is enough to have one binary bracketing.

To establish learnability, we need to prove that for a target language L, if we have a
sufficiently large F then L(G0(K, L, F )) will be contained within L and that if we have a
sufficiently large K, then L(G0(K, L, F )) will contain L.

4.3 Fiducial Feature Sets and Finite Context Property

We need to be able to prove that for any K if we have enough features then the language
defined will be included within the target language L. We formalise the idea of having
enough features in the following way:

Definition 17 For a language L and a string u, a set of features F is fiducial on u if for
all v ∈ Σ∗, FL(u) ⊆ FL(v) implies CL(u) ⊆ CL(v).

Note that if F is fiducial on u and F ⊂ F ′ then F ′ is fiducial on u. Therefore we can
naturally extend this to sets of strings.

Definition 18 For a language L and a set of strings K, a set of features F is fiducial on
K if for all u ∈ K, F is fiducial on u.

Clearly, for any string w, CL(w) will be fiducial on w; but this is vacuous – we are
interested in cases where there is a finite set of contexts which is fiducial for w, but where
CL(w) is infinite. If u and v are both in K then having the same features means they are
syntactically congruent. However if two strings, neither of which are in K, have the same
features this does not mean they are necessarily congruent (for instance if FL(v) = FL(v′) =
∅). For non finite state languages, the set of congruence classes will be infinite, and thus
we cannot have a finite fiducial set for the set of all strings in Sub(L), but we can have a
feature set that is correct for a finite subset of strings, or more generally for an infinite set
of strings, if they fall into a finite number of congruence classes.

Let us consider our running example L = {anbn|n > 0}. Take the string ab. CL(ab) is
infinite and contains contexts of the form (λ, λ), (a, b), (aa, bb) and so on. Consider a set
with just one of these contexts, say F = {(a, b)}. This set is clearly fiducial for ab, since
the only strings that will have this context are those that are congruent to ab. Consider
now the string aab; clearly {(λ, b)} is fiducial for aab, even though the string a, which is not

14



Using Contextual Representations

congruent to aab also occurs in this context. Indeed, this does not violate fiduciality since
CL(a) ⊃ CL(aab). However, looking at string a, {(λ, b)} is not fiducial, since aab has this
context but does not include all the contexts of a such as, for example, (λ, abb).

In these trivial examples, a context set of cardinality one is sufficient to be fiducial, but
this is not the case in general. Consider the finite language L = {ab, ac, db, ec, dx, ey}, and
the string a. It has two contexts (λ, b) and (λ, c) neither of which is fiducial for a on its
own. However, the set of both contexts is: {(λ, b), (λ, c)} is fiducial for a.

We now define the finite context property, which is one of the two conditions that
languages must satisfy to be learnable in this model; this condition is a purely language
theoretic property.

Definition 19 A language L has the Finite Context Property (FCP) if every string has a
finite fiducial feature set.

Clearly if L has the FCP, then any finite set of substrings, K, has a finite fiducial
feature set which will be the union of the finite fiducial feature sets for each element of K.
If u 6∈ Sub(L) then any set of features is fiducial since CL(u) = ∅.

We note here that all regular languages have the FCP. We refer the reader to the
Section 6.1.1 about CBFG and regular languages where the Lemma 35 and the associated
construction proves this claim.

We can now state the most important lemma: this lemma links up the definition of the
feature map in a CBFG, with the fiducial set of features to show that only correct features
will be assigned to substrings by the grammar. It states that the features assigned by the
grammar will correspond to the language theoretic interpretation of them as contexts.

Lemma 20 For any language L, given a set of strings K and a set of features F , let
G = G0(K, L, F ). If F is fiducial on K, then for all w ∈ Σ∗ fG(w) ⊆ FL(w).

Proof We proceed by induction on length of the string. Base case: strings of length 1.
fG(w) will be the set of observed contexts of w, and since we have observed these contexts,
they must be in the language. Inductive step: let w a string of length k.

Take a feature f on fG(w); by definition this must come from some production x→ yz
and a split u, v of w. The production must be from some elements of K, u′, v′ and u′v′

such that y = FL(u′), z = FL(v′) and x = FL(u′v′). If the production applies this means
that FL(u′) = y ⊆ fG(u) ⊆ FL(u) (by inductive hypothesis), and similarly FL(v′) ⊆ FL(v).
By fiduciality of F this means that C(u′) ⊆ C(u) and C(v′) ⊆ C(v). So by Lemma 5
C(u′v′) ⊆ C(uv). Since f ∈ C(u′v′) then f ∈ C(uv) = C(w). Therefore, since f ∈ F and
C(w) ∩ F = FL(w), f ∈ FL(w), and therefore fG(w) ⊆ FL(w).

Corollary 21 If F is fiducial on K then L(G0(K, F, L)) ⊆ L.

Therefore for any finite set K from an FCP language, we can find a set of features so
that the language defined by those features on K is not too big.
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4.4 Kernel and Finite Kernel Property

We will now show a complementary result, namely that for a sufficiently large K the lan-
guage defined by G0 will include the target language. We will start by formalising the idea
that a set K is large enough, by defining the idea of a kernel.

Definition 22 A finite set K ⊆ Σ∗ is a kernel for a language L, if for any set of features
F , L(G0(K, F, L)) ⊇ L.

Consider again the language L = {anbn|n ≥ 0}. The set K = {a, b, ab} is not a kernel,
since if we have a large enough set of features, then the language defined will only be {ab}
which is a proper subset of L. However K = {a, b, ab, aab, abb, aabb} is a kernel: no matter
how large a set of features we have the language defined will always include L. Consider a
language L′ = L ∪ {b16}. In this case, a kernel for L′ must include, as well as a kernel for
L, some set of substrings of b16: it is enough to have b16, b8, b4, bb, b.

To prove that a set is a kernel, it suffices to show that if we consider all the possible
features for building the grammar, we will contain the target language; any smaller set
of features defines then a larger language. In our case, we can take the infinite set of all
contexts and define productions based on the congruence classes. If F is the set of all
contexts then we have FL(u) = CL(u), thus the productions will be exactly of the form
C(uv)→ C(u)C(v). This is a slight abuse of notation since feature sets are normally finite.

Lemma 23 Let F = Σ∗ × Σ∗; if L(G0(K, L, F )) ⊇ L then K is a kernel.

Proof By monotonicity of F : any finite feature set will be a subset of F .

Not all context-free languages will have a finite kernel. For example L = {a+} ∪
{anbm|n < m} is clearly context-free, but does not have a finite kernel. Assume that
the set K contains all strings of length less than or equal to k. Assume w.l.o.g. that the
fiducial set of features for K includes all features (λ, bi), where i ≤ k + 1. Consider the
rules of the form FL(ak)→ FL(aj)FL(ak−j); we can see that no matter how large k is, the
derived CBFG will undergenerate as ak is not congruent to ak−1.

Definition 24 A context-free grammar GT = 〈V, S, P,Σ〉 has the Finite Kernel Property
(FKP) iff for every non-terminal N ∈ V there is a finite set of strings K(N) such that

a ∈ K(N) if a ∈ Σ and N → a ∈ P and such that for all k ∈ K(N), N
∗
⇒ k and where for

every string w ∈ Σ∗ such that N
∗
⇒ w there is a string k ∈ K(N) such that C(k) ⊆ C(w).

A CFL L has the FKP, if there is a grammar in CNF for it with the FKP.

Notice that all regular languages have the FKP since they have a finite number of
congruence classes.

Lemma 25 Any context-free language with the FKP has a finite kernel.

Proof Let GT = 〈V, S, P,Σ〉 be such a CNF CFG with the FKP. Define

K(GT ) =
⋃

N∈V

(

K(N) ∪
⋃

X→MN∈P

K(M)K(N)

)

. (4)
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We claim that K(GT ) is a kernel. Assume that F = Σ∗ × Σ∗ and let G be such that
G = G0(K(GT ), L(GT ), F ) = 〈F, (λ, λ), P, PL,Σ〉.

We will show, by induction on the length of derivation of w in GT , that for all N, w if
N

∗
⇒ w then there is a k in K(N) such that fG(w) ⊇ C(k). If length of derivation is 1,

then this is true since |w| = 1 and thus w ∈ K(N): therefore C(w)→ w ∈ PL. Suppose it

is true for all derivations of length less than j. Take a derivation of length j; say N
∗
⇒ w.

There must be a production in GT of the form N → PQ, where P ⇒∗ u and Q ⇒∗ v,
and w = uv. By inductive hypothesis; we have fG(u) ⊇ C(ku) and fG(v) ⊇ C(kv). By
construction kukv ∈ K(GT ) and then there will be a rule C(kukv) → C(ku)C(kv) in P .

Therefore fG(uv) ⊇ C(kukv). Since N
∗
⇒ kukv there must be some kuv ∈ K(N) such that

C(kuv) ⊆ C(kukv). Therefore fG(w) ⊇ C(kukv) ⊇ C(kuv).

Now we can see that if w ∈ L, then S
∗
⇒ w, then there is a k ∈ K(S) such that

fG(w) ⊇ C(k) and S
∗
⇒ k, therefore (λ, λ) ∈ fG(w) since (λ, λ) ∈ C(k), thus w ∈ L(G) and

therefore K is a kernel.

4.5 Learning Algorithm

Before we present the algorithm, we will discuss the learning model that we use. The
class of languages that we will learn is suprafinite and thus we cannot get a positive data
only identification in the limit result (Gold, 1967). Ultimately we are interested in a more
realistic probabilistic learning paradigm, but for mathematical convenience it is appropriate
to establish the basic results in a symbolic paradigm. The ultimate goal is to model natural
languages, where negative data, or equivalence queries are generally not available or are
computationally impossible. Accordingly, we have decided to use the model of positive
data together with membership queries: an oracle can tell the learner whether a string is
in the language or not (Angluin, 1988). The presented algorithm runs in time polynomial
in the size of the sample S: since the strings are of variable length, this size must be
the sum of the lengths of the strings in S,

∑

w∈S |w|. We should note that this is not
a strong enough result: Pitt (1989) showed that any algorithm can be made polynomial,
by only processing a small prefix of the data. It is hard to tighten the model sufficiently:
the suggestion of de la Higuera (1997) for a polynomial characteristic set is inapplicable for
representations, such as the ones in this paper, that are powerful enough to define languages
whose shortest strings are exponentially long. Accordingly we do not require in this model
a polynomial dependence on the size of the representation. We note that the situation is
unsatisfactory, but we do not intend to propose a solution in this paper. We merely point
out that the algorithm is genuinely polynomial and processes all of the data in the sample
without “delaying tricks” of the type discussed by Pitt.

Definition 26 A class of languages L is identifiable in the limit (IIL) from positive data
and a membership oracle with polynomial time and queries iff there exist two polynomials
p(), q() and an algorithm A such that:

• Given an infinite presentation of positive examples S, where Sn is the first n examples
of the presentation, and Sn has total size m,
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1. A returns a representation G = A(Sn) in time p(m).

2. A asks at most q(m) queries to build A(Sn).

• For each language L ∈ L, for each presentation S of L, there exists an index n such
that for all N ≥ n: A(SN ) = A(Sn) and L(A(Sn)) = L.

K

F

K0

Overgeneral

Correct

Undergeneral

Wrong

Figure 2: The relationship between K and F : The diagonal line is the line of fiduciality:
above this line means that F is fiducial on K. K0 is a kernel for the language.

Before we present the algorithm we hope that it is intuitively obvious how the approach
will work. Figure 2 diagrammatically shows the relationship between K and F . When we
have a large enough K, we will be to the right of the vertical line; when we have enough
features for that K we will be above the diagonal line. Thus the basis of the algorithm is
to move to the right, until we have enough data, and then to move up vertically, increasing
the feature set until we have a fiducial set.

We can now define our learning algorithm in Algorithm 1. Informally, D is the list of
all strings that have been seen so far and Gn is the current grammar obtained with the first
n strings of D. The algorithm uses two tests: one test is just to determine if the current
hypothesis undergeneralises. This is trivial, since we have a positive presentation of the
data, and so eventually we will be presented with a string in L \ L(Gn). In this case we
need to increase K; we accordingly increase K to the set of all substrings that we have
observed so far. The second test is a bit more delicate. We want to detect if our algorithm
overgeneralises. This requires us to search through a polynomially bounded set of strings
looking for a string that is in L(Gn) \ L. An obvious candidate set is Con(D) ⊙ Sub(D);
but though we conjecture that this is adequate, we have not yet been able to prove that is
correct, as it might be that the overgenerated string does not lie in Con(L)⊙ Sub(L).
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Here we use a slightly stricter criterion: we try to detect whether F is fiducial for K:
we search through a polynomially bounded set of strings, Sub(D), to find a violation of the
fiduciality condition. If we find such a violation, then we know that F is not fiducial for K,
and so we increase F to the set of all contexts that we have seen so far, Con(D).

In Algorithm 1, G0(K,O, F ) denotes the same construction as G0(K, L, F ), except that
we use membership queries with the oracle O to compute FL for each element in K. We
give the identification in the limit version of the algorithm, i.e. that admits an infinite
positive presentation of strings in input.

Algorithm 1: CBFG learning algorithm IIL

Data: A sequence of strings S = {w1, w2 . . . , }, membership oracle O
Result: A sequence of CBFGs G1, G2, . . .
K ← ∅ ; D ← ∅ ; F ← {(λ, λ)} ; G = G0(K,O, F ) ;
for wi do

D ← D ∪ {wi}; C ← Con(D); S ← Sub(D);
if ∃w ∈ D \ L(G) then

K ← S ; F ← C ;
end

else if ∃v ∈ S, u ∈ K, f ∈ C such that FL(u) ⊆ FL(v) and f ⊙ u ∈ L but
f ⊙ v 6∈ L then

F ← C ;
end

G = G0(K,O, F ) ;
Output Gi = G ;

end

Theorem 27 Algorithm 1 runs in polynomial time in the size of the sample, and makes a
polynomial number of calls to the membership oracle.

Proof The value of D will just be the set of observed strings; Sub(D) and Con(D) are
both polynomially bounded by the size of the sample, and therefore so are |K| and |F |.
Therefore the number of calls to the oracle is clearly polynomial, as it is bouned by |K||F |.
Computing G0 is also polynomial, since |P | ≤ |K|2, and all strings involved are in Sub(D).

4.6 Identification in the limit result

In the following, we consider the class of context-free languages having the FCP and the
FKP, represented by CBFG. Kn denotes the value of K at the nth loop, and similarly for
F , D.

Definition 28 LCFG is the class of all context-free languages that satisfy the FCP and the
FKP.

In what follows we assume that L is an element of this class, and that w1, . . . , wn, . . . is
a infinite presentation of the language. The proof is straightforward and merely requires an
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analysis of a few cases. We will proceed as follows: there are 4 states that the model can
be in, that correspond to the four regions of the diagram in Figure 2.

1. K is a kernel and F is fiducial for K; in this case the model has converged to the
correct answer. This is the region labeled correct in Figure 2.

2. K is a kernel and F is not fiducial for K: then L ⊆ L(G), and at some later point, we
will increase F to a fiducial set, and we will be in state 1: this is the region labeled
overgeneral.

3. K is not a kernel and F is fiducial. Either L(G) = L, in which case we have converged
to a correct answer or, if not, we will define a proper subset of the target language. In
the later case we will change hypothesis at some later point, increase K to a kernel,
and move to state 2 or state 1. This is the area labeled undergeneral.

4. K is not a kernel and F is not fiducial: in this case at some point we will move to
states 1 or 2. This is the area labeled wrong.

We will start by making some basic statements about properties of the algorithm:

Lemma 29 If there is some n, such that Fn is fiducial for Kn and L(Gn) = L, then the
algorithm will not change its hypothesis: i.e. for all n > N , Kn = KN , Fn = FN and
therefore Gn = GN .

Proof If L(Gn) is correct, then the first condition of the loop will never be met; if Fn is
fiducial for Kn, then the second condition will never be satisfied.

Lemma 30 If there is some N such that KN is a kernel, then for all n > N , Kn = KN .

Proof Immediate by definition of a kernel, and of the algorithm.

We now prove that if F is not fiducial then the algorithm will be able to detect this.

Lemma 31 If there is some n such that Fn is not fiducial for Kn, then there is some index
n′ ≥ n at which Fn will be increased.

Proof If Fn is not fiducial, then by definition there is some u ∈ K, v ∈ Σ+ such that
FL(u) ⊆ FL(v), but there is an f ∈ CL(u) that is not in CL(v). By construction FL(u) is
always non-empty, and so is FL(v). Thus v ∈ Sub(L). Note f ⊙ u ∈ L, so f ∈ Con(L). Let
n′ be the smallest index such that v ∈ Sub(Dn) and f ∈ Con(Dn): at this point, either Fn

will have changed, or not, in which case it will be increased at this point.

We now prove that we will always get a fiducial feature set.

Lemma 32 For any n, there is some n′ such that Fn′ is fiducial for Kn.
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Proof If Fn is fiducial then n′ = n satisfies the condition. Assume otherwise. Let F
be a finite set of contexts that is fiducial for Kn. We can assume that F ⊆ Con(L).
Let n1 be the first index such that Con(Dn1

) contains F . At this point we are not sure
that Fn1

= Con(Dn1
) since the conditions for changing the set of contexts may not be

reached. Anyhow, if it is the case then Fn1
is fiducial, then n1 = n′ satisfies the condi-

tion. If not, then by the preceding lemma, there must be some point n2 at which we will
increase the set of contexts of the current grammar; Fn2

= Con(n2) must contain F since
Con(Dn1

) ⊂ Con(Dn2
), and is therefore fiducial, and so n2 = n′ satisfies the condition.

Lemma 33 For every positive presentation of an L ∈ LCFG, there is some n such that
either the algorithm has converged to a correct grammar or Kn is a kernel.

Proof Let m be the smallest number such that Sub(Dm) is a kernel. Recall that any
superset of a kernel is a kernel, and that all CFL with the FKP have a finite kernel (Lemma
25), and that such a kernel is a subset of Sub(L), so such an m must exist.

Consider the grammar Gm; there are three possibilities:
1. L(Gm) = L, and Fm is fiducial, in which case the grammar has converged.
2. L(Gm) is a proper subset of L and Fm is fiducial. Let m′ be the first point at which
wm′ is in L \ L(Gm); at this point Km′ will be increased to include Sub(Dm) and it will
therefore be a kernel.
3. Fm is not fiducial: in this case by Lemma 32; there is some n at which Fn is fiducial for
Km. Either Kn = Km in which case this reduces to Case 2; or Kn is larger than Km in
which case it must be a kernel, since it will include Sub(Dm) which is a kernel.

We now can prove the main result of the paper:

Theorem 34 Algorithm 1 identifies in the limit the class of context-free languages with the
finite context property and the finite kernel property.

Proof By Lemma 33 there is some point at which it converges or has a kernel. If Kn is
a kernel then by Lemma 32, there is some point n′ at which we have a fiducial feature set.
Therefore L(Gn′) = L, and the algorithm has converged.

4.7 Examples

We will now give a worked example of the algorithm.
Suppose L = {anbn|n > 0}.
G0 will be the empty grammar, with K = ∅, F = {(λ, λ)} and an empty set of produc-

tions. L(G0) = ∅.

1. Suppose w1 = ab. D = {ab}. This is not in L(G0) so we set

• K = Sub(D) = {a, b, ab}.
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• F = Con(D) = {(λ, λ), (a, λ), (λ, b)}.

This gives us one production: FL(ab)→ FL(a)FL(b) which corresponds to {(λ, λ)} →
{(λ, b)}{(a, λ)}, and the lexical productions {(λ, b)} → a, {(a, λ)} → b. The language
defined is thus L(G1) = {ab}.

2. Suppose w2 = aabb. D = {ab, aabb}. This is not in L(G1) so we set

• K = Sub(D) = {a, b, ab, aa, bb, aab, abb, aabb}.

• F = Con(D) = {(λ, λ), (a, λ), (λ, b), (aa, λ), (a, b), (λ, bb), (aab, λ), (aa, b),
(a, bb), (λ, abb)}.

We then have the following productions:

• FL(ab)→ FL(a), FL(b) which is
{(λ, λ), (a, b)} → {(a, bb), (λ, abb), (λ, b)}, {(aa, b), (aab, λ), (a, λ)}

• FL(aab)→ FL(a), FL(ab) which is
{(a, bb), (λ, b)} → {(a, bb), (λ, abb), (λ, b)}, {(λ, λ), (a, b)}

• FL(aab)→ FL(aa), FL(b) which is
{(a, bb), (λ, b)} → {(λ, bb)}, {(aa, b), (aab, λ), (a, λ)}

• FL(bb)→ FL(b), FL(b) which is
{(aa, λ)} → {(aa, b), (aab, λ), (a, λ)}, {(aa, b), (aab, λ), (a, λ)}

• FL(aa)→ FL(a), FL(a) which is
{(λ, bb)} → {(a, bb), (λ, abb), (λ, b)}, {(a, bb), (λ, abb), (λ, b)}

• FL(aabb)→ FL(a), FL(abb) which is
{(λ, λ), (a, b)} → {(a, bb), (λ, abb), (λ, b)}, {(aa, b), (a, λ)}

• FL(aabb)→ FL(aa), FL(bb) which is
{(λ, λ), (a, b)} → {(λ, bb)}, {(aa, λ)}

• FL(aabb)→ FL(aab), FL(b) which is
{(λ, λ), (a, b)} → {(a, bb), (λ, b)}, {(aa, b), (aab, λ), (a, λ)}

• FL(abb)→ FL(a), FL(bb) which is
{(aa, b), (a, λ)} → {(a, bb), (λ, abb), (λ, b)}, {(aa, λ)}

• FL(abb)→ FL(ab), FL(b) which is
{(aa, b), (a, λ)} → {(λ, λ), (a, b)}, {(aa, b), (aab, λ), (a, λ)}

and the two lexical productions:

• FL(a)→ a which is {(a, bb), (λ, abb), (λ, b)} → a

• FL(b)→ b which is {(aa, b), (aab, λ), (a, λ)} → b.

K is now a kernel and L(G) = L, but F is not fiducial for K, since (λ, bb) is not
fiducial for aa (consider aaab).
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3. Suppose w3 = aaabbb. Now |Con(D3)| = 21; there are now several elements of
Con(D3) that are similar. For example (λ, λ), (a, b) and (aa, bb) are identical but as
it is harmless for the resulting grammar, it does not mind. Now we will detect that F
is not fiducial: we will find v = aaab, u = aa and f = (λ, abbb); FL(aa) = {(λ, bb)} =
FL(aaab), but f ⊙ aaab = aaababbb which is not in L. We will therefore increase F
to be Con(D3), and then the algorithm will have converged. The final grammar will
have 10 productions and 2 lexical productions; |K| = 8 and |F | = 21.

5. Practical Behavior of the Algorithm

In this section, we propose to study the behavior of our algorithm from a practical point
of view. We focus more specifically on two important issues. The first one deals with the
learning ability of the algorithm when the conditions for the theoretical learning result are
not reached. Indeed, although the identification in the limit paradigm proves that with suf-
ficient data it is possible to obtain exact convergence, it says nothing about the convergence
when fewer learning examples are available: does the output get closer and closer to the
target until it reaches it or does it stay far from the expected solution until receives enough
data? The second question concerns the learning behavior of the algorithm: does it tend
to over-generalise or to under-generalise?

For our experimental setup, we need to select appropriate datasets. In grammatical
inference little has been done concerning benchmarking. The main available corpora are
those of the on line competitions organised by the International Colloquium on Grammatical
Inference. Three different competitions have recently taken place: the Abbadingo One (Lang
et al., 1998) which was about regular languages, the Omphalos competition on context-free
languages (Starkie et al., 2004) and the Tenjino competition (Starkie et al., 2006) dealing
with transducers learning. Note that some of these datasets correspond to extremely hard
learning problems since their main objective was to push the state of the art (some problems
of the Abbadingo One competition are still unsolved more than ten years after its official
end!)

However, these datasets can not be directly used for evaluating our algorithm because
the solutions or the target models are not available. Our algorithm needs an oracle and thus
we need a way to give answers to membership queries. In order to overcome this drawback,
we chose to build synthetically some data sets following the experimental setup proposed
by these competitions. More precisely, we decided to randomly generate target context-free
grammars following what has been done for the Omphalos competition. Each grammar is
then used either to generate training and test sets or as an oracle for answering membership
queries.

In the following paragraphs we describe first the generation of the target context-free
grammars, then the experimental setup with learning and test datasets used and finally the
results and conclusions that can be drawn.
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5.1 Generation of Target Context-free Grammars

To generate the target grammars we follow the process used for the Omphalos competi-
tion (Starkie et al., 2004). We built 50 different grammars randomly according the following
principles. For each grammar, we first fix the number of non-terminals and terminals which
are randomly chosen between 4 and 7 for the non-terminals (including the start symbol) and
between 2 and 4 for terminal symbols. Then we randomly generate 20 context-free rules in
Chomsky normal form such that every non-terminal appears at least once in the left hand
side of a grammar rule. In order to avoid the presence of useless rules, we apply two simple
procedures: if a non-terminal can not generate any terminal string, a new terminal rule
generating one terminal symbol is created for this non-terminal; if a non-terminal can not
be reached from the start symbol, we erase it from the grammar (i.e. we remove all the
rules containing this non-terminal). From these grammars without useless rules, we force
them to generate non finite languages by checking that the start symbol is used at least
once in a right hand side of a grammar rule (in average this symbol appears in a right hand
side of a rule more than 3 times per grammar).

The main difference with the Omphalos generation process is that we do not especially
need non-regular languages. Indeed, one of the aim of these experiments is to give an idea
on the behavior of the algorithm when its theoretical assumptions are not likely to be valid.
From this standpoint, all randomly generated non-finite languages are good candidates as
learning targets. However, with a similar principle used for the Omphalos competition,
we checked that some of the generated grammars can not be easily solved by methods
for regular languages. Although we can not decide if these grammars define non regular
context-free languages, it ensures us that the target models are at least not too simple.

5.2 Experimental Setup

For each target grammar we generate a learning and a test sample following the Omphalos
competition requirements. We build the learning sample by first creating a structurally
complete set of strings for each grammar. This set is built such that for each rule of
the target grammar, at least one string of the set can be derived using this rule (Parekh
and Honavar, 1996). This would guarantee that the complete learning set would have the
minimal amount of information for finding the structure of the grammar. We then complete
this learning set by randomly generating new strings from the grammar in order to have a
total of 50 examples. We chose arbitrarily this value for two reasons: first it is sufficient
to ensure that each sample contains strictly a structurally complete set for each target
grammar and secondly we are likely to be far from the guarantees of the identification in
the limit framework.

The construction of the test set needs particular attention. Since the learning phase uses
a membership oracle, when the hypothesis is being constructed, some new strings may be
built and queried for the oracle by picking a prefix, a substring and a suffix from the learning
sample. Thus, even if the test set does not contain any string of the learning sample, the
construction G0 may consider some strings present in the test set. In order to avoid this
drawback, i.e. to guarantee that no string of the test could be seen during the construction
of the CBFG, each test string has a length of at least 3 times the maximal length of the
strings in the learning set. According to this procedure, we randomly generate a test set
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of 1000 strings over the alphabet of terminal symbols used to define the target grammar
(1000 examples is twice the size of the small test sets of the Omphalos competition). The
test sequences are then labeled positive or negative depending on their membership to the
language defined by the grammar. We repeat this process until we have the desired number
of strings. The ratio between strings in the language and strings outside the language is
fixed to be between 40% and 60%.

In order to study the behavior of our algorithm, we define the following setup. For
each target context-free grammar, we construct a CBFG by applying the construction
G0(K,O, F ) with K = Sub(S) and F = Con(S) where S is a set of strings drawn from the
learning set and using the target grammar as the oracle O for the membership queries. We
generate different sets S by drawing an increasing number of learning examples (from 2 to
50) from the learning sample of the considered grammar. Then, we evaluate the learned
CBFG on the test sample by measuring the accuracy of correct classification. We present
the results averaged on the 50 test sets of the different target context-free grammars.

5.3 Results and Discussion

Figure 3 shows the averaged accuracy over the different target grammars according to the
number of strings in the learning sample. We can note that a high correct classification rate
(nearly 90%) is reached with 20 examples and with only 5 examples an accuracy of 75%
is obtained. These results indicate that a relevant hypothesis can be found even with few
examples. The standard deviations represented by vertical bars show a good stability of the
results from learning sets of 20 strings. This confirms that our algorithm is able to learn
partly correct representations even when learning sets may not have a kernel or a fiducial
learning set and thus are far from the identification in the limit assumptions.

The analysis of the behavior of the algorithm in terms of false positive and false negative
rates is shown in Table 5.3. The proportion of false negatives (i.e. positive strings classified
as negative) is higher than the proportion of false positives (i.e. negative strings classified
as positive), whatever the size of the learning sample is. Thus the output of the algorithm
tends more to under-generalise than the converse. As it is generally admitted that over-
generalisation is the main trouble when learning from positive examples, this tendency
confirms that the algorithm behaves well. However, it is difficult to draw firm conclusions
without a natural distribution over negative examples.

The preceding results show that despite its simplicity the algorithm behaved nicely dur-
ing these experiments, in particular concerning over-generalisation. We focus now on the
amount of queries needed by the algorithm for building the CBFG. The growth of the num-
ber of requested queries according to the average size of the learning sample is shown in
Figure 4 (recall that here the size of the sample means the sum of the string lengths of the
sample). While a very worst case analysis of the grammar construction used by G0 would
lead to a complexity in O(|S|5), we can observe that the number of queries seems to be
quadratic, at least in the case of the grammars we consider here. However, the volume of
queries used is large, which can be explained by the simplicity of the algorithm. From a
practical standpoint, it is clear that much work has to be done in order to try to minimise
the number of queries needed by selecting the most informative examples, but this point is
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Figure 3: Evolution of the average percentage of correct classification according to the num-
ber of learning examples.

Number of strings in S false positive false negative

02 07.2 % ± 12.3 36.4 % ± 7.0

05 04.5 % ± 4.7 28.4 % ± 9.1

10 03.8 % ± 2.9 22.4 % ± 8.4

15 03.9 % ± 2.6 14.1 % ± 6.6

20 04.1 % ± 3.0 09.4 % ± 6.1

30 04.2 % ± 2.8 07.9 % ± 5.5

40 03.9 % ± 2.6 05.6 % ± 4.7

50 04.4 % ± 1.6 04.8 % ± 3.9

Table 1: Average percentage of false positive and false negative rates obtained over the test
samples.

out of the scope of the paper.

Finally, we can note that these experiments suffer of the lack of comparison with other
approaches. This is due to the fact that, as far as we know, no other algorithm uses a positive
learning sample and a membership oracle only. Indeed, since the work of Angluin about the
Minimum Adequate Teacher (Angluin, 1988) all algorithms using membership queries are
designed with the additional help of equivalence queries. The point of view adopted in this
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Figure 4: Growth of the number of membership queries versus the average of the total size
of the learning sample (using log log scale).

paper is rather theoretical since our aim was to show the relevance of CBFG representations
for language learning. However, a perspective of our work is to try to avoid the use of the
oracle (by using statistical or simulation methods) which will allow us to compare more
easily our approach with other methods.

6. Expressiveness of CBFG

In this section, we compare the expressiveness of CBFG with other well known represen-
tations. As noted earlier, we are primarily interested in the class of exact CBFGs – these
are CBFGs where the presence of a contextual feature in the representation corresponds
exactly to the language theoretic interpretation of the context. The class of unrestricted
CBFG is significantly larger, but less relevant.

The algorithm presented in this paper cannot learn the entire class of exact CBFGs, but
we conjecture that there are more powerful algorithms that can; see Clark (2009) for some
steps in this direction.

6.1 Exact CBFGs and the Chomsky Hierarchy

We start by examining the class of languages defined by exact CBFGs. We will show that
this class

• includes all regular languages
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• does not include all context free languages

• includes some non-context-free languages.

This class is thus orthogonal to the Chomsky hierarchy.

6.1.1 Regular Languages

Any regular language can be defined by an exact CBFG. We will show a way of constructing
an exact CBFG for any regular language. Suppose we have a regular language L: we consider
the left and right residual languages:

u−1L = {w|uw ∈ L}, (5)

Lu−1 = {w|wu ∈ L}. (6)

For any u ∈ Σ∗, let lmin(u) be the lexicographically shortest element such that l−1
minL =

u−1L. The number of such lmin is finite by the Myhill-Nerode theorem, we denote by
Lmin this set, i.e. {lmin(u)|u ∈ Σ∗}. We define symmetrically Rmin for the right residuals
(Lr−1

min = Lu−1).

We define the set of contexts as:

F (L) = Lmin ×Rmin. (7)

F (L) is clearly finite by construction.

Figure 5: Example of a DFA. The left residuals are defined by λ−1L, a−1L, b−1L are the
right ones by Lλ−1, Lb−1, Lab−1 (note here that La−1 = Lλ−1).

If we consider the regular language defined by the deterministic finite automata of Fig-
ure 5, we obtain Lmin = {λ, a, b} and Rmin = {λ, b, ab} and thus
F (L) = {(λ, λ), (a, λ), (b, λ), (λ, b), (a, b), (b, b), (λ, ab), (a, ab), (b, ab)}.

By considering this set of features, we can prove the following lemma:

Lemma 35 For any strings u, v such that FL(u) ⊃ FL(v) then CL(u) ⊃ CL(v).
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Proof Suppose FL(u) ⊃ FL(v) and let (l, r) be a context in CL(v). Let l′ be the lexi-
cographically shortest element of {u : u−1L = l−1L} and r′ the lexicographically shortest
element of {u : Lu−1 = Lr−1}. By construction we have (l′, r′) ∈ F (L) and l′vr′ ∈ L, as
vr′ ∈ l′−1L = l−1L. FL(v) is contained in FL(u) therefore we have l′ur′ ∈ L. l′−1L = l−1L
implies lur′ ∈ L. As r′ is congruent to r, lur ∈ L.

This lemma means that the set of features F is sufficient to represent context inclusion.
Note that the number of congruence classes of a regular language is finite. Each congru-

ence class is represented by a set of contexts FL(u). Let KL be finite set of strings formed by
taking the lexicographically shortest string from each congruence class. The final grammar
can be obtained by combining elements of KL. For every pair of strings u, v ∈ KL, we
define a rule

FL(uv)→ FL(u)FL(v) (8)

and we add lexical productions of the form FL(a)→ a, a ∈ Σ.

The following lemma shows the correctness and the exactness of the grammar.

Lemma 36 For all w ∈ Σ∗, fG(w) = FL(w).

Proof (Sketch) The proof is in two steps: fG(w) ⊆ FL(w) and FL(w) ⊆ fG(w). Each step
is made by induction on the length of w and uses the rules created to build the grammar,
the derivation process of a CBFG and the fiduciality for the second step.

First, we show ∀w ∈ Σ∗, fg(w) ⊆ FL(w) by induction on the length of w. For |w| = 1,
the inclusion is trivial since all the lexical rules FL(a) → a are included in the grammar.
Suppose that a string w, |w| = n > 1, is parsed by the CBFG G, then there exists a
cut of w in uv = w and a rule z → xy in G such that x ⊆ fG(u) and y ⊆ fG(v). By
induction hypothesis, x ⊆ FL(u) and y ⊆ FL(v). By construction of the grammar, there
exists two strings u′, v′ ∈ KL such that u, resp. v, belongs to same congruence class
than u′, resp. v′ and the rule FL(u′v′) → FL(u′)FL(v′) belongs to the productions of the
grammar. By induction hypothesis, x ⊆ FL(u) = FL(u′) and y ⊆ FL(v) = FL(v′) and thus
fG(w) ⊆ FL(w).
Second, we prove that ∀w ∈ Σ∗, FL(w) ⊆ fG(w) by induction on the length of w. The key
point relies on the fact that when a string w is parsed by a CBFG G, there exists a cut of
w into uv = w (u, v ∈ Σ∗) and a rule z → xy in G such that x ⊆ fG(u) and y ⊆ fG(v).
The rule z → xy is also obtained from a substring from the set used to build the grammar
using the FL function. By the inductive hypothesis we obtain inclusion between fG and FL

on u and v.

For the language of Figure 5, the following set is sufficient to build an exact CBFG:
{a, b, aa, ab, ba, aab, bb, bba} (this corresponds to all the substrings of aab and bba). We
have:
FL(a) = F (L)\{(λ, λ), (a, λ)} → a,
FL(b) = F (L)→ b,
FL(aa) = FL(a)→ FL(a)FL(a),
FL(ab) = F (L)→ FL(a)FL(b) = FL(a)F (L),
FL(ba) = F (L)→ FL(b)FL(a) = F (L)FL(a),
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FL(bb) = F (L)→ FL(b)FL(b) = F (L)F (L),
FL(aab) = FL(bba) = FL(ab) = FL(ba).

The approach presented here gives a canonical form for representing a regular language
by an exact CBFG. Moreover, this is is complete in the sense that every context of every
substring will be represented by some element of F : this CBFG will completely model the
relation between contexts and substrings.

6.1.2 Exact CBFGs do not include all CFLs

First, it is clear that the class of exact CBFGs includes some non-regular context-free
languages: the grammar defined in Section 3.3 is an exact CBFG for the context-free and
non regular language {anbn|n > 0}, showing the class of exact CBFG has some elements
properly in the class of CFGs.

We give now a context-free language L that can not be defined by an exact CBFG:

L = {anb|n > 0} ∪ {ancm|m > n > 0}.

Suppose that there exists an exact CBFG that recognizes it and let N be the length of the
biggest feature (i.e. the longest left part of the feature). For any sufficiently large k > N ,
the sequences ck and ck+1 share the same features: FL(ck) = FL(ck+1). Since the CBFG
is exact we have FL(b) ⊆ FL(ck). Thus any derivation of ak+1b could be a derivation of
ak+1ck which does not belong to the language.

However, this restriction does not mean that the class of exact CBFG is too restrictive
for modeling natural languages. Indeed, the example we have given is highly unnatural and
such phenomena appear not to occur in attested natural languages.

6.1.3 CBFG and Non Context-Free Languages

CBFGs are more powerful than CFGs in two respects. First, CBFGs can compactly repre-
sent languages like the finite language of all n! permutations of an n-letter alphabet, that
have no concise representation as a CFG (Asveld, 2006). Secondly, as we now show, there
are some exact CBFGs that are not context-free. In particular, we define a language closely
related to the MIX language (consisting of strings with an equal number of a’s, b’s and c’s
in any order) which is known to be non context-free, and indeed is conjectured to be outside
the class of indexed grammars (Boullier, 2003).

Let M = {{a, b, c}+}, the set of all strings of length at least one that can be built on the
alphabet {a, b, c}. We consider now the language
L = Labc ∪ Lab ∪ Lac ∪ {a

′a, b′b, c′c, dd′, ee′, ff ′}:
Lab = {wd|w ∈M, |w|a = |w|b},
Lac = {we|w ∈M, |w|a = |w|c},
Labc = {wf |w ∈M, |w|a = |w|b = |w|c}.
In order to define a CBFG recognizing L, we have to select features (contexts) that can
represent exactly the intrinsic components of the languages composing L. We propose to
use the following set of features for each sublanguage:

• For Lab: (λ, d) and (λ, ad), (λ, bd).
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• For Lac: (λ, e) and (λ, ae), (λ, ce).

• For Labc: (λ, f ′).

• For the letters a′, b′, c′, a, b, c we add: (λ, a), (λ, b), (λ, c), (a′, λ), (b′, λ), (c′, λ).

• For the letters d, e, f, d′, e′, f ′ we add; (λ, d′), (λ, e′), (λ, f ′), (d, λ), (e, λ), (f, λ).

Here, Lab will be represented by (λ, d), but we will use (λ, ad), (λ, bd) to define the internal
derivations of elements of Lab. The same idea holds for Lac with (λ, e) and (λ, ae), (λ, ce).

For the lexical rules and in order to have an exact CBFG, note the special case for a, b, c:
{(λ, bd), (λ, ce), (a′, λ)} → a
{(λ, ad), (b′, λ)} → b
{(λ, ae), (c′, λ)} → c
For the nine other letters, each one is defined with only one context, for example using the
rule {(λ, d′)} → d.

For the production rules, the most important one is: (λ, λ)→ {(λ, d), (λ, e)}, {(λ, f ′)}.

Indeed, this rule, with the presence of two contexts in one of categories, means that
an element of the language has to be derived so that it has a prefix u such that fG(u) ⊇
{(λ, d), (λ, e)}. This means u is both an element of Lab and Lac. This rule represents the
language Labc since {(λ, f ′)} can only represent the letter f .

The other parts of the language will be defined by the following rules:
(λ, λ)→ {(λ, d)}, {(λ, d′)},
(λ, λ)→ {(λ, e)}, {(λ, e′)},
(λ, λ)→ {(λ, a)}, {(λ, bd), (λ, ce), (a′, λ)},
(λ, λ)→ {(λ, b)}, {(λ, ad), (b′, λ)},
(λ, λ)→ {(λ, c)}, {(λ, ae), (c′, λ)},
(λ, λ)→ {(λ, d′)}, {(d, λ)},
(λ, λ)→ {(λ, e′)}, {(e, λ)},
(λ, λ)→ {(λ, f ′)}, {(f, λ)}.

This set of rules is incomplete, since for representing Lab, the grammar must contain
the rules ensuring to have the same number of a’s and b’s, and similarly for Lac. To lighten
the presentation here, the complete grammar is presented in Appendix.

We claim this is an exact CBFG for a context-sensitive language. L is not context-
free since if we intersect L with the regular language Σ∗d, we get an instance of the non
context-free MIX language (with d appended). The exactness comes from the fact that we
chose the contexts in order to ensure that strings belonging to a sublanguage can not belong
to another one and that the derivation of a substring will provide all the possible correct
features with the help of the union of all the possible derivations.

Note that the MIX language on its own is not definable by an exact CBFG: it is only
when other parts of the language can distributionally define the appropriate partial struc-
tures that we can get context sensitive languages. Far from being a limitation of this
formalism (a bug), we argue this is a feature: it is only in rather exceptional circumstances
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that we will get properly context sensitive languages. This formalism thus potentially ac-
counts not just for the existence of non context-free natural languages but also for their
rarity.

6.2 Inexact CBFGs

We are less interested in the class of all CBFGs: these are CBFGs where the contexts are
just arbitrary features and there is no relation between fG(u) and CL(u) except for the
presence of (λ, λ). However, it is important to understand the language theoretic power
of this class as this upper bounds the hypothesis class of the algorithm, and is easier to
analyse.

6.2.1 Context-free grammars

First, we note that this class contains all context-free languages. Given a context-free
language, that does not include the empty string, we can take a CFG in Chomsky normal
form and convert it directly into a CBFG. Let V be the set of non-terminals of such a CFG.
We pick an arbitrary set of distinct contexts to represent the elements of V , subject only
to the constraint that S corresponds to (λ, λ). Let C(N) be the context corresponding to
the non-terminal N . For every production rule in the CFG of the form N → PQ, we add
a CBFG production {C(N)} → {C(P )}, {C(Q)}. For every production in the CFG of the
form N → a, we add a CBFG production to PL of the form {C(N)} → a. It is easy to see
that this will define the same language.

6.2.2 Range Concatenation Grammars

While CBFG formalism has some relationship to a context-free grammar, and some to a
semi-Thue system (also known as a string rewriting system), it is not formally identical
to either of these. One exact equivalence is to a restricted subset of Range Concatenation
Grammars; a very powerful formalism (Boullier, 2000). We include the following relation-
ship, but suggest that the reader unfamiliar with RCGs proceeds to the discussion of the
relationship with the more familiar class of context-free grammars.

Lemma 37 For every CBFG G, there is a non-erasing positive range concatenation gram-
mar of arity one, in 2-var form that defines the same language.

Proof Suppose G = 〈F, P, PL,Σ〉. Define a RCG with a set of predicates equal to F and
the following clauses, and the two variables U, V . For each production x → yz in P , for
each f ∈ x, where y = {g1, . . . gi}, z = {h1, . . . hj} add clauses

f(UV )→ g1(U), . . . gi(U), h1(V ), . . . hj(V ).

For each lexical production {f1 . . . fk} → a add clauses

fi(a)→ ǫ.

It is straightforward to verify that f(w) ⊢ ǫ iff f ∈ fG(w).
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6.2.3 Conjunctive Grammar

A tighter correspondence is to the class of Conjunctive Grammars (Okhotin, 2001), invented
independently of RCGs.

Definition 38 A conjunctive grammar is defined as a quadruple 〈Σ, N, P, S〉, in which: Σ
is the alphabet; N is the set of non terminal symbols; P is the set of rules, each of the form
A→ α1&...&αm, where A ∈ V and ∀i < m, αi ∈ (V ∪ Σ)∗; S ∈ N is the start symbol.

In this formalism, a string w is derived from A ∈ V iff there exists a rule A→ α1&...&αm

in P and for all i < m, αi derives w.
We claim that for every every language L generated by a conjunctive grammar there

is a CBFG representing L# (where the special character # is not included in the original
alphabet).

Suppose we have a conjunctive grammar G = 〈Σ, N, P, S〉 in binary normal form (as
defined in (Okhotin, 2003)). We construct the equivalent CBFG G′ = 〈F, P ′, PL,Σ〉 as
followed:

• For every letter a we add a context (la, ra) to F such that laara ∈ L;

• For every rules X → a in P , we create a rule {(la, ra)} → a in PL.

• For every non terminal X ∈ N , for every rule X → P1Q1& . . .&PnQn we add distinct
contexts {(lPiQi

, rPiQi
)} to F, such that for all i it exists ui, lPiQi

uirPiQi
∈ L and

PiQi
∗
⇒G ui;

• Let FX,j = {(lPiQi
, rPiQi

) : ∀i} the set of contexts corresponding to the jth rule
applicable to X. For all (lPiQi

, rPiQi
) ∈ FX,j , we add to P ′ the rules (lPiQi

, rPiQi
) →

FPi,kFQi,l (∀k, l).

• We add a new context (w, λ) to F such that S
∗
⇒G w and (w, λ)→ # to PL;

• For all j, we add to P ′ the rule (λ, λ)→ FS,j{(w, λ)}.

It can be shown that this construction gives an equivalent CBFG.

7. Discussion and Conclusion

One of the main objective of our approach is to provide a framework that helps to bridge
the gap between theoretical methods of grammatical inference and the structured repre-
sentations required in linguistics. We provide a conclusion and a discussion of our work
according to these two standpoints.

7.1 Grammatical Inference

In this paper, we have presented a new formalism the Contextual Binary Feature Grammars
and shown its relevance for representing a large class of languages. We have proposed a
learning algorithm using only membership queries and shown that this algorithm can iden-
tify in the limit the class of context-free languages satisfying the FCP and FKP assumptions.
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First of all, we should establish how large the class of languages with the FCP and the FKP
is: it includes all finite languages and all regular languages, since the set of congruence
classes is finite for finite state languages. It similarly includes the context-free substitutable
languages, (Clark and Eyraud, 2007), since every string in a substitutable language belongs
to only one syntactic congruence class. As already stated it does not include all CFLs
since not all CFLs have the FCP and/or the FKP. However it does include languages like
the Dyck languages of arbitrary order, Lukacevic language and most other classic simple
examples. As a special case consider the equivalence relation between contexts f ∼=L f ′ iff
∀u we have that f ⊙ u ∈ L iff f ′⊙ u ∈ L. The class of CFLs where the context distribution
of every string is a finite union of equivalence classes of contexts clearly has both the FKP
and the FCP.

If we now focus on the algorithm proposed: it is relatively simple but has two main
drawbacks. First, the algorithm is not conservative since once we have found the correct
language, the representation may change – if the feature set found is not fiducial – until the
fiduciality is reached. Second, the CBFG output by the algorithm may not be consistent
with some answers provided by the oracle. Indeed, when the algorithm checks the fiduciality
of the feature set F , the membership of new strings is tested. These strings do not appear in
the list of learning examples given to the oracle but are built from all the possible contexts
and substrings that can be extracted from this list. Then, it is possible that, among these
new strings, some of them belong to the target language but are not recognized by the
current grammar. In this case, the output grammar is nevertheless not modified. We can
imagine a procedure that changes the grammar by adding these new positive strings for
building the CBFG, however this could lead to having to deal with an exponential number
of strings. Thus, a more reasonable procedure is to wait for these strings in the positive
data presentation. One proposal for future work, from these two remarks, is a new learning
algorithm that overcomes these drawbacks.

One important point is whether this result can be extended to a result which also
bounds the number of samples as a polynomial function of the size of the representation. A
preliminary result in this direction is presented in Clark (2010), which presents a polynomial
result using the Minimally Adequate Teacher model of Angluin (1987). It seems likely that
it will be possible to extend that result, which uses only context-free grammars, to the class
of CBFGs.

Our approach to context-free grammatical inference is based on a generalisation of dis-
tributional learning, following the work of (Clark and Eyraud, 2007). The current state of
the art in context-free inductive inference from flat unstructured examples only has been
rather limited. When learning from stochastic data or using a membership oracle, it is
possible to have powerful results, if we allow exponential computation (see for example
(Horning, 1969)). The main contribution of this paper is to show that efficient learning
is possible, with an appropriate representation. We currently rely on using a membership
oracle, but under suitable assumptions about distributions, it should be possible to get a
PAC-learning result for this class along the lines of (Clark, 2006), placing some bounds on
the number of features required. Another interesting and needed issue is the adaptation of
this approach to stochastic languages.

We have focused on context-free grammatical inference, however, we have shown that
our representation is also relevant for modeling non context-free languages. Then, another
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perspective of this work is to study learnability results for larger classes of languages. This
would allow us to compare with other formalisms such as External Contextual Grammars
(Boullier, 2001; Mitrana, 2005) and other learning methods dealing with non context-free
languages (Oates et al., 2006; Yoshinaka, 2009).

7.2 Linguistics

The field of grammatical inference has close relations to the study of language acquisi-
tion. Attempts to model natural languages with context-free grammars require additional
machinery: natural language categories such as noun phrases contain many overlapping
subclasses with features such as case, number, gender and similarly for verbal categories.
Modelling this requires either an exponential explosion of the number of non-terminals em-
ployed or a switch to a richer set of features. Our formalism can be seen as a first step to
integrate such features. While we have implemented the algorithm described here, and veri-
fied that it works in accordance with theory on small artificial examples, there are a number
of modifications that would need to be made before it can be applied to real grammar in-
duction on natural language. First, the algorithm is very naive; in practice a more refined
algorithm could select both the kernel and the feature set in a more sophisticated way.
Secondly, considering features that correspond to individual contexts may be too narrow a
definition for natural language given the well known problems of data sparseness and it will
be necessary to switch to features corresponding to sets of contexts, which may overlap.
Thus for example one might have features that correspond to sets of contexts of the form
F (u, v) = {(lu, vr)|l, r ∈ Σ∗}. This would take this approach closer to methods that have
been shown to be effective in unsupervised learning in NLP (Klein and Manning, 2004)
where typically |u| = |v| = 1. In any event, we think such modifications will be necessary
for the acquisition of non context-free languages. Finally, at the moment the algorithm has
polynomial update time, but in the worst case, there are deterministic finite state automata
such that the size of the smallest kernel will be exponential in the number of states. There
are, however, natural algorithms for generalising the productions by removing features from
the right hand sides of the rules; this would have the effect of accelerating the convergence
of the algorithm, and removing the requirement for the Finite Kernel Property.
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Appendix

We give here an explicit exact CBFG for the following non context-free language

L = Labc ∪ Lab ∪ Lac ∪ {a
′a, b′b, c′c, dd′, ee′, ff ′}

defined on the alphabet Σ = {a, b, c, d, e, f, a′, b′, c′, d′, e′, f ′} and such that:
Lab = {wd|w ∈ {a, b, c}+, |w|a = |w|b},
Lac = {we|w ∈ {a, b, c}+, |w|a = |w|c},
Labc = {wf |w ∈ {a, b, c}+, |w|a = |w|b = |w|c}.

Here is the list of productions of the grammar:

(λ, λ)→ {(λ, d), (λ, e)}, {(λ, f ′)}
(λ, λ)→ {(λ, d)}, {(λ, d′)}
(λ, λ)→ {(λ, e)}, {(λ, e′)}
(λ, λ)→ {(λ, a)}, {(λ, bd), (λ, ce), (a′, λ)}
(λ, λ)→ {(λ, b)}, {(λ, ad), (b′, λ)}
(λ, λ)→ {(λ, c)}, {(λ, ae), (c′, λ)}
(λ, λ)→ {(λ, d′)}, {(d, λ)}
(λ, λ)→ {(λ, e′)}, {(e, λ)}
(λ, λ)→ {(λ, f ′)}, {(f, λ)}

(λ, d)→ {(λ, d)}, {(λ, d)}
(λ, d)→ {(λ, ad)}, {(λ, bd)}
(λ, d)→ {(λ, bd)}, {(λ, ad)}
(λ, d)→ {(λ, d)}, {(λ, ad), (λ, ae), (c′, λ)}
(λ, d)→ {(λ, ad), (λ, ae), (c′, λ)}, {(λ, d)}

(λ, ad)→ {(λ, ad), (λ, ae), (c′, λ)}, {(λ, ad)}
(λ, ad)→ {(λ, ad)}, {(λ, ad), (λ, ae), (c′, λ)}
(λ, ad)→ {(λ, ad), (b′, λ)}, {(λ, d)}
(λ, ad)→ {(λ, d)}, {(λ, ad), (b′, λ)}

(λ, bd)→ {(λ, ad), (λ, ae), (c′, λ)}, {(λ, bd)}
(λ, bd)→ {(λ, bd)}, {(λ, ad), (λ, ae), (c′, λ)}
(λ, bd)→ {(λ, bd), (λ, ce), (a′, λ)}, {(λ, d)}
(λ, bd)→ {(λ, d)}, {(λ, bd), (λ, ce), (a′, λ)}

(λ, e)→ {(λ, e)}, {(λ, e)}
(λ, e)→ {(λ, ae)}, {(λ, ce)}
(λ, e)→ {(λ, ce)}, {(λ, ae)}
(λ, e)→ {(λ, e)}, {(λ, ad), (b′, λ)}
(λ, e)→ {(λ, ad), (b′, λ)}, {(λ, e)}

(λ, ae)→ {(λ, ad), (b′, λ)}, {(λ, ae)}
(λ, ae)→ {(λ, ae)}, {(λ, ad), (b′, λ)}

36



Using Contextual Representations

(λ, ae)→ {(λ, ad), (λ, ae), (c′, λ)}, {(λ, e)}
(λ, ae)→ {(λ, e)}, {(λ, ad), (λ, ae), (c′, λ)}

(λ, ce)→ {(λ, ad), (b′, λ)}, {(λ, ce)}
(λ, ce)→ {(λ, ce)}, {(λ, ad), (b′, λ)}
(λ, ce)→ {(λ, bd), (λ, ce), (a′, λ)}, {(λ, e)}
(λ, ce)→ {(λ, e)}, {(λ, bd), (λ, ce), (a′, λ)}

{(λ, bd), (λ, ce), (a′, λ)} → a
{(λ, ad), (b′, λ)} → b
{(λ, ae), (c′, λ)} → c
{(λ, d′)} → d
{(λ, e′)} → e
{(λ, f ′)} → f

{(λ, a)} → a′

{(λ, b)} → b′

{(λ, c)} → c′

{(d, λ)} → d′

{(e, λ)} → e′

{(f, λ)} → f ′.
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