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Abstract. In Pressurized Water Reactors of nuclear power plants, steam generators act as 
heat exchangers between primary and secondary coolant fluids. They consist of a bundle of 
U-tubes in which flows the primary coolant fluid. Several support plates guide these tubes 
vertically. Secondary coolant fluid flows along the U-tubes and passes through the space be-
tween tubes and plates. This space, initially of a foliate shape, is filled with sludge deposits. 
Consequently, fluid flow is accelerated and the tubes are more excited. Moreover, the me-
chanical bonding between tube and plate is changed. The combination of these two phenome-
na can lead to dynamic instabilities and tube cracks. This paper focuses on the effects of 
shocks on tube instability. As we concentrate on a mechanical point of view, the study of the 
nonlinear dynamics is made in the following specific conditions: the tube is in air with no 
flowing fluid; an instability is generated by injecting a force proportional to the velocity of a 
point of the leg of the tube. The tube is modeled as an Euler-Bernoulli beam. The contact be-
tween tube and plate is computed assuming circular obstacles and a contact force that is li-
near with a gap. A reduced model is generated to represent the bandwidth of interest and the 
effect of contact forces. Time evolution is then computed using a nonlinear Newmark scheme. 
Numerical simulations show the effect of shock nonlinearities on the dynamics. Cases of unst-
able unconstrained tubes leading to bounded stable dynamics when shocks occur are ana-
lyzed. The instability in the unconstrained condition does not imply that the bilateral contact 
condition is unstable. Areas of the contact stiffness/feedback gain plane are shown to lead to 
stable modes of the bilateral model. The work then presents results on an experimental bench 
that includes the curved part of a tube and one Support Plate. The instability is generated by 
feeding back to a shaker the amplified signal of a velocity measurement performed with an 
integrated accelerometer. For great enough feedback gains, the vibration amplitudes grow 
until shocks occur. The permanent regime eventually found is analyzed. A good similarity be-
tween test and analysis is found. 
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1 INTRODUCTION  

In Pressurized Water Reactor (PWR) of nuclear power plants, steam generators exchange 
heat between primary coolant fluid and secondary coolant fluid (Figure 1). They consist of a 
bundle of inversed U-tubes in which flows the primary coolant fluid. These tubes are clamped 
at the bottom of their legs. Several support plates maintain them vertically. Secondary coolant 
fluid flows along the tubes and through the holes made on the support plates. 

a)   b)  

Figure 1 a) Scheme of a PWR nuclear plant. Three fluid circuits are described: primary circuit (red), 
secondary circuit (blue) and a cooling circuit (green). b) Scheme of a steam generator. The bundle of U-

tubes and support plates are shown. 

The space between the tubes and the support plates, initially of a foliate shape, is filled 
with sludge deposits. Consequently, fluid flow is accelerated and the tubes are more excited. 
Moreover, the mechanical bonding between tube and plate is changed, from free gap to 
clamping. The combination of these two phenomena can lead to dynamic instabilities and 
tube cracks. 

Different methods are available to predict tube instability in regard with external fluid flow. 
The method developed by EDF uses linear boundary conditions to model the interaction be-
tween the tube and the support plates, typically clamping or supporting. Investigations have 
been made to get better understanding of the role played by shock non-linearity in respect 
with tube instability. 

Piteau et al. [1] have made experiments and computations of a vibro-impacting straight 
tube subjected to fluid-elastic forces and planar displacements. Shocks modify the instantane-
ous response frequency and thus modify the fluid-elastic forces, explaining how shocks can 
stabilize this unstable dynamics. Here, we investigate the stabilization effect of shock non-
linearity by itself. The study of the nonlinear dynamics is made in the following conditions: 
the U-tube is in air with no flowing fluid; instability is generated by injecting a force propor-
tional to the velocity of a point of the leg of the tube. 

Section 2 presents the experimental setup. Contact model and reduced basis used for nu-
merical simulations are presented in section 3. The stability of a tube with linear contact stiff-
ness is studied in section 4. Finally, numerical and experimental non-linear simulations are 
presented in section 5. 

2 EXPERIMENTAL BENCH  

The experimental bench consists of a portion of a U-tube (Figure 2), constrained at its basis 
to be as near as possible to a clamped condition. The two legs of the tube are inserted in fo-
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liated obstacles, whose geometry reproduces real support plates. These obstacles have been 
machined with different radius, the gap between the plate and the tube approximating the 
quantity of sludge deposits. The maximum gap available is around one percent of the external 
diameter of the tube. The thickness of a support plate is about 1.5 times the external diameter 
of the tube. 

a)   b)   

Figure 2 a) Global view of the experimental bench. We distinguish the two foliated obstacles right un-
der the curved part and the shaker on the right leg. b) Detailed view of a foliated obstacle. 

A shaker excites the leg in the out-of-plane x direction (z is the vertical and y is an in-plane 
direction). The shaker is fixed on a lift table, so as to adjust the height of the destabilizing 
force. Twenty-two B&K 4375 sensors measure accelerations at different points of the struc-
ture. A B&K 2635 charge amplifier integrates the acceleration and feeds an electrical voltage 
proportional to the velocity of the excitation point. Measurements are sampled using LMS 
Scadas III Front-end, driven by LMS Test.Lab software. 

3 NUMERICAL MODEL  

A reduced model has been built to perform non-linear numerical simulations. An updated 
numerical model of the experimental bench is created in section 3.1. The contact model be-
tween tube and plate is presented in section 3.2. Reduced basis is built in section 3.3. Numeri-
cal simulations are compared with test results in section 3.4. 

3.1 Beam model  

The tube is modeled as a curved beam. The length of the elements is compatible with a 
maximum frequency of interest linked to the spectrum of the contact loads. A preliminary 
study of the kinematic in the contact area has led us to consider an Euler-Bernoulli formula-
tion rather than a Timoshenko formulation. 

The mechanical connection between the tube and the frame is quite stiff but is far from 
clamped conditions. We represent this bind with six discrete springs, three affecting the trans-
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lation degrees of freedom and three affecting the rotation degrees of freedom. A modal analy-
sis gave us twelve modes under 200Hz. The tube material parameters and the stiffness of the 
discrete springs were updated taking into account the frequency of the modes 4, 7, 9 and 11, 
out-of-plane bending or torsion modes. 

The frequencies smaller than 100Hz are quite well correlated (Table 1). The MAC (Modal 
Assurance Criterion), normalized scalar product between two vectors, is very close to 1, indi-
cating a linear relation between experimental mode shapes and updated numerical mode 
shapes. Mode shapes are quite close to the ones of a base-clamped tube (Figure 3). A double 
mode around 85Hz has been badly identified experimentally and the updated numerical fre-
quencies and deformed shapes are not consistent. 

 

Mode number 
Measured frequency 

(Hz) 
Measured damping 

ratio (%) 
Updated frequency 

(Hz) 
MAC 

1 4.9 1.5 4.9 0.97 
2 8.5 1.5 8.4 0.97 
3 16.5 0.4 16.7 0.99 
4 31.8 0.2 31.7 0.98 
5 32.2 0.2 32.1 0.97 
6 47.8 0.2 47.5 0.99 
7 49.9 0.2 49.6 0.98 
8 88.5 0.2 87.7 0.80 
9 88.9 0.2 88.4 0.66 

Table 1 Comparison between measured and updated frequencies. Damping ratio and MAC. 

As the mode frequencies are well separated and providing that the damping is small, we 
make the modal damping assumption. The few well identified damping values will be used, 
typically 1.5% for the two first modes and 0.4% for the third mode. The other modes will be 
affected with 0.2%, common value for the metallic structures cast in one piece. The high fre-
quency modes above 7500Hz (this limit is derived from measured contact forces) will be arbi-
trary affected of a 2% damping ratio. 

a)  b)  c)  d)   

Figure 3 First four modal shapes of the updated numerical model: out-of-plane bending (a), in-plane 
bending (b), torsion (c), out-of-plane bending (d). 

3.2 Contact model  

The contact between tube and plates is solved using a functional representation of contact 
forces: if the displacement is smaller than a defined gap, then the contact force is null; else, 
the contact force applied to the node is proportional to the penetration and normal to the sur-
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face of the obstacle. The global stiffness of the contact between tube and plate has been expe-
rimentally measured at 4.106N/m, which is of the same order than the ovalization stiffness of 
a pipe presented in [2] or than the stiffness used in [1]. 

The geometry of the obstacle has been simplified, assuming that circles would be a good 
approximation of the foliated holes. The stiffness has to be distributed over the height of the 
support plate only using a few planar obstacles (Figure 4). This is done degrading the initial 
contact where both the plate and the tube are modeled as solids. The contact between a beam 
and the plate would be modeled as the interaction between a neutral fiber and a contact stiff-
ness density. Here, contact conditions are assigned to nodes interacting with discrete springs 
whose value is the global stiffness divided by the number of planar obstacles. 

a)   b)  c)   

Figure 4 Different contact models: a) solid-solid, b) neutral fiber-stiffness density, c) beam nodes-
discrete springs. 

When the gap between tube and plate reduces to zero, the translations along x and y are 
blocked. Due to the support plate thickness, the corresponding rotations are also blocked. To 
block the rotations, at least two levels of obstacles must be considered. When the gap is zero, 
the tube is connected to the discrete springs. The evolution of the eigen modes with respect to 
the contact stiffness is compared for different number of discrete obstacles. There are twenty-
one nodes along the plate thickness so at most twenty-one obstacles can be considered. Five 
levels of obstacles imply very limited errors on frequencies compared to those found with 
twenty-one obstacles. 

 
Figure 5 Evolution of the first eigen frequency with respect to the global contact stiffness. The modes 

go from unconstrained boundary conditions to supported and then clamped ones. 
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No shock damping was used as no physical value has been identified. Friction was not tak-
en into account. We consider that the dissipation induced by the modal damping stands for all 
the physical dissipation. 

3.3 Reduced basis  

The tube non-linear dynamics are computed solving the discretized equation: 

 shaker shock( ) ( )NLMX CX KX F t F X+ + = +&& &  (1) 

where M, C and K are the mass, damping and stiffness matrices of the unconstrained tube. 
The external excitation field has been separated between the excitation term that stems from 
the shaker and the contact/impact forces located at five nodes per support plate. To reduce the 
size of this system, we project (1) on a reduced basis T. The degrees of freedom q are solution 
of (2), with X Tq= : 

 shaker shock shaker shock( ) ( ) ( )T T NL NL
r r rM q C q K q T F T F cTq f t f q+ + = + = +&& &  (2) 

and [c]  is an observation matrix used to express the penetration as a linear combination of the 
degrees of freedom. 

We now detail the reduction basis building procedure. The basis must be rich enough to 
solve precisely the non-linear dynamics but should be as reduced as possible to allow quick 
computations. The basis must describe tube displacements when the gap is large, i.e. the tube 
is unconstrained, and when the gap is close to zero, i.e. when the tube is constrained. Moreo-
ver, shock forces applied at a few nodes must be well projected. Finally, the induced spectral 
bandwidth must include the high frequencies excited by contact/impact forces (around 
7500Hz). 

The quality of the reduced basis is first based on the computation of the eigen modes of the 
tube with bilateral contact conditions. We compare frequencies and deformed shapes found 
solving the reduced problem or solving the un-projected problem. The error is not significant 
for a wide range of bilateral contact stiffness if the reduced basis is built concatenating de-
formed shapes of: 

- the unconstrained tube, 
- the tube with x and y translation degrees of freedom blocked over the thickness of 

the support plate, 
- the tube with x and y translation degrees of freedom blocked at middle node of the 

support plate, 
- static corrections which correspond to unitary force imposed on each degree of 

freedom of the obstacles (KX=bi). 
Family of vectors T is no more orthogonal with respect to M and K. That is, some vectors 

are nearly collinear. For example, the static corrections are nearly collinear one to each other 
and nearly collinear to the first in-plane and out-of-plane bending modes. Collinear vectors 
are eliminated and the remaining family is orthonormalized with respect to M and K, as pre-
sented for example in [3]. The first deformed shapes, corresponding to the unconstrained tube, 
are not changed. In fact, only the information (frequency and deformed shapes) about high 
frequencies has been modified. As Cr is assumed diagonal by hypothesis (modal damping), all 
the matrices appearing in (2) are diagonal. Thus, the numerical computations are accelerated. 

The choice of the reduced basis, presented in Table 2, has been validated with non-linear 
numerical simulations. “Blocked modes” and static corrections are really useful: the same 
quality of results is obtained but using fewer modes. 
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Type of basis Number of modes Minimal frequency (Hz) Maximal frequency (Hz)  
Unconstrained modes 130 4.9 7430  

Clamped modes 126 59.7 7490  
Supported modes 126 30.0 7430  
Static corrections 20 - -  

Concatenated 402 - -  
Orthonormalized 199 4.9 1.8.105  

Table 2 Comparison of different projection basis. Orthonormalisation has eliminated half of the vectors 
and affected high frequencies to static corrections and blocked modes. 

3.4 Comparison of numerical simulations with test results  

Numerical simulations have been computed for different gaps and different imposed exci-
tations, without velocity feedback. A non-linear Newmark average acceleration scheme [4] is 
used, with a time-step of 2.10-5s, small enough to avoid energy errors during non-linear time 
integration. No numerical dissipation is introduced. Measurements are performed at a sam-
pling frequency of 2048Hz. Power Spectral Densities (PSD) (see [5] for example), are com-
puted. The PSD estimator is normalized to compare signals with different time-steps: 

 
22

,
1

2
( )

M

xx k m k
m

dt
S f X

M =

= ∑  (3) 

M windowed signals are extracted using overlap and a Hann window leading to M Discrete 
Fourier Transform (DFT) Xm,k. At each frequency, to take into account the variability of each 
windowed signal, we store the maximal and minimal value over these M DFT and compute 
the mean value. 

a)  b)  

c) d)   

Figure 6 PSD of the out-of-plane apex acceleration measured (green) or simulated (blue), for increasing 
RMS value of the excitation (a to d). Vertical lines indicate unconstrained modes of the tube. 
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A random voltage filtered between 10 and 40Hz is fed to the shaker; the injected force is 
modulated by the interaction between the tube and the shaker. This force is measured and 
used as excitation in the numerical simulations. Accelerations are computed or measured at 
the tube apex, in the out-of-plane direction (Figure 6). Test-analysis correlation is correct over 
the frequency band [10Hz, 200Hz]. For most peaks and most levels of excitation, amplitudes 
and frequencies match. The spread of the peaks around 90Hz and 170 Hz is well represented. 
The anti-resonance around 120Hz is both measured and computed. But the emerging peaks 
around 28-30Hz and 70Hz are not well reproduced numerically, with the response over-
estimated and frequencies that not really match. 

The satisfactory correlation between test results and numerical simulations validate the 
construction of the numerical model. A beam model, a contact model, a reduced basis and an 
integration scheme have been chosen to accurately and quickly compute the non-linear dy-
namics of a U-tube impacting support plates. 

4 EFFECT OF BILATERAL CONTACT ON COMPLEX POLES  

An apparent contact stiffness can be derived from the retained shock model by dividing the 
contact force with the node displacement. This apparent contact stiffness is null when the con-
tact force is null and tends to the contact stiffness when the force goes to infinity. At every 
time instant, depending on contact conditions, an underlying linear system exists. In this part, 
we consider a very simple underlying linear system: each contact node is affected bilateral 
contact conditions with equal contact stiffness, varying from 0 to 108N/m, as if the gap was 
null. 

Assuming that a feedback loop makes the shaker inject a collocated force proportional to 
the out-of-plane velocity of a tube leg point and replacing contact/impact forces with bilateral 
contact conditions, the dynamics (2) is now solution of: 

 [ ] [ ]    
TT

r r r bil loop bilM q C q K q g T c c Tq k K q g C q k K q+ + = − = −&& & & &  (4) 

with [c]  the observation matrix of the degree of freedom whose velocity is measured and g 
the gain of the feedback loop; [K bil]  is the unitary bilateral contact stiffness matrix and k is the 
apparent contact stiffness. It is worth noting that Cloop and Kbil are not diagonal matrices. We 
study the stability of this linear system with respect to the position [c] , gain g and stiffness k. 
To do this, we compute the complex eigenmodes of the following system: 

 ( ) ( ) { } { }2   0i r i r loop r bil iM C g C K k Kλ λ ψ + − + + =   (5) 

The complex poles are expressed in terms of frequency ωi and damping ratio ζi (6). They 
are arbitrary sorted by increasing frequency, which is a convenient but delusive choice. 

 21i i i i ijλ ζ ω ω ζ= − + −  (6) 

We are interested in destabilizing low frequency modes. This is done choosing the point 
where to inject the feedback force, about 20cm below the support plate. The modes which can 
be easily observed, i.e. with high [cTi] , are the ones whose damping ratio is changed. Every 
mode with large out-of-plane components becomes unstable except for the second torsion 
mode and the third out-of-plane bending mode (Figure 7): a vibration node is located near the 
shaker. We remark that frequencies are not modified when g increases. Damping ratio is a li-
near function of g. Even if the damping ratio is quite high (-10% for the first mode and g=20), 
mode shapes are very correlated to the mode shapes of the unconstrained model. 
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a)  b)  

Figure 7 a) Evolution of the complex poles with respect to the feedback parameter. If the real part is 
positive, the mode is unstable. b) MAC-M between the unconstrained modes and the complex modes 

obtained for g=20. 

Pole evolution in the complex plane with respect to the apparent contact stiffness is much 
more complex, with many crossings. In the meantime, deformed shapes are continuously 
transformed. For large enough apparent contact stiffness, the deformed shapes are no longer 
correlated to those of the unconstrained model. The MAC matrix between these two sets of 
deformed shapes is not diagonal (Figure 8). We focus on the evolution of frequencies and 
damping ratios (Figure 8), for a given feedback parameter (here, g=5). Frequencies increase 
with respect to the apparent contact stiffness. Damping ratio evolution is more complex. For 
some modes, damping ratio is not affected by the apparent contact stiffness. These modes 
were stable and stay stable. The first in-plane flexion mode has an initial damping ratio of 1% 
which decreases to 0.2%. Initially unstable modes become stable, their damping ratio increas-
ing with respect to the apparent contact stiffness. The mechanical system is stabilized for ap-
parent contact stiffness greater than 106N/m: every damping ratio is positive. 

a) b)  

Figure 8 Evolution of the frequency (a) and the damping ratio (b) with respect to the apparent contact 
stiffness. Green points denote stable systems, with no negative damping ratio. 

For a given feedback parameter, adding bilateral contact conditions leads to pole modifica-
tions and unstable modes are transformed to stable ones. The stability of the mechanical sys-
tem has been studied for a wide range of feedback parameter and apparent contact stiffness 
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(Figure 9). If g is small enough, the system is stable. If g is large enough, the system is unsta-
ble. If not, the system is unstable unless k is greater than a given value, which increases as g 
increases. 

 
Figure 9 Stable configurations with respect to the feedback parameter and the apparent contact stiffness. 

5 NON-LINEAR SIMULATIONS  

Adding bilateral contact conditions to the destabilized tube can lead to stable mechanical 
system. In this part, we investigate the effect of shocks on the stability of the tube, subjected 
to a positive feedback loop on the velocity. Numerical and experimental results are presented. 
Computed out-of-plane displacements and measured accelerations are observed (Figure 10). 
Support plates are between P3 and P4 and between P8 and P9, i.e. close to the top of the legs. 
The shaker is right under P3. 

a)   b)   

Figure 10 a) Sensor location. b) Corresponding out-of-plane translation degrees of freedom. For example, 
P4X corresponds to 471.01. The shaker is indicated with a red point. 
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5.1 Numerical results  

Initial conditions are null. Tube is excited at its apex by an impact or by a low-pass filtered 
noise. Non-linear simulations are made over 30s, with a time-step of 2.10-5s. 

For low values of g, displacements are bounded (Figure 11). For g=0, free vibrations of a 
damped mechanical system are observed. g=6 should imply an unstable dynamics, as the ap-
parent contact stiffness stabilizing it is greater than the contact stiffness used in the contact 
model. Feedback loop brings energy to the tube, which is dissipated during contact phases and 
in high-frequency modes. The vibration regime is stationary. 

a)  b)   

Figure 11 Computed displacements (blue: 236.01; green: 261.01; red: 471.01; cyan: 426.01) for different 
values of g. a) Damped vibrations. b) Stationary vibrations: displacements are bounded. 

When displacements grow, penetrations and contact forces grow. This can define a crite-
rion describing the stability of a computed non-linear dynamics: if contact forces exceed 
1000N, which corresponds to a penetration equal to the tube thickness, the simulation is de-
scribed as unstable. Non-linear contact forces computed in section (3.4) were less than 50N. 
For greater values of g, displacement amplitude increases (Figure 12). Even if crest-to-crest 
out-of-plane apex displacement reaches 8mm, which is quite high, simulated dynamics with 
g=12, seems stable. When displacements are big enough, contact forces grow and energy is 
dissipated. Unstable dynamics is exhibited for g=12.1. Contact forces do not stabilize the sys-
tem, damping stays negative and amplitude of displacements grows until maximum contact 
force criterion is met. 

a)  b)   

Figure 12 Computed displacements (blue: 236.01; green: 261.01; red: 471.01; cyan: 426.01) for different 
values of g. Tube is initially excited by an impact. a) displacements grow but remain bounded and even-

tually decrease; b) unstable regime: contact forces do not stabilize growing displacements 
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The same behavior has been observed when the impact excitation was replaced by a low-
pass filtered noise. Feedback parameters lower than g=12.6 lead to stable dynamics. Contact 
forces can numerically stabilize unstable dynamics, and for a wider range of feedback para-
meter g than a bilateral contact model. 

The apparent contact stiffness distribution drives the maximal stable value of g. For no-
minal value of gap between tube and support plates, bilateral contact model with equal stiff-
ness affected at each discrete obstacle is a bad approximation of the real distribution of 
apparent contact stiffness (Figure 13). Apparent contact stiffness is not uniformly distributed 
over the different obstacles. Superior obstacles apparent stiffness is globally higher than this 
of inferior obstacles. The apparent stiffness of the left leg obstacles is totally linearly uncorre-
lated to apparent stiffness of the right leg obstacles. The apparent stiffness of neighbour con-
tact points is highly correlated and decreases with the distance. 

a)  b)   

Figure 13 a) Cumulative distribution function of apparent contact stiffness. Contact nodes from bottom to 
top of the support plate: N153 and N438 (blue), N158 and N443 (green), N163 and N448 (red), N168 
and N453 (cyan), N173 and N458 (magenta). b) Statistical correlation of apparent contact stiffness. 

5.2 Experimental results 

The destabilization is achieved by feeding to the shaker a velocity signal obtained by inte-
grating measured acceleration. The feedback parameter g is fixed using a voltage amplifier. 
Due to the coupling between tube and shaker, the injected force is not simply proportional to 
the velocity: peak amplifications and differences of phase are observed. To impose null initial 
conditions, shaker rod and tube are manually stopped and then let free. Measurement noise is 
thus amplified by the feedback loop and excites the tube. If g is large enough, vibration ampli-
tude grows. Shocks occur and vibration amplitude remains bounded. 

Different regimes can be distinguished in Figure 14. The initial amplitude growth clearly 
appears on all measurement channels. A stabilized shock regime lasted for about one minute. 
Then, three different regimes where observed. They differ by their spectral repartition of 
energy, peak frequencies not being modified. 

Operating Deflection Shapes (ODS) can be exhibited. They have vibration nodes located at 
nodes close to the support plates. They differ from mode shapes of the unconstrained model. 
They look like mode shapes of the bilateral contact model: ODS are combinations of different 
shapes, with phase difference, for example a torsion mode combined with an in-plane bending 
mode. In-plane movements are of the same amplitude as the out-of-plane movements: the 
specific shape of the foliate hole couples these directions. 
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a)                           

b) c) d)  

Figure 14 a) Measured acceleration signals. Red lines separate the different observed regimes. b) PSD of 
the stabilized regime (16s to 78s). c) ODS at 37.8 Hz for the stabilized regime: torsion mode. d) ODS at 

230.7 Hz for the stabilized regime: out-of-plane bending. 

Despite drawbacks on velocity measurement and on injection of a proportional force, the 
tube has been destabilized, and it has been shown that contact forces kept vibration amplitude 
bounded. 

6 CONCLUSIONS  

This paper presents the stabilization effect of shocks on an unstable mechanical system. An 
experimental bench consists of a portion of steam generator U-tube. A feedback loop injects a 
force proportional to a measured velocity. The tube is destabilized by this “negative damping”. 
Foliate obstacles stop the growth of vibration amplitudes, which remain bounded. A numeri-
cal model has been built. The choice of a beam model, a simplified contact model and a re-
duced basis has been presented. Numerical simulations are quick and correlated to 
measurements, in the absence of feedback loop. Feedback loop is idealized for numerical si-
mulations: injected force is proportional to the velocity. Unstable free systems are kept 
bounded by shocks. A possible explanation of the stabilization effect is given studying a li-
near bilateral contact system: contact stiffness modifies the complex poles. 

Some work has still to be done to make the three approaches converge and predict the 
same feedback parameter leading to global instability and dynamical divergence. The contact 
model should be more complex, the specific foliate shape coupling in in-plane and out-of-
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plane motions. The feedback loop from measured velocity to injected force should be mod-
eled and affected to numerical simulations. Finally, bilateral contact is a too rough linear 
model: apparent contact stiffness is not uniformly distributed over the obstacles. 
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