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Abstract. In Pressurized Water Reactors of nuclear powentslasteam generators act as
heat exchangers between primary and secondary obdlads. They consist of a bundle of
U-tubes in which flows the primary coolant fluicevBral support plates guide these tubes
vertically. Secondary coolant fluid flows along tdeubes and passes through the space be-
tween tubes and plates. This space, initially éblete shape, is filled with sludge deposits.
Consequently, fluid flow is accelerated and theetulare more excited. Moreover, the me-
chanical bonding between tube and plate is changbd.combination of these two phenome-
na can lead to dynamic instabilities and tube ceackhis paper focuses on the effects of
shocks on tube instability. As we concentrate eneghanical point of view, the study of the
nonlinear dynamics is made in the following spectfonditions: the tube is in air with no
flowing fluid; an instability is generated by injewy a force proportional to the velocity of a
point of the leg of the tube. The tube is modekedraEuler-Bernoulli beam. The contact be-
tween tube and plate is computed assuming circoltstacles and a contact force that is li-
near with a gap. A reduced model is generated poegent the bandwidth of interest and the
effect of contact forces. Time evolution is themgoted using a nonlinear Newmark scheme.
Numerical simulations show the effect of shockineatities on the dynamics. Cases of unst-
able unconstrained tubes leading to bounded stdigleamics when shocks occur are ana-
lyzed. The instability in the unconstrained comuitdoes not imply that the bilateral contact
condition is unstable. Areas of the contact stgftkeedback gain plane are shown to lead to
stable modes of the bilateral model. The work flx@sents results on an experimental bench
that includes the curved part of a tube and onep8tigPlate. The instability is generated by
feeding back to a shaker the amplified signal ofebocity measurement performed with an
integrated accelerometer. For great enough feedbgaiks, the vibration amplitudes grow
until shocks occur. The permanent regime eventdaillpd is analyzed. A good similarity be-
tween test and analysis is found.
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1 INTRODUCTION

In Pressurized Water Reactor (PWR) of nuclear pguemts, steam generators exchange
heat between primary coolant fluid and secondanfact fluid (Figure 1). They consist of a
bundle of inversed U-tubes in which flows the pniyneoolant fluid. These tubes are clamped
at the bottom of their legs. Several support platagitain them vertically. Secondary coolant
fluid flows along the tubes and through the holeglenon the support plates.

a) © Primarycircuit @ Secondarycircuit | b)

Figure 1  a) Scheme of a PWR nuclear plant. Three fluid discare described: primary circuit (red),
secondary circuit (blue) and a cooling circuit @e b) Scheme of a steam generator. The bundle of
tubes and support plates are shown.

The space between the tubes and the support piaitésl]y of a foliate shape, is filled
with sludge deposits. Consequently, fluid flow cc@lerated and the tubes are more excited.
Moreover, the mechanical bonding between tube daté ps changed, from free gap to
clamping. The combination of these two phenomemalead to dynamic instabilities and
tube cracks.

Different methods are available to predict tubeéahsity in regard with external fluid flow.
The method developed by EDF uses linear boundamglittons to model the interaction be-
tween the tube and the support plates, typicalyngling or supporting. Investigations have
been made to get better understanding of the ralge@ by shock non-linearity in respect
with tube instability.

Piteau et al. [1] have made experiments and cortipagaof a vibro-impacting straight
tube subjected to fluid-elastic forces and planspldcements. Shocks modify the instantane-
ous response frequency and thus modify the fluagdtal forces, explaining how shocks can
stabilize this unstable dynamics. Here, we investighe stabilization effect of shock non-
linearity by itself. The study of the nonlinear dynics is made in the following conditions:
the U-tube is in air with no flowing fluid; instdiby is generated by injecting a force propor-
tional to the velocity of a point of the leg of thee.

Section 2 presents the experimental setup. Comadel and reduced basis used for nu-
merical simulations are presented in section 3.staRility of a tube with linear contact stiff-
ness is studied in section 4. Finally, numerical arperimental non-linear simulations are
presented in section 5.

2 EXPERIMENTAL BENCH

The experimental bench consists of a portion oftaté (Figure 2), constrained at its basis
to be as near as possible to a clamped conditioa.two legs of the tube are inserted in fo-



T. Thénint, E. Balmes and M. Corus

liated obstacles, whose geometry reproduces reglostiplates. These obstacles have been
machined with different radius, the gap betweenla¢e and the tube approximating the

quantity of sludge deposits. The maximum gap abkiles around one percent of the external

diameter of the tube. The thickness of a suppatepgk about 1.5 times the external diameter
of the tube.

APIRA, Sl .. |

<

Figure 2  a) Global view of the experimental bench. We dgtish the two foliated obstacles right un-
der the curved part and the shaker on the rightdgBetailed view of a foliated obstacle.

A shaker excites the leg in the out-of-plangirection ¢ is the vertical ang is an in-plane
direction). The shaker is fixed on a lift table, & to adjust the height of the destabilizing
force. Twenty-two B&K 4375 sensors measure accetera at different points of the struc-
ture. A B&K 2635 charge amplifier integrates theeleration and feeds an electrical voltage
proportional to the velocity of the excitation pbiMeasurements are sampled using LMS
Scadas Il Front-end, driven by LMS Test.Lab sofewva

3 NUMERICAL MODEL

A reduced model has been built to perform non-limeanerical simulations. An updated
numerical model of the experimental bench is createsection 3.1. The contact model be-
tween tube and plate is presented in section &uéed basis is built in section 3.3. Numeri-
cal simulations are compared with test resultectisn 3.4.

3.1 Beam model

The tube is modeled as a curved beam. The lengtheoélements is compatible with a
maximum frequency of interest linked to the speutrof the contact loads. A preliminary
study of the kinematic in the contact area hasuedtbo consider an Euler-Bernoulli formula-
tion rather than a Timoshenko formulation.

The mechanical connection between the tube andranee is quite stiff but is far from
clamped conditions. We represent this bind withdsscrete springs, three affecting the trans-

3
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lation degrees of freedom and three affecting titation degrees of freedom. A modal analy-
sis gave us twelve modes under 200Hz. The tuberi@aparameters and the stiffness of the
discrete springs were updated taking into accdumtiriequency of the modes 4, 7, 9 and 11,
out-of-plane bending or torsion modes.

The frequencies smaller than 100Hz are quite weletated (Table 1). The MAC (Modal
Assurance Criterion), normalized scalar produciveen two vectors, is very close to 1, indi-
cating a linear relation between experimental medapes and updated numerical mode
shapes. Mode shapes are quite close to the oreebade-clamped tube (Figure 3). A double
mode around 85Hz has been badly identified experially and the updated numerical fre-
guencies and deformed shapes are not consistent.

Mode numberMeaSlJred frequencieasured dampin Updated frequencyMAC

(Hz) ratio (%) (Hz)
1 4.9 15 4.9 0.97
2 8.5 15 8.4 0.97
3 16.5 0.4 16.7 0.99
4 31.8 0.2 31.7 0.98
5 32.2 0.2 32.1 0.97
6 47.8 0.2 47.5 0.99
7 49.9 0.2 49.6 0.98
8 88.5 0.2 87.7 0.80
9 88.9 0.2 88.4 0.66

Table 1 Comparison between measured and updated frequebBeieging ratio and MAC.

As the mode frequencies are well separated anddingvthat the damping is small, we
make the modal damping assumption. The few weltiled damping values will be used,
typically 1.5% for the two first modes and 0.4% tbe third mode. The other modes will be
affected with 0.2%, common value for the metaltitistures cast in one piece. The high fre-
guency modes above 7500Hz (this limit is derivednfimeasured contact forces) will be arbi-
trary affected of a 2% damping ratio.

Mode 1 at 4.863 Hz Mode 2 at 8.364 Hz Mode 3 at 16.68 Hz Mode 4 at 31.7 Hz

a) b) c) d)
Figure 3 First four modal shapes of the updated numericalehmut-of-plane bending (a), in-plane
bending (b), torsion (c), out-of-plane bending (d).
3.2 Contact model

The contact between tube and plates is solved @singctional representation of contact
forces: if the displacement is smaller than a aefigap, then the contact force is null; else,
the contact force applied to the node is propodido the penetration and normal to the sur-
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face of the obstacle. The global stiffness of thetact between tube and plate has been expe-
rimentally measured at 4.90%m, which is of the same order than the ovalizastffness of
a pipe presented in [2] or than the stiffness uis¢i].

The geometry of the obstacle has been simplifisduming that circles would be a good
approximation of the foliated holes. The stiffnéss to be distributed over the height of the
support plate only using a few planar obstaclegufé 4). This is done degrading the initial
contact where both the plate and the tube are radde solids. The contact between a beam
and the plate would be modeled as the interactetwden a neutral fiber and a contact stiff-
ness density. Here, contact conditions are assigmeddes interacting with discrete springs
whose value is the global stiffness divided byrthenber of planar obstacles.

1

! b L tube
tube tube L
: : %

SP sP e sp

*

a) : b) C)

Figure 4  Different contact models: a) solid-solid, b) nelfitaer-stiffness density, c) beam nodes-
discrete springs.

When the gap between tube and plate reduces to therdranslations along andy are
blocked. Due to the support plate thickness, threesponding rotations are also blocked. To
block the rotations, at least two levels of obsiachust be considered. When the gap is zero,
the tube is connected to the discrete springs.eVbution of the eigen modes with respect to
the contact stiffness is compared for different banof discrete obstacles. There are twenty-
one nodes along the plate thickness so at mosttyveere obstacles can be considered. Five
levels of obstacles imply very limited errors oeduencies compared to those found with
twenty-one obstacles.
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Figure 5  Evolution of the first eigen frequency with resptcthe global contact stiffness. The modes
go from unconstrained boundary conditions to suigaband then clamped ones.
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No shock damping was used as no physical valubdas identified. Friction was not tak-
en into account. We consider that the dissipatmluced by the modal damping stands for all
the physical dissipation.

3.3 Reduced basis
The tube non-linear dynamics are computed sohhegliscretized equation:

MX + CX + Kx = Ighaker( t) + FsNhLocl( X) (l)

whereM, C andK are the mass, damping and stiffness matriceseotititonstrained tube.
The external excitation field has been separatéddsn the excitation term that stems from
the shaker and the contact/impact forces locatéigeanodes per support plate. To reduce the
size of this system, we project (1) on a reducesisiia The degrees of freedognare solution

of (2), with X =TqQ:

qu+ Cr q+ K q: TT Ehaker+ TT Fs'\i‘::)cl( CTQ‘: fshakgr):-l_ f\ls;ogkm (2)

and|c] is an observation matrix used to express the pai@t as a linear combination of the
degrees of freedom.

We now detail the reduction basis building proceddrhe basis must be rich enough to
solve precisely the non-linear dynamics but shdxddas reduced as possible to allow quick
computations. The basis must describe tube displects when the gap is large, i.e. the tube
is unconstrained, and when the gap is close tqg zerovhen the tube is constrained. Moreo-
ver, shock forces applied at a few nodes must bepn@gected. Finally, the induced spectral
bandwidth must include the high frequencies excibtsd contact/impact forces (around
7500Hz).

The quality of the reduced basis is first basethencomputation of the eigen modes of the
tube with bilateral contact conditions. We compfegjuencies and deformed shapes found
solving the reduced problem or solving the un-poigje problem. The error is not significant
for a wide range of bilateral contact stiffnesshi# reduced basis is built concatenating de-
formed shapes of:

- the unconstrained tube,

- the tube withx andy translation degrees of freedom blocked over tiektiess of
the support plate,

- the tube withx andy translation degrees of freedom blocked at middigenof the
support plate,

- static corrections which correspond to unitary éormposed on each degree of
freedom of the obstacleKX=b;).

Family of vectorsT is no more orthogonal with respectNbandK. That is, some vectors
are nearly collinear. For example, the static aioas are nearly collinear one to each other
and nearly collinear to the first in-plane and ofiplane bending modes. Collinear vectors
are eliminated and the remaining family is orthenalized with respect tM andK, as pre-
sented for example in [3]. The first deformed slsaperresponding to the unconstrained tube,
are not changed. In fact, only the information dtrency and deformed shapes) about high
frequencies has been modified. Bsis assumed diagonal by hypothesis (modal dampadg),
the matrices appearing in (2) are diagonal. Thhespumerical computations are accelerated.

The choice of the reduced basis, presented in Tahbtas been validated with non-linear
numerical simulations. “Blocked modes” and staticrections are really useful: the same
quality of results is obtained but using fewer nede
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Type of basis Number of modédinimal frequency (Hz)Maximal frequency (Hz)

Unconstrained modes 130 4.9 7430
Clamped modes 126 59.7 7490
Supported modes 126 30.0 7430
Static corrections 20 - -

Concatenated 402 - -
Orthonormalized 199 4.9 1.870

Table 2 Comparison of different projection basis. Orthonalisation has eliminated half of the vectors
and affected high frequencies to static correctamtblocked modes.

3.4 Comparison of numerical simulations with test resubs

Numerical simulations have been computed for difiegaps and different imposed exci-
tations, without velocity feedback. A non-linearvideark average acceleration scheme [4] is
used, with a time-step of 2.3, small enough to avoid energy errors during roeak time
integration. No numerical dissipation is introducéteasurements are performed at a sam-
pling frequency of 2048Hz. Power Spectral Densi(RSD) (see [5] for example), are com-
puted. The PSD estimator is normalized to compgreats with different time-steps:

2

2dt* &
Sxx( fk) = M z‘ Xm k‘ (3)

m=1

M windowed signals are extracted using overlap addran window leading t¥ Discrete
Fourier Transform (DFTXn « At each frequency, to take into account the \mlitst of each
windowed signal, we store the maximal and mininalg over thes& DFT and compute

the mean value.

10" i
N N
L L
% 0
236,01 (0.33 N RMS) | m——236.01(0.57 N RMS)
e X (0.33 N RMS) | == 1X (057 N RMS)
50 100 150 200 50 100 150 200
a) (Hz) b) (Hz)
10"
N N
L L
% 0
£ SRt _ 2 £
107 ||| == 23601 (1.37 NRMS) | | 10° | m— 23601 (2.52 N RMS)
e 1X (1.37 N RMS) | = 1X (252 N RMS)
50 100 150 200 50 100 150 200
c) (Hz) d) (Hz)

Figure 6  PSD of the out-of-plane apex acceleration meas{gnen) or simulated (blue), for increasing
RMS value of the excitation (a to d). Vertical kniedicate unconstrained modes of the tube.
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A random voltage filtered between 10 and 40Hz dstiethe shaker; the injected force is
modulated by the interaction between the tube &edshaker. This force is measured and
used as excitation in the numerical simulationsceserations are computed or measured at
the tube apex, in the out-of-plane direction (Fe&g6). Test-analysis correlation is correct over
the frequency band [10Hz, 200Hz]. For most peakkraaost levels of excitation, amplitudes
and frequencies match. The spread of the peaksi@@Hz and 170 Hz is well represented.
The anti-resonance around 120Hz is both measurécdc@mputed. But the emerging peaks
around 28-30Hz and 70Hz are not well reproduced anigally, with the response over-
estimated and frequencies that not really match.

The satisfactory correlation between test resutid mumerical simulations validate the
construction of the numerical model. A beam modeatpntact model, a reduced basis and an
integration scheme have been chosen to accuratdlygaickly compute the non-linear dy-
namics of a U-tube impacting support plates.

4 EFFECT OF BILATERAL CONTACT ON COMPLEX POLES

An apparent contact stiffness can be derived fioarétained shock model by dividing the
contact force with the node displacement. This egagacontact stiffness is null when the con-
tact force is null and tends to the contact sté@hen the force goes to infinity. At every
time instant, depending on contact conditions, raedying linear system exists. In this part,
we consider a very simple underlying linear systeach contact node is affected bilateral
contact conditions with equal contact stiffnesgyiay from 0 to 18N/m, as if the gap was
null.

Assuming that a feedback loop makes the shakectiaje&ollocated force proportional to
the out-of-plane velocity of a tube leg point aeglacing contact/impact forces with bilateral
contact conditions, the dynamics (2) is now solutf

Ma+Ca+Ka=gT[¢[¢Ta ki & g & ki (4)

with [c] the observation matrix of the degree of freedonosehvelocity is measured agd
the gain of the feedback looffs »i] is the unitary bilateral contact stiffness matandk is the
apparent contact stiffness. It is worth noting Gas, andKy; are not diagonal matrices. We
study the stability of this linear system with respto the positioific] , gaing and stiffnes.
To do this, we compute the complex eigenmodesefdtiowing system:

[/]iZMf-l-/‘ (Cf -9 CI:OOp)-l_(K'i'kK)n )}{‘/l.}:{o} (5)

The complex poles are expressed in terms of frea;quenand damping ratig; (6). They
are arbitrary sorted by increasing frequency, wiscé convenient but delusive choice.

A=={a+ jw1-¢ (6)

We are interested in destabilizing low frequencyde® This is done choosing the point
where to inject the feedback force, about 20cmvkele support plate. The modes which can
be easily observed, i.e. with hiftiT;], are the ones whose damping ratio is changed.yEver
mode with large out-of-plane components becomesables except for the second torsion
mode and the third out-of-plane bending mode (FEig0r a vibration node is located near the
shaker. We remark that frequencies are not modifieeng increases. Damping ratio is a li-
near function ofy. Even if the damping ratio is quite high (-10% fioe first mode and=20),
mode shapes are very correlated to the mode sbfes unconstrained model.
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Figure 7 a) Evolution of the complex poles with respecthte teedback parameter. If the real part is
positive, the mode is unstable. b) MAC-M betweenuihconstrained modes and the complex modes
obtained forg=20.

Pole evolution in the complex plane with respecthi® apparent contact stiffness is much
more complex, with many crossings. In the meantidefprmed shapes are continuously
transformed. For large enough apparent contaé¢hesi$, the deformed shapes are no longer
correlated to those of the unconstrained model. NTIA€ matrix between these two sets of
deformed shapes is not diagonal (Figure 8). We damu the evolution of frequencies and
damping ratios (Figure 8), for a given feedbackapaater (hereg=5). Frequencies increase
with respect to the apparent contact stiffness. @agiratio evolution is more complex. For
some modes, damping ratio is not affected by thEam@gmt contact stiffness. These modes
were stable and stay stable. The first in-planddle mode has an initial damping ratio of 1%
which decreases to 0.2%. Initially unstable modssne stable, their damping ratio increas-
ing with respect to the apparent contact stiffn@s® mechanical system is stabilized for ap-
parent contact stiffness greater thafiNith: every damping ratio is positive.

g=>5 g=5
==...“‘ .
*
*
300+ 3 05} ‘e, 1
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* 04 213312321
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e -
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Figure 8  Evolution of the frequency (a) and the dampingorélt) with respect to the apparent contact
stiffness. Green points denote stable systems,naithegative damping ratio.

For a given feedback parameter, adding bilatenalazt conditions leads to pole modifica-
tions and unstable modes are transformed to stadds. The stability of the mechanical sys-
tem has been studied for a wide range of feedbacknmeter and apparent contact stiffness
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(Figure 9). Ifg is small enough, the system is stabley i§ large enough, the system is unsta-
ble. If not, the system is unstable unl&ss greater than a given value, which increases as

increases.

stable configurations

10 ! ! ! '
10 -
2
xz TO@@@ ..................................................... _
10 .......................................................................... ..................................................... —
i i | ] | I
8 10 12 14 16 18 20
g
Figure 9  Stable configurations with respect to the feedlymarlameter and the apparent contact stiffness.

5 NON-LINEAR SIMULATIONS

Adding bilateral contact conditions to the desiabd tube can lead to stable mechanical
system. In this part, we investigate the effecstodcks on the stability of the tube, subjected
to a positive feedback loop on the velocity. Nurm@rand experimental results are presented.
Computed out-of-plane displacements and measureglesations are observed (Figure 10).
Support plates are between P3 and P4 and betweandPB9, i.e. close to the top of the legs.

The shaker is right under P3.

P5 P6 261.01 236.01
P4
L 471.01 211.01
P3 P7 426.01
+ P8 186.01
P9 141.01
P2 T
et
o1 4 P10
e P
4 P11
Y\ZI/X ’
a) b) ]

Figure 10 a) Sensor location. b) Corresponding out-of-plaaadlation degrees of freedom. For example,
P4X corresponds to 471.01. The shaker is indicattda red point.

10
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5.1 Numerical results

Initial conditions are null. Tube is excited atagex by an impact or by a low-pass filtered
noise. Non-linear simulations are made over 308 aitime-step of 2.1%.

For low values ofy, displacements are bounded (Figure 11).d=fY, free vibrations of a
damped mechanical system are obserge@.should imply an unstable dynamics, as the ap-
parent contact stiffness stabilizing it is gredtean the contact stiffness used in the contact
model. Feedback loop brings energy to the tubeghvisi dissipated during contact phases and
in high-frequency modes. The vibration regime &ishary.

«10° 9= 0.0, impact «10® ¢ =6.0, impact

1 1

0 ‘Ib 26 30 0 ‘Ib 26 30
a) ) b) )

Figure 11 Computed displacements (blue: 236.01; green: 261e@1 471.01; cyan: 426.01) for different
values ofg. a) Damped vibrations. b) Stationary vibrationspthcements are bounded.

When displacements grow, penetrations and contaces$ grow. This can define a crite-
rion describing the stability of a computed norelin dynamics: if contact forces exceed
1000N, which corresponds to a penetration equéheéaube thickness, the simulation is de-
scribed as unstable. Non-linear contact forces emetpin section (3.4) were less than 50N.
For greater values @, displacement amplitude increases (Figure 12)nElerest-to-crest
out-of-plane apex displacement reaches 8mm, wisiduite high, simulated dynamics with
g=12, seems stable. When displacements are big Bnoogtact forces grow and energy is
dissipated. Unstable dynamics is exhibitedgiet2.1. Contact forces do not stabilize the sys-
tem, damping stays negative and amplitude of digplents grows until maximum contact
force criterion is met.

3 g=120, impact g =121, impact

x 10

) 0 'IIO 2I0 30 0 5 ‘Ib 1I5 26
a) (s) b) (s)

Figure 12 Computed displacements (blue: 236.01; green: 261e@1 471.01; cyan: 426.01) for different
values ofg. Tube is initially excited by an impact. a) diggaents grow but remain bounded and even-
tually decrease; b) unstable regime: contact fodoesot stabilize growing displacements

11
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The same behavior has been observed when the irepeitation was replaced by a low-
pass filtered noise. Feedback parameters lowerdh&B.6 lead to stable dynamics. Contact
forces can numerically stabilize unstable dynamaecgl for a wider range of feedback para-
meterg than a bilateral contact model.

The apparent contact stiffness distribution dritles maximal stable value @f For no-
minal value of gap between tube and support pléiésteral contact model with equal stiff-
ness affected at each discrete obstacle is a babxamation of the real distribution of
apparent contact stiffness (Figure 13). Apparentaxd stiffness is not uniformly distributed
over the different obstacles. Superior obstaclgmagnt stiffness is globally higher than this
of inferior obstacles. The apparent stiffness eflgft leg obstacles is totally linearly uncorre-
lated to apparent stiffness of the right leg oldetacThe apparent stiffness of neighbour con-
tact points is highly correlated and decreases thighdistance.

1

cumulative distribution function

statistical correlation

) ,;';' NABG L it "DDD
095 '“’;5‘/, ,"f! N453
-—la--"':: J”/, ,’ ‘f‘ N448
u-'*'“"w‘ o> s F N443
O ™ ST N438
o il A |
085 ) » l, Ni73le - T3 i
Bl L /,’ Ni6g iy [ | i iosa
0.8 bmm=”” N163
10 10 0 om0
a) k (N/m) b)

Figure 13 a) Cumulative distribution function of apparent tzm stiffness. Contact nodes from bottom to
top of the support plate: N153 and N438 (blue), 8laBd N443 (green), N163 and N448 (red), N168
and N453 (cyan), N173 and N458 (magenta). b) Sitaisorrelation of apparent contact stiffness.

5.2 Experimental results

The destabilization is achieved by feeding to tha@ksr a velocity signal obtained by inte-
grating measured acceleration. The feedback paeameés fixed using a voltage amplifier.
Due to the coupling between tube and shaker, fleeted force is not simply proportional to
the velocity: peak amplifications and differencéploase are observed. To impose null initial
conditions, shaker rod and tube are manually sthpel then let free. Measurement noise is
thus amplified by the feedback loop and excitedube. Ifg is large enough, vibration ampli-
tude grows. Shocks occur and vibration amplituceaias bounded.

Different regimes can be distinguished in Figure THe initial amplitude growth clearly
appears on all measurement channels. A stabilizecksegime lasted for about one minute.
Then, three different regimes where observed. Tdi#fgr by their spectral repartition of
energy, peak frequencies not being modified.

Operating Deflection Shapes (ODS) can be exhibitééy have vibration nodes located at
nodes close to the support plates. They differ froade shapes of the unconstrained model.
They look like mode shapes of the bilateral contagtlel: ODS are combinations of different
shapes, with phase difference, for example a tonsiode combined with an in-plane bending
mode. In-plane movements are of the same ampliigdthe out-of-plane movements: the
specific shape of the foliate hole couples thesections.
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Figure 14 a) Measured acceleration signals. Red lines septratdifferent observed regimes. b) PSD of
the stabilized regime (16s to 78s). ¢) ODS at B#z8or the stabilized regime: torsion mode. d) OGRS
230.7 Hz for the stabilized regime: out-of-planadiag.

Despite drawbacks on velocity measurement and jectian of a proportional force, the
tube has been destabilized, and it has been shHwticdntact forces kept vibration amplitude

bounded.

6 CONCLUSIONS

This paper presents the stabilization effect otkh@mn an unstable mechanical system. An
experimental bench consists of a portion of steanerator U-tube. A feedback loop injects a
force proportional to a measured velocity. The tisb@estabilized by this “negative damping”.
Foliate obstacles stop the growth of vibration atagés, which remain bounded. A numeri-
cal model has been built. The choice of a beam mademplified contact model and a re-
duced basis has been presented. Numerical sirmdataye quick and correlated to
measurements, in the absence of feedback loopb&eledoop is idealized for numerical si-
mulations: injected force is proportional to theloe#ty. Unstable free systems are kept
bounded by shocks. A possible explanation of thbilktation effect is given studying a li-
near bilateral contact system: contact stiffnesdifies the complex poles.

Some work has still to be done to make the thregogghes converge and predict the
same feedback parameter leading to global instylaitid dynamical divergence. The contact
model should be more complex, the specific folstt@pe coupling in in-plane and out-of-
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plane motions. The feedback loop from measuredcitglto injected force should be mod-
eled and affected to numerical simulations. Finatljateral contact is a too rough linear
model: apparent contact stiffness is not unifordistributed over the obstacles.
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