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Non shape regular domain decompositions: an

analysis using a stable decomposition in H1
0

Martin Gander ∗, Laurence Halpern†, Kévin Santugini Repiquet‡

July 7, 2011

Abstract

In this paper, we establish the existence of a stable decomposition in
the Sobolev space H1

0 for domain decompositions which are not shape reg-
ular in the usual sense. In particular, we consider domain decompositions
where the largest subdomain is significantly larger than the smallest sub-
domain. We provide an explicit upper bound for the stable decomposition
that is independant of the ratio between the diameter of the largest and
the smallest subdomain.

1 Introduction

One of the great success stories in domain decomposition methods is the
invention and analysis of the additive Schwarz method by [2]. Even before
the series of international conferences on domain decomposition meth-
ods started, [2] presented a variant of the classical alternating Schwarz
method (see [5]), which has the advantage of being symmetric for sym-
metric problems, and it also contains a coarse space component. In a
fully discrete analysis, [2] proved, based on a stable decomposition result
for shape regular decompositions, that the condition number of the pre-
conditioned operator with a decomposition into many subdomains only
grows as a function of H

δ
, where H is the subdomain diameter, and δ is

the overlap between subdomains. This analysis inspired a generation of
numerical analysts, who used these techniques in order to analyze many
other domain decomposition methods, see the reference books [6, 4, 7], or
the monographs [8, 1], and references therein.

The key assumption that the decomposition is shape regular is however
often not satisfied in practice: because of load balancing, highly refined
subdomains are often physically much smaller than subdomains contain-
ing less refined elements, and it is therefore of interest to consider domain
decompositions that are only locally shape regular, i.e. domain decompo-
sitions where the largest subdomain can be considerably larger than the
smallest subdomain. In such a domain decomposition, the ratio H

δ
can

be given at least two different meanings: let Hi refer to the diameter of
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subdomain number i and δi refer to the width of the overlap around sub-
domain number i. Is the explicit upper bound of the stable decomposition
linear in maxi(

Hi
δi

) or is it only linear in maxi(Hi)
mini(δi)

? The latter estimate
is much more pessimistic than the former when the subdomains are of
wildly different size, and the general analysis based on a shape regular
decomposition of the additive Schwarz method does not permit to answer
this question.

In [3], we established the existence of a stable decomposition in the
continuous setting with an explicit upper bound and a quantitative defi-
nition of shape regularity. The explicit upper bound is also linear in H

δ
,

and the result is limited to shape regular domain decompositions where
all subdomains have similar size and where the overlap width is uniform
over all subdomains. Having explicit upper bounds however allows us
now, using similar techniques, to establish the existence of a stable de-
composition in the continuous setting with explicit upper bounds when
maxi(Hi) � mini(Hi). We provide an explicit upper bound which is
linear in maxi(Hi/δi). To get this result, only a few of the inequalities
established in [3] need to be reworked, and it would be very difficult to ob-
tain such a result without the explicit upper bounds from the continuous
analysis in [3].

2 Geometric parameters and main theo-
rem

In the remainder of this paper, we always consider a domain decomposition
that has the following properties:

• Ω is a bounded domain of R2.

• The (Ui)1≤i≤N are a non overlapping domain decomposition of Ω,
i.e.

⋃N
i=1 U i = Ω. The Ui are bounded connected open sets of R2

and for all subdomains Ui the measure of U i \ Ui is zero.

• We set Hi := diam(Ui).

• Two distinct subdomains Ui and Uj are said to be neighbors if U i ∩
U j 6= ∅.

• For each subdomain Ui, let δi > 0 be such that 2δi ≤ minj,Ui∩Uj=∅(dist(Ui, Uj)).

We set Ωi := {x ∈ Ω, dist(x, Ui) < δi}. The Ωi form an overlap-
ping domain decomposition of Ω. When subdomains Ui and Uj are
neighbors, then the overlap between Ωi and Ωj is δi + δj wide. The
intersection Ωi ∩Ωj is empty if and only if the distance between Ui
and Uj is positive.

• We set δsi = minj 6=i,Ui∩Uj 6=∅ δj and δli = maxj 6=i,Ui∩Uj 6=∅ δj .

• The domain decomposition has Nc colors: there exists a partition of
N∩ [1, N ] into Nc sets Ik such that Ωi ∩Ωj is empty whenever i 6= j
and i and j belong to the same color Ik.

• T is a coarse triangular mesh of Ω: one node xi per subdomain Ωi
(not counting the nodes located on ∂Ω).

• Let θmin be the minimum of all angles of mesh T .

• No node (including the nodes located on ∂Ω) of the coarse mesh has
more than K neighbors.

• Let di be the length of the largest edge originating from node xi in
the mesh T .
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• Let Hh,i be the length of the shortest height through xi of any
triangle in the coarse mesh T that connects to xi. We also set H ′h,i
as the minimum of Hh,j over i and its direct neighbors in mesh T .

• We suppose that for each subdomain Ui, there exists ri > 0 such that
Ui is star-shaped with respect to any point in the ball B(xi, ri). We

also suppose ri ≤
Hh,i

4K+1
and ri ≤ H ′h,i/2.

• For all i, we set

`i =
1

πr2
i

∫
B(xi,ri)

u(x)dx =
1

π

∫
B(0,1)

u(xi + riy)dy.

• We suppose that for each Ui there exists an open layer Li containing
∂Ui, a vector field Xi continuous on Li∩U i, C∞ on Li∩Ui such that
DXi(x)(Xi(x)) = 0, ‖Xi(x)‖ = 1, and ε0 > 0 such that for all posi-
tive ε < ε0 and for all x̂ in ∂Ui, x̂+εXi(x̂) ∈ Ui and x̂−εXi(x̂) /∈ Ui.
We set, for all positive δ′, Uδ

′
i = {x ∈ Ui, dist(x, ∂Ui) < δ′}, and

V δ
′

i = {x̂ + sXi(x̂), x̂ ∈ ∂Ui, 0 < s < δ′}. We assume there exist
R̂i > 0, θX , 0 < θX ≤ π/2, and δ0i, 0 < δ0i ≤ R̂i sin θX such that

V R̂i ⊂ Li ∩ Ui and Uδ
′
i ⊂ V δ

′/ sin θX for all positive δ′ ≤ δ0i. Set
R̃i := 1/‖divXi‖∞. We suppose δ0i > δli.

We now state our main result, the existence of a stable decomposition of
H1

0 (Ω) whose upper bound is independant of maxi(Hi)
mini(Hi)

.

Theorem 2.1. For u in H1
0 (Ω), there exists a stable decomposition (ui)0≤i≤N

of u, i.e. u =
∑N
i=0 ui, u0 in P1(T ) and ui ∈ H1

0 (Ωi) such that

N∑
i=1

‖∇ui‖2L2(Ωi)
≤ C‖∇u‖2L2(Ω),

where C = 2C1 + 2(1 + C1)C2 and

C1 =
1

tan θmin

(
1 + 2 maxi(

ri
Hh,i

)
)
K( 25

6π
maxi(

di
ri

) + 2π
)

1−
(
(2K + 1) + (4K + 1) maxi(

ri
Hh,i

)
)

maxi(
ri
Hh,i

)
,

C2 = 2 + 8λ2
2(Nc − 1)2(1 + max

i

R̂i

R̃i
) max

i

δli
δsi

max
i

R̂i
δsi sin θX

+
8

3
λ2

2(Nc − 1)2(1 + max
i

R̂i

R̃i
) max

i

δli
δsi

max
i

r2
i

δsi R̂i sin θX
×

×max
i

((H2
i

r2
i

+
1

2

) 1
4

+
Hi
4
√

2ri

)4

− 1

2
− H2

i

r2
i

− H4
i

2r4
i

 ,

with λ2 being a universal constant.

Note that the condition ri ≤
Hh,i

4K+1
ensures that 1−

(
(2K+1)+(4K+

1) maxi(ri/Hh,i)
)

maxi(ri/Hh,i) remains positive.

3 Proof of Theorem 2.1

3.1 Constructing the fine component

We begin by establishing a stable decomposition when there is no coarse
mesh.
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Lemma 3.1. Let u be in H1
0 (Ω). Then, there exist (ui)1≤i≤N , ui in

H1
0 (Ωi) such that u =

∑N
i=1 ui, and

N∑
i=1

‖∇ui‖2L2(Ω) ≤ 2‖∇u‖2L2(Ω) + 8λ2
2(Nc − 1)2

(
N∑
i=1

(1 +
R̂i

R̃i
)
δli
δsi

R̂i
δsi sin θX

‖∇u‖2L2(Ui)

)

+ 8λ2
2(Nc − 1)2

(
N∑
i=1

(1 +
R̂i

R̃i
)
δli
δsi

1

δsi R̂i sin θX
‖u‖2L2(Ui)

)
,

(3.1)

where λ2 is a universal constant that depends only on the dimension. We
further have, for all η > 0,

N∑
i=1

‖∇ui‖2L2(Ω) ≤ 2‖∇u‖2L2(Ω) + 8λ2
2(Nc − 1)2

N∑
i=1

(1 +
R̂i

R̃i
)
δli
δsi

R̂i
δsi sin θX

‖∇u‖2L2(Ui)

+
8(1 + η)

3
λ2

2(Nc − 1)2
N∑
i=1

(1 +
R̂i

R̃i
)
δli
δsi

r2
i

δsi R̂i sin θX
×

×

((H2
i

r2
i

+
1

2

) 1
4

+
Hi
4
√

2ri

)4

− 1

2
− H2

i

r2
i

− H4
i

2r4
i

 ‖∇u‖2L2(Ui)

+ 8(1 +
1

η
)πλ2

2(Nc − 1)2
N∑
i=1

(1 +
R̂i

R̃i
)
δli
δsi

H2
i

δsi R̂i sin θX
|`i(u)|2.

(3.2)

Proof. We follow the proof of [3, Th. 4.6]. Let ρ be a C∞ non negative
function whose support is included in the closed unit ball of R2 and whose
L1 norm is 1. Let ρε(x) = ρ(x/ε)/ε2 for all ε > 0. Let hi be the
characteristic function of the set {x ∈ R2, dist(x, Ui) < δi/2}. Let φi =
ρδi/2 ∗hi. The function φi is equal to 1 inside Ui, vanishes outside of {x ∈
R2, dist(x, Ui) < δi}, and ‖φi‖∞ ≤ 2‖∇ρ‖L1(R2)/δi. For i in N ∩ [1, N ],

let ψi = φi
∏i−1
k=1(1 − φk). We have 0 ≤ ψi ≤ 1, ψi zero in Ω \ Ωi and∑

i ψi = 1 in Ω. Set ui = ψiu. The function ui is in H1
0 (Ωi) and u =∑

i ui. Following the proof of [3, Lemma 4.3], we get
∑N
i=1‖∇ψi(x)‖22 ≤

2(NC − 1)
∑N
i=1‖∇φi(x)‖22. Therefore, for all x in Ω,

N∑
i=1

‖∇ψi(x)‖22 ≤ 8(Nc − 1)‖∇ρ‖2L1(R2)

N∑
i=1

1Ωi\Ui
(x)

δ2
i

.

Since
∑
i‖∇ui‖

2
L2(Ω) ≤ 2‖∇u‖2L2(Ω)dx + 2

∫
Ω
|u(x)|2

∑
i|∇ψi(x)|2dx, we

get

N∑
i=1

‖∇ui‖2L2(Ω) ≤ 2‖∇u‖2L2(Ω)dx+4λ2
2(Nc−1)2

N∑
i=1

∫
Ui

1{dist(x, ∂Ui) < δli}
|u(x)|2

(δsi )
2

dx,

with λ2 := 2‖∇ρ‖L1(R2). To get (3.1), we apply Lemma 4.5 in [3] to each
Ui, and to obtain (3.2), we apply Lemma 5.10 from the same reference.

To obtain a stable decomposition with a coarse component, we want
to construct u0 in P1(T ) such that for all i, `i(u0) = `i(u).
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3.2 Constructing the coarse component

To construct u0, we follow the ideas of [3, §5.2]. First, we define a special
norm.

Definition 3.2. Let T be the coarse mesh of domain Ω. Let V be the set
of pairs of neighboring nodes in T , and B be the set of boundary nodes1

of T . We define

‖·‖V,B : RN → R+,

y 7→
√ ∑

(i,j)∈V

|yi − yj |2 +
∑
i∈B

|yi|2.

When u is in P1(T )∩H1
0 (Ω), set ‖u‖V,B := ‖(u(xi))1≤i≤N‖V,B, where the

xi are the interior nodes of the mesh T .

Lemma 3.3. For u in H1
0 (Ω), there exists u0 in P1(T ) ∩ H1

0 (Ω) such
that, for all i in {1, . . . , N}, `i(u0) = `i(u) and

‖∇u0‖2L2(Ω) ≤
1

tan θmin

(
1 + 2 maxi(

ri
Hh,i

)
)
K
(

25
6π

maxi(
di
ri

) + 2π
)

1−
(
(2K + 1) + (4K + 1) maxi(

ri
Hh,i

)
)

maxi(
ri
Hh,i

)
.

Proof. The results of [3, Lemmas 5.6,and 5.8] stand without modifications.
Therefore u0 exists, and we have

‖∇u0‖2L2(Ω) ≤
1

tan θmin

1 + 2 maxi(
ri
Hh,i

)

1−
(
(2K + 1) + (4K + 1) maxi(

ri
Hh,i

)
)

maxi(
ri
Hh,i

)
‖u‖2V,B.

Note that the condition ri ≤
Hh,i

4K+1
ensures that 1 −

(
(2K + 1) + (4K +

1) maxi(ri/Hh,i)
)

maxi(ri/Hh,i) remains positive. It remains to compare
‖u‖2V,B and ‖∇u‖2L2(Ω). We need to adapt the proof of [3, Lemma 5.7].

We can suppose without any loss of generality that u is in C∞(Ω). Let
i, j in {1, . . . , N} be indices of neighboring nodes of T . Let dij = xi−xj ,
and dij = ‖dij‖. We have for all (i, j) ∈ V

|`i(u)− `j(u)|2 =
1

π2

(∫
B(0,1)

(u(xi + riy)− u(xj + rjy))dy

)2

≤ 1

π

∫
B(0,1)

∫ 1

0

‖∇u
(
t(xi + riy) + (1− t)(xj + rjy)

)
‖22‖xi − xj + (ri − rj)y‖22dtdy

≤ (dij + |ri − rj |)2

π

∫
B(0,1)

∫ 1

0

‖∇u
(
t(xi + riy) + (1− t)(xj + rjy)

)
‖22dtdy

≤ (dij + |ri − rj |)2

π

∫
Ti,j

‖∇u(y′)‖22
∫ 1

0

1{‖y′ − txi − (1− t)xj‖ ≤ tri + (1− t)rj}
(tri + (1− t)rj)2

dtdy′,

1The nodes that are located on ∂Ω are not numbered among {1, . . . , N}, and B contains
only the nodes which are neighbor to a node located on ∂Ω.
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where the tube Ti,j is the convex hull of B(xi, ri) ∪B(xj , rj). We get

max
y∈R2

∫ 1

0

1{‖y′ − txi − (1− t)xj‖ ≤ tri + (1− t)rj}
(tri + (1− t)rj)2

dt

= max
(s,σ)∈R2

∫ 1

0

1{
√

(s− tdij)2 + σ2 ≤ tri + (1− t)rj}
(tri + (1− t)rj)2

dt

= max
s∈[−rj ,dij+ri]

∫ 1

0

1{|s− tdij | ≤ tri + (1− t)rj}
(tri + (1− t)rj)2

dt

≤ max
s∈[−rj ,dij+ri]

(
2

dijrj + s(ri − rj)

)
=

2

min(ri, rj)(dij − |ri − rj |)
.

Since dij ≥ Hh,i ≥ 4 max(ri, rj), |`i(u)−`j(u)|2 ≤ 25dij/(6πmin(ri, rj))‖∇u‖2L2(Tij).

If i is in the boundary set of the coarse mesh, then the node xi is
neighbor to a node xi′ located on ∂Ω. Note that i′ lies outside of the
range {1, . . . , N}. Using [3, Eqs (5.7) and (5.9)], we get

∑
i∈B

|`i(u)| ≤

(∑
i∈B

4‖xi − xi′‖
πri

∫
T ′
i

‖∇u(x)‖2dx

)
+2Kπ‖∇u‖2L2(Ω), (3.3)

where T ′i is the convex hull of B(xi, ri) ∪ B(xi′ , ri). We sum |`i(u) −
`j(u)|2 ≤ 25dij/(6πmin(ri, rj))‖∇u‖2L2(Tij) over all i, j in the neighbor

set and combine it with equation (3.3). Since max(ri, rj) ≤ H ′h,i/2 ≤
min(Hh,i, Hh,j))/2, no point can belong to more than K tubes Ti,j or
T ′i . Therefore ‖u‖2V,B ≤ K

(
25 maxi(di/ri)/(6π) + 2π

)
‖∇u‖2L2(Ω). This

concludes the proof.

To prove Theorem 2.1, we use Lemma 3.3 to construct the coarse
component u0. We then apply Lemma 3.1 to u − u0 to get the fine
components ui. The terms in `i(u) vanish.

Conclusion

We have proven the existence of a stable decomposition of the Sobolev
space H1

0 (Ω) in the presence of a coarse mesh when the domain decom-
position is only guaranteed to be locally shape regular. We provided an
explicit upper bound for the stable decomposition that depends neither
on maxi(Hi)/mini(Hi), nor on the number of subdomains.

Establishing the existence of a stable decomposition with a uniform
upper bound that does not explode when maxi(Hi)/mini(Hi) does would
not have been possible without the explicit upper bounds provided in [3].
This shows that deriving such explicit upper bounds can be important
for problems arising naturally in applications, i.e. load balanced domain
decompositions with local refinement.
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