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Summary. In this paper, we establish the existence of a stable decomposition in the Sobolev
space H1

0 for domain decompositions which are not shape regular in the usual sense. In partic-
ular, we consider domain decompositions where the largest subdomain is significantly larger
than the smallest subdomain. We provide an explicit upper bound for the stable decompo-
sition that is independent of the ratio between the diameter of the largest and the smallest
subdomain.

1 Introduction

One of the great success stories in domain decomposition methods is the invention
and analysis of the additive Schwarz method by Dryja and Widlund in [2]. Even
before the series of international conferences on domain decomposition methods
started, Dryja and Widlund presented a variant of the historical alternating Schwarz
method invented by Schwarz in [5] to prove the Dirichlet principle on general do-
mains. This variant, called the additive Schwarz method, has the advantage of being
symmetric for symmetric problems, and it also contains a coarse space component.
In a fully discrete analysis in [2], Dryja and Widlund proved, based on a stable de-
composition result for shape regular decompositions, that the condition number of
the preconditioned operator with a decomposition into many subdomains only grows
linearly as a function of H

δ
, where H is the subdomain diameter, and δ is the over-

lap between subdomains. This analysis inspired a generation of numerical analysts,
who used these techniques in order to analyze many other domain decomposition
methods, see the reference books [6, 4, 7], or the monographs [8, 1], and references
therein.

The key assumption that the decomposition is shape regular is, however, often
not satisfied in practice: because of load balancing, highly refined subdomains are
often physically much smaller than subdomains containing less refined elements,
and it is therefore of interest to consider domain decompositions that are only lo-
cally shape regular, i.e., domain decompositions where the largest subdomain can
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be considerably larger than the smallest subdomain, and therefore the subdomain
diameter and overlap parameters depend strongly on the subdomain index. In such
a domain decomposition, the generic ratio H

δ
from the classical convergence result

of the additive Schwarz method can be given at least two different meanings: let Hi
refer to the diameter of subdomain number i and δi refer to the width of the over-
lap around subdomain number i. Then in the classical convergence result from [2],
one could replace the generic ratio H

δ
by maxi(Hi)

mini(δi)
, but this is likely to lead to a very

pessimistic estimate for the condition number growth. The general analysis of the ad-
ditive Schwarz method based on a shape regular decomposition does unfortunately
not permit to answer the question if the condition number growth for a locally shape
regular decomposition is in fact only linear in the quantity maxi(

Hi
δi
), which is much

smaller than maxi(Hi)
mini(δi)

in the case of subdomains and overlaps of widely different sizes,
a case of great interest in applications.

In [3], we established the existence of a stable decomposition in the continuous
setting with an explicit upper bound and a quantitative definition of shape regular-
ity in two spatial dimensions. The explicit upper bound is also linear in the generic
quantity H

δ
, and the result is limited to shape regular domain decompositions where

all subdomains have similar size and where the overlap width is uniform over all
subdomains. Having explicit upper bounds, however, allows us now, using similar
techniques, to establish the existence of a stable decomposition in the continuous
setting with explicit upper bounds when maxi(Hi)� mini(Hi), and we provide an
explicit upper bound which is linear in maxi(Hi/δi) for problems in two spatial di-
mensions. To get this result, only a few of the inequalities established in [3] need to
be reworked, and it would be very difficult to obtain such a result without the explicit
upper bounds from the continuous analysis in [3].

We state first in §2 our main theorem along with the assumptions we make on the
domain decomposition. We then prove the main theorem in §3 in two steps: first, we
show in Lemma 1 how to construct the fine component in §3.1, which is an extension
of the result [3, Theorem 4.6] for the case where subdomain sizes Hi and overlaps
δi can strongly depend on the subdomain index i. The major contribution is however
in the second step, presented in Lemma 2 in §3.2, where we show how to construct
the coarse component in the case of strongly varying Hi and δi between subdomains.
This result is a substantial generalization of [3, Lemma 5.7]. Using these two new
results, and the remaining estimates from [3] which are still valid, we can prove our
main theorem. We finally summarize our results in the conclusions in §4.

2 Geometric parameters and main theorem

In the remainder of this paper, we always consider a domain decomposition that has
the following properties:

• Ω is a bounded domain of R2.
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• The (Ui)1≤i≤N are a non-overlapping domain decomposition of Ω , i.e., satisfy⋃N
i=1 U i = Ω and Ui∩U j = /0 when i 6= j . The Ui are bounded connected open

sets of R2 and for all subdomains Ui the measure of U i \Ui is zero.
• We set Hi := diam(Ui).
• Two distinct subdomains Ui and U j are said to be neighbors if U i∩U j 6= /0.
• For each subdomain Ui, let δi > 0 be such that 2δi ≤min j,U i∩U j= /0(dist(Ui,U j)).

We set Ωi := {xxx ∈Ω , dist(xxx,Ui)< δi}. The Ωi form an overlapping domain de-
composition of Ω . When subdomains Ui and U j are neighbors, then the overlap
between Ωi and Ω j is δi+δ j wide. The intersection Ωi∩Ω j is empty if and only
if the distance between Ui and U j is positive.

• We set δ s
i = min j 6=i,U i∩U j 6= /0 δ j and δ l

i = max j 6=i,U i∩U j 6= /0 δ j.
• The domain decomposition has Nc colors: there exists a partition of N∩ [1,N]

into Nc sets Ik such that Ωi∩Ω j is empty whenever i 6= j and i and j belong to
the same color Ik.

• T is a coarse triangular mesh of Ω : one node xxxi per subdomain Ωi (not counting
the nodes located on ∂Ω ). By P1(T ), we denote the standard finite element
space of continuous functions that are piecewise linear over each triangular cell
of T .

• Let θmin be the minimum of all angles of mesh T .
• No node (including the nodes located on ∂Ω ) of the coarse mesh has more than

K neighbors.
• Let di be the length of the largest edge originating from node xxxi in the mesh T .
• Let Hh,i be the length of the shortest height through xxxi of any triangle in the

coarse mesh T that connects to xxxi. We also set H ′h,i as the minimum of Hh, j over
i and its direct neighbors in mesh T .

• We suppose that for each subdomain Ui, there exists ri > 0 such that Ui is star-
shaped with respect to any point in the ball B(xxxi,ri). We also suppose ri ≤

Hh,i
4K+1

and ri ≤ H ′h,i/2.
• We also assume the existence of both a pseudo normal XXX i and of a pseudo cur-

vature radius R̃i for the domain Ui, i.e., we suppose that for each Ui there exists
an open layer Li containing ∂Ui, a vector field XXX i continuous on Li∩U i, C ∞ on
Li ∩Ui such that DXXX i(xxx)(XXX i(xxx)) = 0, ‖XXX i(xxx)‖ = 1, and ε0 > 0 such that for all
positive ε < ε0 and for all x̂xx in ∂Ui, x̂xx+εXXX i(x̂xx)∈Ui and x̂xx−εXXX i(x̂xx) /∈Ui. We set,
for all positive δ ′, Uδ ′

i = {xxx ∈Ui, dist(xxx,∂Ui)< δ ′}, and V δ ′
i = {x̂xx+ sXXX i(x̂xx), x̂xx ∈

∂Ui,0 < s < δ ′}. We assume there exist R̂i > 0, θXXX , 0 < θXXX ≤ π/2, and δ0i,
0 < δ0i ≤ R̂i sinθXXX such that V R̂

i ⊂ Li ∩Ui and Uδ ′
i ⊂ V δ ′/sinθXXX for all positive

δ ′ ≤ δ0i. Set R̃i := 1/‖divXXX i‖∞. We suppose δ0i > δ l
i .

We finally define, for all i, the linear form on H1
0 (Ω) by

`i(u) :=
1

πr2
i

∫
B(xxxi,ri)

u(xxx)dxxx =
1
π

∫
B(000,1)

u(xxxi + riyyy)dyyy.

We can now state our main theorem, namely the existence of a stable decomposi-
tion of H1

0 (Ω) whose upper bound is independent of maxi(Hi)
mini(Hi)

. This theorem there-
fore leads to a substantially sharper condition number estimate in the important case
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of an only locally shape regular decomposition, and is a major improvement of [3,
Theorem 5.12], which only considered shape regular decompositions, albeit at the
continuous level, in contrast to [2].

Theorem 1. For u in H1
0 (Ω), there exists a stable decomposition (ui)0≤i≤N of u, i.e.,

u = ∑
N
i=0 ui, u0 in P1(T )∩H1

0 (Ω) and ui ∈ H1
0 (Ωi) such that

N

∑
i=0
‖∇ui‖2

L2(Ωi)
≤C‖∇u‖2

L2(Ω),

where C = 2C1 +2(1+C1)C2 and

C1 =
1

tanθmin

(
1+2maxi(

ri
Hh,i

)
)
K( 25

6π
maxi(

di
ri
)+2π

)
1−
(
(2K +1)+(4K +1)maxi(

ri
Hh,i

)
)

maxi(
ri

Hh,i
)
,

C2 = 2+8λ
2
2 (Nc−1)2(1+max

i

R̂i

R̃i
)max

i

δ l
i

δ s
i

max
i

R̂i

δ s
i sinθXXX

+
8
3

λ
2
2 (Nc−1)2(1+max

i

R̂i

R̃i
)max

i

δ l
i

δ s
i

max
i

r2
i

δ s
i R̂i sinθXXX

×

×max
i


(H2

i

r2
i
+

1
2

) 1
4

+
Hi

4√2ri

4

− 1
2
− H2

i

r2
i
− H4

i

2r4
i

 ,

with λ2 a universal constant depending only on the dimension, and being smaller
than 6 in the two dimensional case we consider here.

Note that the condition ri ≤
Hh,i

4K+1 implies that the denominator of C1 is positive. The
value of C2 is also always positive.

3 Proof of Theorem 1

The proof is based on the continuous analysis in [3], but two results must be adapted
to the situation of only locally shape regular decompositions: we first show in §3.1
how to construct the fine component, which is a technical extension of the result [3,
Theorem 4.6] for the case where subdomain sizes Hi and overlaps δi can strongly
depend on the subdomain index i. Second, we explain in §3.2 the construction of
the coarse component in the case of strongly varying Hi and δi between subdomains,
which is a non-trivial generalization of [3, Lemma 5.7]. With these two new results,
and the remaining estimates from [3], the proof can be completed.

3.1 Constructing the fine component

We begin by establishing a stable decomposition when there is no coarse mesh.
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Lemma 1. Let u be in H1
0 (Ω). Then, there exist (ui)1≤i≤N , ui in H1

0 (Ωi) such that
u = ∑

N
i=1 ui, and

N

∑
i=1
‖∇ui‖2

L2(Ω) ≤ 2‖∇u‖2
L2(Ω)+8λ

2
2 (Nc−1)2

(
N

∑
i=1

(1+
R̂i

R̃i
)

δ l
i

δ s
i

R̂i

δ s
i sinθXXX

‖∇u‖2
L2(Ui)

)

+8λ
2
2 (Nc−1)2

(
N

∑
i=1

(1+
R̂i

R̃i
)

δ l
i

δ s
i

1
δ s

i R̂i sinθXXX
‖u‖2

L2(Ui)

)
,

(1)

where λ2 is the universal constant of Theorem 1. We further have, for all η > 0,

N

∑
i=1
‖∇ui‖2

L2(Ω) ≤ 2‖∇u‖2
L2(Ω)+8λ

2
2 (Nc−1)2

N

∑
i=1

(1+
R̂i

R̃i
)

δ l
i

δ s
i

R̂i

δ s
i sinθXXX

‖∇u‖2
L2(Ui)

+
8(1+η)

3
λ

2
2 (Nc−1)2

N

∑
i=1

(1+
R̂i

R̃i
)

δ l
i

δ s
i

r2
i

δ s
i R̂i sinθXXX

×

×


(H2

i

r2
i
+

1
2

) 1
4

+
Hi

4√2ri

4

− 1
2
− H2

i

r2
i
− H4

i

2r4
i

‖∇u‖2
L2(Ui)

+8(1+
1
η
)πλ

2
2 (Nc−1)2

N

∑
i=1

(1+
R̂i

R̃i
)

δ l
i

δ s
i

H2
i

δ s
i R̂i sinθXXX

|`i(u)|2.

(2)

Proof. We follow the proof of [3, Th. 4.6]. Let ρ be a C ∞ non-negative function
whose support is included in the closed unit ball of R2 and whose L1 norm is
1. Let ρε(xxx) = ρ(xxx/ε)/ε2 for all ε > 0. Let hi be the characteristic function of
the set {xxx ∈ R2,dist(xxx,Ui) < δi/2}. Let φi = ρδi/2 ∗ hi. The function φi is equal
to 1 inside Ui, vanishes outside of {xxx ∈ R2,dist(xxx,Ui) < δi}, and ‖∇φi‖L∞(R2) ≤

2‖∇ρ‖L1(R2;(R2,‖·‖2))/δi. Here, ‖∇ρ‖L1(R2;(R2,‖·‖2)) means
∫
R2

√
∑

2
i=1|∂iρ|2dxxx.

For i in N∩ [1,N], let ψi = φi ∏
i−1
k=1(1−φk). We have 0≤ψi≤ 1, ψi zero in Ω \Ωi

and ∑i ψi = 1 in Ω . Set ui = ψiu. The function ui is in H1
0 (Ωi) and u = ∑i ui. Follow-

ing the proof of [3, Lemma 4.3], we get ∑
N
i=1‖∇ψi(xxx)‖2

2 ≤ 2(NC−1)∑
N
i=1‖∇φi(xxx)‖2

2.
Therefore, for all xxx in Ω ,

N

∑
i=1
‖∇ψi(xxx)‖2

2 ≤ 8(Nc−1)‖∇ρ‖2
L1(R2;(R2,‖·‖2))

N

∑
i=1

1Ωi\Ui(xxx)

δ 2
i

,

where 1O is the indicator function for the set O . Since ∑i‖∇ui‖2
L2(Ω)

≤ 2‖∇u‖2
L2(Ω)

+

2
∫

Ω
|u(xxx)|2 ∑i|∇ψi(xxx)|2dxxx, we get

N

∑
i=1
‖∇ui‖2

L2(Ω) ≤ 2‖∇u‖2
L2(Ω)+4λ

2
2 (Nc−1)2

N

∑
i=1

∫
Ui

1{dist(xxx,∂Ui)<δ l
i }
|u(xxx)|2

(δ s
i )

2 dxxx,



6 Martin J. Gander, Laurence Halpern, and Kévin Santugini Repiquet

with λ2 := 2‖∇ρ‖L1(R2;(R2,‖·‖2)). Using the W 1,1(R2) function ρ(xxx) = 1−‖xxx‖2, we
obtain the estimate λ2 = 6. To get (1), we apply Lemma 4.5 in [3] to each Ui, and to
obtain (2), we apply Lemma 5.10 from the same reference. ut

To obtain a stable decomposition with a coarse component, we want to construct
u0 in P1(T ) such that for all i, `i(u0) = `i(u).

3.2 Constructing the coarse component

To construct u0, we follow the ideas of [3, §5.2]. First, we define a special norm.

Definition 1. Let T be the coarse mesh of the domain Ω . Let B′ be the set of indices
of the nodes of T located on the boundary4 ∂Ω . Let B be the set of the indices of
the nodes that are neighbors to the nodes with index in B′. Let V be the set of pairs
of indices of neighboring nodes in T which are not on ∂Ω . We define

‖·‖V ,B : RN → R+,

yyy 7→
√

∑
(i, j)∈V

|yi− y j|2 + ∑
i∈B
|yi|2.

When u is in P1(T )∩H1
0 (Ω), set ‖u‖V ,B := ‖(u(xxxi))1≤i≤N‖V ,B , where the xxxi are

the interior nodes of the mesh T .

Lemma 2. For u in H1
0 (Ω), there exists u0 in P1(T )∩H1

0 (Ω) such that, for all i in
{1, . . . ,N}, `i(u0) = `i(u) and

‖∇u0‖2
L2(Ω) ≤

1
tanθmin

(
1+2maxi(

ri
Hh,i

)
)
K
( 25

6π
maxi(

di
ri
)+2π

)
1−
(
(2K +1)+(4K +1)maxi(

ri
Hh,i

)
)

maxi(
ri

Hh,i
)
.

Proof. The results of [3, Lemmas 5.6,and 5.8] stand without modifications. There-
fore u0 exists, and we have

‖∇u0‖2
L2(Ω) ≤

1
tanθmin

1+2maxi(
ri

Hh,i
)

1−
(
(2K +1)+(4K +1)maxi(

ri
Hh,i

)
)

maxi(
ri

Hh,i
)
‖u‖2

V ,B.

Note that the condition ri ≤
Hh,i

4K+1 implies the second denominator in the above equa-
tion positive.

It remains to compare ‖u‖2
V ,B and ‖∇u‖2

L2(Ω)
. We need to adapt the proof of [3,

Lemma 5.7]. We can suppose without any loss of generality that u is in C ∞(Ω).
Let i, j in {1, . . . ,N} be indices of neighboring nodes of T . Let dddi j = xxxi− xxx j, and
di j = ‖dddi j‖. We have for all (i, j) ∈ V

4 Because of the homogenous Dirichlet condition on the boundary ∂Ω , the nodes whose
indices are in B′ are not associated to a degree of freedom, therefore B′ and {1, . . . ,N}
have empty intersection.
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|`i(u)− ` j(u)|2 =
1

π2

(∫
B(000,1)

(u(xxxi + riyyy)−u(xxx j + r jyyy))dyyy
)2

≤ 1
π

∫
B(000,1)

∫ 1

0
‖∇u

(
t(xxxi + riyyy)+(1− t)(xxx j + r jyyy)

)
‖2

2‖xxxi− xxx jjj +(ri− r j)yyy‖2
2dtdyyy

≤
(di j + |ri− r j|)2

π

∫
B(000,1)

∫ 1

0
‖∇u

(
t(xxxi + riyyy)+(1− t)(xxx j + r jyyy)

)
‖2

2dtdyyy

≤
(di j + |ri− r j|)2

π

∫
Ti, j

‖∇u(yyy′)‖2
2

∫ 1

0

1{‖yyy′−txxxi−(1−t)xxx j‖≤tri+(1−t)r j}

(tri +(1− t)r j)2 dtdyyy′,

where the tube Ti, j is the convex hull of B(xxxi,ri)∪B(xxx j,r j). We get

max
yyy′∈R2

∫ 1

0

1{‖yyy′−txxxi−(1−t)xxx j‖≤tri+(1−t)r j}

(tri +(1− t)r j)2 dt

= max
(s,s′)∈R2

∫ 1

0

1
{
√

(s−tdi j)2+s′2≤tri+(1−t)r j}

(tri +(1− t)r j)2 dt

= max
s∈[−r j ,di j+ri]

∫ 1

0

1{|s−tdi j |≤tri+(1−t)r j}

(tri +(1− t)r j)2 dt

≤ max
s∈[−r j ,di j+ri]

∫ s+r j
di j−(ri−r j)

s−r j
di j+(ri−r j)

1
(tri +(1− t)r j)2 dt

= max
s∈[−r j ,di j+ri]

− 1
ri− r j

[
1

(tri +(1− t)r j)

] s+r j
di j−(ri−r j)

s−r j
di j+(ri−r j)

= max
s∈[−r j ,di j+ri]

(
2

di jr j + s(ri− r j)

)
=

2
min(ri,r j)(di j−|ri− r j|)

.

Since di j ≥ Hh,i ≥ 4max(ri,r j), we have

|`i(u)− ` j(u)|2 ≤
25di j

6π min(ri,r j)
‖∇u‖2

L2(Ti j)
. (3)

If i is in the boundary set of the coarse mesh, then the node xxxi is neighbor to a
node xxxi′ located on ∂Ω . Note that i′ lies outside of the range {1, . . . ,N}. Using [3,
Eqs (5.7) and (5.9)], we get

∑
i∈B
|`i(u)|2 ≤

(
∑

i∈B

4‖xxxi− xxxi′‖
πri

∫
T ′i
‖∇u(xxx)‖2dxxx

)
+2Kπ‖∇u‖2

L2(Ω), (4)

where T ′i is the convex hull of B(xxxi,ri)∪B(xxxi′ ,ri). We sum inequality (3) over all
i, j in the neighbor set and combine the resulting inequality with equation (4). Since
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max(ri,r j)≤ H ′h,i/2≤min(Hh,i,Hh, j))/2, no point can belong to more than K tubes
Ti, j or T ′i . Therefore, ‖u‖2

V ,B ≤ K
(
25maxi(di/ri)/(6π)+2π

)
‖∇u‖2

L2(Ω)
. This con-

cludes the proof. ut

To prove Theorem 1, we use Lemma 2 to construct the coarse component u0. We then
apply Lemma 1 to u−u0 to get the fine components ui. The terms in `i(u) vanish.

4 Conclusion

We have proved the existence of a stable decomposition of the Sobolev space H1
0 (Ω)

in the presence of a coarse mesh when the domain decomposition is only guaran-
teed to be locally shape regular. We provided an explicit upper bound for the stable
decomposition that depends neither on maxi(Hi)/mini(Hi), nor on the number of
subdomains. This would not have been possible without the explicit upper bounds
provided in [3]. This shows that deriving such explicit upper bounds can be im-
portant for problems arising naturally in applications, e.g., load balanced domain
decompositions with local refinement.

References

[1] Tony F. Chan and Tarek P. Mathew. Domain decomposition algorithms. In Acta
Numerica 1994, pages 61–143. Cambridge University Press, 1994.

[2] Maksymilian Dryja and Olof B. Widlund. An additive variant of the Schwarz
alternating method for the case of many subregions. Technical Report 339, also
Ultracomputer Note 131, Department of Computer Science, Courant Institute,
1987.

[3] Martin J. Gander, Laurence Halpern, and Kévin Santugini-Repiquet. Contin-
uous Analysis of the Additive Schwarz Method: a Stable Decomposition in
H1. Submitted, 2011. URL http://hal.archives-ouvertes.fr/
hal-00462006/fr/.

[4] Alfio Quarteroni and Alberto Valli. Domain Decomposition Methods for Partial
Differential Equations. Oxford Science Publications, 1999.

[5] Hermann A. Schwarz. Über einen Grenzübergang durch alternierendes Ver-
fahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15:
272–286, May 1870.

[6] Barry F. Smith, Petter E. Bjørstad, and William Gropp. Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cam-
bridge University Press, 1996.

[7] Andrea Toselli and Olof Widlund. Domain Decomposition Methods - Algo-
rithms and Theory, volume 34 of Springer Series in Computational Mathemat-
ics. Springer, 2004.

[8] Jinchao Xu. Iterative methods by space decomposition and subspace correction.
SIAM Review, 34(4):581–613, December 1992.


