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Abstract 
The proposed method aims to extract a cyclostationary source, whose cyclic 
frequency is a priori known, from a set of additive mixtures. The other sources may 
be either stationary or cyclostationary as long as their cyclic frequencies are different 
from that of the source to be extracted. The method does not require pre-whitening 
and consists in minimising a criterion based on stationary and cyclostationary second 
order statistics of the observations; this method is labeled as Second Order 
Cyclostationary Statistics Optimization Criterion (SOC2). The relevance of this 
criterion is proven theoretically in the general case of N  sources by P  sensors, with 

NP ≥ . Other properties of the algorithm such as its accuracy and its robustness 
against additive noise or strong interferences are studied through a set of 
simulations. 
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I Introduction 
 
Source separation has been widely developed over the last decades, due to its 
potential applications in many domains, including biomedical and communications. It 
consists in retrieving some information called sources from a set of observations 
which are distinct mixtures of these sources. The mixtures can be supposed to be 
additive or convolutive, depending on the physical nature of the application. When 
this separation is performed without any knowledge about either the sources or the 
propagation paths, it is called blind. Some semi-blind methods have also been 
developed, taking advantage of a priori knowledge about the sources, for instance 
about their probability density function or non-stationary properties. In some 
applications there is no need to separate all the sources. When only one of the 
sources is of interest (SOI) and the other ones are considered as interferences to be 
removed, it leads to the source extraction problem. The method that we propose 
aims to extract a cyclostationary source whose cyclic frequency is a priori known 
from a set of additive mixtures. 

In various domains, such as telecommunications and vibration analysis of rotating 
machines, most signals exhibit cyclostationarity, for instance at the baud rate of the 
communication signal or the frequency of its carrier. If known, this information can be 
used in order to improve the classical source separation or extraction methods or to 
propose new ones. So far, different strategies have been chosen, which consist in 
either trying to apply stationary methods to cyclostationary signals, or developing new 
methods specifically meant to be applied to cyclostationary ones. Among these 
methods, some suppose that all the sources share a common cyclic frequency, 
others are based on the opposite hypothesis, i.e. that they all exhibit different cyclic 
frequencies, or can cope with either case. 

Different techniques have been developped in the additive mixture context. Ferréol 
and Chevalier [1], and later Ferréol et al. [2] studied the influence of cyclostationarity 
on classical methods developed for within the stationary framework such as SOBI 
and fourth order cumulant based methods and showed that, if not taken into account, 
the cyclostationarity of the sources can lessen their performance. Later, Jallon and 
Chevreuil [3] studied the effect of cyclostationarity on Comon contrast function [4]. 
They showed that it still is a contrast in the presence of some specific cyclostationary 
sources, though estimated on stationary hypotheses, and proposed an extension that 
can be used when the cyclic frequencies of the sources are known. When all the 
sources share a common cyclic frequency, Boustany and Antoni [5, 6] and Antoni et 
al. [7] proposed two different methods. One is a modified version of SOBI called 
CYCLOSOBI, which consists in jointly diagonalising cyclic correlation matrices, while 
the other one uses a subspace decomposition of the observations via their cyclic 
statistics. A related method was proposed by Rhioui et al. [8], based on second order 
cyclic temporal moments. Ghaderi et al. [9] proposed an extraction method for a set 
of sources sharing the same cyclic frequency. 



 
 
 
 
 
 
 
 

More methods were developed in the case where the sources exhibit distinct cyclic 
frequencies. Jafari et al. [10] improved the Kullback-Leibler divergence minimisation 
criterion by adding a term consisting of the distance between the cyclic covariance 
matrix of the estimates and the identity matrix. Liang et al. [11] also proposed to use 
cyclic correlation matrices but for different time lags. Houcke et al. [12] developed a 
deflation method which uses the cyclostationary properties of the sources through a 
prior resampling. Abed Meraim et al. [13] developed a contrast function based on the 
second order temporal statistics of the sources, both stationary and cyclostationary, 
and they introduce a modified version aiming at the extraction of one specific source. 
Xiang [14] as well as Keziou and Ould Mohamed [15] also built a cost function from 
second order cyclic statistics. Liang et al. [16] as well as Wang et al. [17] propose 
methods based on singular values decomposition of cyclic covariance matrices. 
Liang et al. [18] proposed a method based on a network whose coefficients are 
refreshed from the cyclic statistics of the estimate. 

Agee et al. [19] developed a family of cyclostationarity based source extraction 
methods using a property restoral approach which led them to propose three different 
SCORE (Self COherence REstoral) algorithms. Two of them consist in comparing the 
estimate to a frequency shifted version of the observation. The third one, called direct 
SCORE algorithm, consists in maximising the self-coherence of the estimate at the 
cyclic frequency of the source to be extracted. It turns out that the method that we 
propose here is a new way of interpreting and implementing this property restoral 
approach. In [20], Bouguerriou et al. propose a method based on prior whitening and 
then a simple cost function based on the cyclic statistics of the source to extract, 
while Boustany and Antoni [21] propose a subspace decomposition. Ghaderi et al. 
[22] implement an iterative diagonalisation method of the cyclic covariance matrix 
estimated at the cyclic frequency of the SOI and Xiang [23] minimises a cyclic 
statistics based cost function with a constraint on the power of the estimate. 
Preliminary versions of the method presented here have appeared previously in [24, 
25] and an application to ECG signals was presented in [25, 26]. 

In some applications such as rotating machinery monitoring or ECG signals analysis, 
it could be interesting to implement real time extraction of a cyclostationary source on 
embedded systems. We aimed at designing an algorithm that could be implemented 
easily in real time processors, which means that complex and heavy calculations 
such as higher order statistics, eigenvalue decompositions and matrix inversions 
should be avoided, as well as tricky parameter choice. Our extraction algorithm is 
thus based only on second order statistics calculations and matrix products, which 
can easily be handled with any real-time processor device. No parameter must be 
chosen since the optimization algorithm computes automatically the optimal step. As 
will be shown later, its performances are at least equivalent to and often better than 
those of the main algorithms that have been developed so far for the extraction of a 
cyclostationary source. The proposed method will be referred to as Second Order 
Cyclostationary Statistics Optimization Criterion (SOC2) through the rest of the paper. 



 
 
 
 
 
 
 
 

The problem is stated in section 2. In section 3, we present the extraction method 
and prove theoretically that it leads to the extraction of the SOI. In section 4 we 
formulate the optimization problem and the method used for the simulations is 
described. Section 5 presents some simulations performed in order to enhance the 
main features and performances of our algorithm. It is compared through these 
simulations to Abed-Meraim’s ATH3 algorithm [13] and Agee’s phase-SCORE [19] 
algorithm and the presented plots are discussed. Section 6 gives a conclusion and 
some perspectives of further developments. 

 

 



 
 
 
 
 
 
 
 

II Problem statement 
 
Here we use the classical formulation for source separation. A set of P  sensors 
receive simultaneously N  source signals put together in a so called source vector 

( ) ( ) ( ) ( )[ ]TN21 ts.
.

.

tsts=tssss where t  stands for the continuous time and T  for the 
transpose operator. The P  observations are put together in an observation vector 

( ) ( ) ( ) ( )[ ]TP21 tx.
.

.

txtx=txxxx  that can be expressed using the source vector and a 
mixing matrix AAAA  in the following way: 
  ���� = �����  (1) 
 
In what follows the sources as well as the observations will be supposed to be real 
signals and the mixing matrix to be a real P  by N  matrix. This corresponds to a case 
where the observations are free from any noise. The noisy case will be commented 
further within the present section and studied later using the simulations. We 
suppose without any loss of generality that the source of interest (SOI) is ( )t1s . 
 
The hypotheses are the following ones : 
 

• The SOI is second order cyclostationary at a frequency 0˞  a priori known. 

• All the other sources can be either stationary or cyclostationary, provided that 
none of them is cyclostationary at the same frequency as ( )t1s . 

• All sources are zero mean and uncorrelated so that their joint second order 
stationary as well as cyclostationary statistics are equal to zero. 

• The mixing matrix is full rank. 
• The number of sensors P  is greater or equal to the number of sources N . 

 
Extracting the source ( )t1s  consists in estimating a bbbb row vector of P  coefficients 
such that ( ) ( )tt xxxxbbbb=z  is an estimate of ( )t1s . 
 
III Extraction method 
 
Let us define the statistics that are used to specify the criterion. Given a zero-mean 
real-valued signal, ����, its covariance 	
 and cyclic covariance 	
� at frequency � can 
be defined as: 
 	
 = lim�→�〈��������〉�  (2) 
 	
� = lim�→�〈���������������〉� (3) 
 
 
The brackets 〈 〉� denote temporal averaging over � seconds. 



 
 
 
 
 
 
 
 

Given a column vector ���� of P zero-mean real-valued components, �����, its 
covariance matrix �� and cyclic covariance matrix ��� at frequency α can be defined 
as: 

�� = lim�→�〈���������〉�  (4) 
 ��� = lim�→�〈����������������〉� (5) 
 
In order to extract the cyclostationary source at a given frequency, the estimate 
should be as cyclostationary as possible at that frequency while the power of the 
estimate is minimized so as to suppress any interference that is not cyclostationary at 
the same frequency. We thus propose to minimize the ratio between the power of the 
estimate, given by   ��  ", and its cyclic power, given by #  ���$ "#. 
 
III-1 The free from noise case 
 
The SOC2 method then consists of minimizing over bbbb the following criterion: 
 

( ) T

T

c
bbbbRRRRbbbb
bbbbRRRRbbbbbbbb

0000˞˞˞˞
XXXX

XXXX=   (6) 

 
where XXXXRRRR  is the P  by P  covariance matrix of the observations and 0000˞˞˞˞

XXXXRRRR  is the P  by 
P  cyclic covariance matrix of the observations at frequency 0˞ . It should be noted 
that the covariance matrices are calculated for a zero time-lag, so that the algorithm 
can apply only to the extraction of a source that exhibits non zero cyclic correlation at 
that time lag, which is not the case for all cyclostationary sources. 

First proposition : this criterion admits an absolute minimum as a function of bbbb. 

Proof 

The criterion can be written as a function of the N  by N  covariance matrix and the N  
by N  cyclic covariance matrix of the source vector as follows. 

( ) TT

TT

c
bbbbAAAARRRRAAAAbbbb
bbbbAAAARRRRAAAAbbbb

0000˞˞˞˞
SSSS

SSSS=B   (7) 

Since the sources are zero mean and uncorrelated, the covariance matrix of the 
source vector is a diagonal one, whose diagonal terms are the powers of the 
sources. Let us denote the power of the thi  source by 2

iτ , the thi  coefficient of the 

vector bbbb by ib  and the coefficient on the thi  row and the thj  column of A by i
j

a . Then 

the numerator ( )bbbbn  of the criterion can be expressed as 

( ) ( )bbbbbbbb 2
j

2
je˰n ∑

=
=

N

j 1

  (8) 



 
 
 
 
 
 
 
 

with  

( ) ∑
=

=
P

i
j B

1
i

j
iabe   (9) 

Since only the source ( )t1s  is cyclostationary at frequency 0˞ , the cyclic covariance 
matrix exhibits only one non zero coefficient, that is to say 






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
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=
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˞
sr

0000˞˞˞˞
SSSSRRRR   (10) 

where 0
1

˞
sr  is the cyclic covariance of the source ( )t1s  at frequency 0α  and for zero 

time lag. The criterion now simplifies to 

( )
( )

( )
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˰e
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r
c

0
1

N

j 21
  (11) 

The criterion reaches an absolute minimum for any value of bbbb such that 

( ) ( ) ( )[ ] [ ]0021 KK e== bbbbbbbbbbbbeeee Peee  with 0≠e  

The vector eeee can be expressed as AAAAbbbbeeee= . So, provided that A is full rank, the linear 
equations system described by [ ]00Ke=AAAAbbbb  can be solved. Since there exist an 
infinity of possible non zero values for e  there exist as well an infinity of 
corresponding bbbb vectors which minimize the criterion. 

 

Second proposition : any value of the vector bbbb that makes the criterion reach its 
minimum leads to the extraction of the source ( )t1s . 

Proof 

Let us express the estimate ( )tz  as a function of the sources. 

( ) ( ) ( ) ( )∑
=

==
N

j
jj ttt

1

sez bbbbssssAAAAbbbb   (12) 

For any vector minbbbb  that minimizes the criterion, all ( )minbbbbje  are zero except for 

( )min1 bbbbe . Thus ( ) ( ) ( )tt 1sez min1 bbbb=  is an estimate of the source ( )t1s  with an 
indeterminacy on the amplitude, as in any source separation or extraction method. 

This holds for the case where the number of sensors is equal to the number of 
sources ( NP = ) as well as in the over-determined case ( )NP >  which are the 



 
 
 
 
 
 
 
 

hypotheses that we made in section 2. But in the under determined case ( )NP <  

minimizing the criterion does not lead any more to the extraction of ( )t1s . Indeed the 
equation [ ]00Ke= 

A
 
A
 
A
 
A

bbbb  cannot be solved since there are more equations than bbbb 
coefficients. 

 

III-2 The noisy case 
 

In the noisy case, the model becomes 

( ) ( ) ( )ttt wwwwssssAAAAxxxx +=   (13) 

where ( ) ( ) ( ) ( )[ ]Tp21 twtwtw K=twwww  represents the additive noise that are received on 

the sensors with the mixture of the sources. Let us suppose that the noise 
components are stationary and denote by wwwwRRRR  the noise vector covariance matrix. 
The expression of the criterion then becomes 

( )
( )

( )
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


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e

˰e

r
c

T2
j

N

j
j

σ   (14) 

If the noise components ( )tjw  are correlated to each other, then the term TbbbbRRRR    bbbb wwww  

can be positive as well as negative, so that the proof given in section 2 does not hold 
any more and one can suppose that minimizing the criterion in that case does not 
achieve the extraction. 

If the noise components are uncorrelated to each other, the numerator of the criterion 
is modified by an additive positive term depending on bbbb, which might as well alter the 
method. The effect of additive, uncorrelated noise will be studied from simulations. 

 

 

IV Implementation 
 

IV –1 Algorithm 
 

The criterion is minimized by a Fletcher-Reeves algorithm as described in [28]. 
Fletcher-Reeves algorithm is well-adapted to the optimization of non linear functions. 
Furthermore, it can be applied without any prior choice of a step size, since the 
optimal step direction kkkkdddd  and step size k˞  are calculated at each step from the 
gradient and Hessian of the criterion. These are calculated by using the expressions 



 
 
 
 
 
 
 
 

derived respectively in appendix A and appendix B. Each new direction is chosen to 
be orthogonal to the previous one. After every P  step, the algorithm starts again with 
an initial direction computed from the gradient. 

The successive steps are : 

1. Estimate the covariance matrix XRRRR  and the cyclic covariance matrix 0000˞˞˞˞
XXXXRRRR  from 

the observations. Chose a tolerance value ˢ. 

2. Choose an arbitrary 0bbbb  initial bbbb vector and compute the initial gradient 0000gggg . 

Use it as a first descent direction by setting 00000000 ggggdddd −= . Set index 0=k . 

3. Compute the optimal step size 
kkkkkkkkkkkk

kkkkkkkk

ddddHHHHdddd
ggggdddd

T

T

k˞ −=  where kkkkHHHH  is the Hessian of 

the criterion computed at the thk  step (see Appendix B). Compute the new 
extraction vector from the previous one by kkkkddddbbbbbbbb k˞+=+ kk 1 . 

4. If ε<kkkkddddk˞ , output 1min += kbbbbbbbb  and stop. 

5. If 1−= Pk , set 10 += kbbbbbbbb  and go to step 2. 

6. Compute the new gradient value 1+kgggg  (see Appendix A) and compute the new 

orthogonal direction kkkk1111kkkk1111kkkk ddddggggdddd k˟+−= ++  with 
kkkkkkkk

1111kkkk1111kkkk

gggggggg
gggggggg

T

T

k˟
++= . Refresh the 

index 1+= kk  and repeat from step 3. 

Fletcher-Reeves algorithm is based on an approximation made on the Taylor series 
decompositions of the criterion and its gradient when close to the minimum. Thus it is 
not valid when the starting point is far from the minimum of the criterion and would 
never converge in this case. In order to overcome this problem two precautions are 
used : 

• First, the initial b vector is chosen from among ten random ones as the one 
which minimizes the criterion. 

• Second, the initial extraction vector 0bbbb  is tested when the algorithm reaches 

step 3. The criterion is computed with the new extraction vector 1+kbbbb  and if its 
value is lower than the initial one, the program goes on. If its value is on the 
contrary greater than the initial one, the program is started again with another 
random initial extraction vector. 

 

IV-2 Estimation of the covariance matrices 
 



 
 
 
 
 
 
 
 

The cyclic covariance matrix is estimated by temporal averaging over rN  realizations 
of the cyclostationary SOI, i.e. over 0/ αrN  seconds. The same set of data is used to 
estimate the covariance matrix of the observations. 

That is to say: 

 

% &'( = 〈(��� ("���〉)* �+⁄&'(-$ = 〈(��� ("���.�/01-$2〉)* �+⁄
3  (15) 

 

The brackets 〈 〉� denote temporal averaging over � seconds. 

 

 

IV – 2 Performances evaluation 

In order to evaluate the performance of the SOC2 algorithm, a performance index, 
inspired by the formulations in [10] and [13], will be computed for all simulations. It is 
given by  

2

2

2

1

k

w

w∑
==

N

kPI   (16) 

with AAAAbbbbwwww =  and 45 is the kth coefficient of vector w.  

For some simulations it will be given in dB as 

( )PIPI dB 10log*10=   (17) 

The performance index is the classical measure for the efficiency of a separation or 
extraction method. It estimates the ratio between the interferences and the SOI, so 
that the smallest it is the best is the extraction. 

Also for some experiments we will plot the mean squared error between the estimate 
and the SOI. The estimate as well as the SOI’s amplitudes are normalized prior to the 
error computation. 

 

 

  



 
 
 
 
 
 
 
 

V Numerical simulations 
 

In all the simulations, frequencies are normalized by the sampling frequency and thus 
given without unit. The simulations presented in sections V-1 to V-4 have some 
common features that are described here. There are 2=N  sources and 2=P  
sensors. Both the sources are cyclostationary at different cyclic frequencies. These 
two sources are cosine waves amplitude modulated by colored noise. The carrier 
frequency of the source ( )t1s  is 05.01 =f . The modulating signal is a Gaussian 
random white noise filtered by a 4th order Butterworth low-pass filter whose cut-off 
frequency is 0.0175=c

1
f . The carrier frequency of the source ( )t2s  is 04.0=2f . The 

modulating signal is a Gaussian random white noise filtered by a 4th order 
Butterworth low-pass filter whose cut-off frequency is 0.01852 =cf . They are both 
cyclostationary at twice their carrier frequencies. The frequency used for the 
extraction will be that corresponding to ( )t1s , that is to say 1f*0˞ 2= . Unless 
otherwise stated, the two sources have unit power. 

The SOC2 method is compared to two other cyclostationary source extraction 
methods: Abed-Meraim’s ATH3 algorithm [13] and Agee’s phase-SCORE [19]. Both 
methods are based on an algebraic estimation of the extraction vector. 

In ATH3 algorithm, the extraction vector is estimated as  
 

bbbb = &�6/�89  (18) 
 
where 89 is the least eigenvector of &�:/�&;9&�6/� and (.)H is the Hermitian conjugate, 
with the & matrix and &9 matrix defined as follows: 

 & ≝ lim=→�〈(���(6��� ∑ ��α?�@�A: 〉=  (19) 
 &;9 ≝ lim=→�〈(���(6��� ∑ ���B��C� 〉=  (20) 
 
with �� the cyclic frequency of the source to be extracted and D��, F ≠ HI the cyclic 
frequencies of the other sources. The hypotheses about the sources are that they all 
are cyclostationary and their cyclic frequencies are a priori known. 

In phase-SCORE algorithm, the extraction vector is the eigenvector corresponding to 
the greatest eigenvalue of the matrix  

 

�&((��J &((-$�K�  (21) 
 
 



 
 
 
 
 
 
 
 

In our case we will apply it with a zero time-lag, so that we will compute the 
eigenvector corresponding to the greatest eigenvalue of 
 �&((��J &((-$  (22) 
 
 
This algorithm is based on the same hypothesis as ours and uses the same 
covariance matrices, i. e. the stationary covariance matrix of the observation vector 
and its cyclic covariance matrix at the frequency of the source to extract. 
 

In section V-1 the robustness of the SOC2 algorithm is tested relative to the number 
of samples used for the estimation of the covariance matrices. In section V-2 its 
robustness is tested relative to the mixing matrix. The robustness of the algorithm 
relatively to the power of the interference, i.e. the source, ( )t2s  , is explored in 
section V-3, while in section V-4 the same relative to the presence of additive noise is 
studied. In section V-5 a 3 by 3 experiment is presented. In all the experiments, the 
tolerance for the optimization algorithm has been chosen to be 1010−=ε .  

 

V-1 Robustness relative to the number of samples 
 

The mixing matrix is fixed and chosen to be a well conditioned one : 

  
1.26670.6986-

0.73112.3829
   








=A

 
The number of samples used for the estimation of the covariance matrices varies 
from 200 to 8000 in steps of 200 samples, so that the number of cycles of the source 

( )t1s  varies from 10 to 40 in steps of 10 cycles. For each number of samples, 1000 
experiments are carried out with different sources and all the results are averaged 
over these 1000 experiments. The results obtained for the three methods are plotted 
in Fig. 1. Whatever number of samples is used for the estimation of the covariance 
matrices, the SOC2 algorithm shows better performances than the other two. 

 



 
 
 
 
 
 
 
 

 
Fig 1 

Performance Index in dB versus the number of samples used to estimate the 
covariance matrices. 

 

V-2 Robustness relative to the mixing matrix 
 

In this experiment 1000 well conditioned random mixing matrices are tested. The two 
sources are the same for all the experiments. The averaged PI and its standard 
deviation are computed over the 1000 experiments. The results obtained for the 
three different methods are summarized in Table 1. The SOC2 algorithm achieves 
extraction with better accuracy than the other two, independent on the mixing matrix. 

 

 ATH3 Phase-SCORE SOC2  

Average PI  13.0 * 10-4 2.6 * 10-6 3.5 * 10-8 

Standard deviation  5.2 * 10-4 2.4 * 10-6 0.0 * 10-8 

Table 1 

Average performance index and its standard deviation computed over 1000 
experiments carried out with the same sources and different random mixing matrices. 
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V-3 Performance relative to the power of the interference. 
 

Here the power of the source ( )t2s  varies dB15  from to dB5−  in steps of dB2 , so 
that the signal to interference ratio (SIR) varies from dB15−  to dB5  in steps of dB2 . 
For each value of the SIR the PI is averaged over 1000 experiments carried out with 
different sources and a fixed mixing matrix equal to that used in section V-1. The 
number of samples is 2000 for all the trials. The PI is plotted versus the SIR for the 
three methods on Fig 2, and the mean square error is plotted on Fig. 3. 

The estimated source is normalized in amplitude prior to the error calculation. Then 
the squared error between the normalized estimate and the normalized true source is 
averaged over the 2000 samples. This error is then averaged over the 1000 trials for 
each value of the SIR. 

 

 
Fig. 2 

Performance Index in dB plotted for the three methods versus the Signal to 
Interference Ratio. 
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Fig. 3 

Mean square error in dB plotted for the three methods versus Signal to Interference 
Ratio, averaged both in time and over 50 experiments. 

 

It is interesting to note that the mean square error is fairly constant whatever the 
power of the interference for each of these three methods, while the performance 
index improves at low SIR. If normalized by the power of the sources, the 
performance index would be fixed. Indeed, the performance index is decreased by 
20 dB while the power of the interference is decreased by 20 dB as well. The two 
algorithms ATH3 and Phase-SCORE often lead to exactly the same solution, which 
can be explained by the fact that they both use the inverse of the covariance matrix 
of the observations, so that the result is tied to the quality of this inversion. The 
overall conclusion is that the SOC2 method performs significantly better than the two 
compared methods in terms of both the mean squared error and the performance 
index.  

 

V-4 Performances in the presence of additive noise 
 

In these experiments, some temporal and spatially white Gaussian random noise is 
added to the observations. The signal to noise ratio (SNR) varies from dB40−  to 
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dB40  in steps of dB2 . For each value of the SNR the PI is averaged over 1000 
experiments carried out with different additive noise. The same sources and the 
same mixing matrix, equal to L =  M0.72   1.58 ;   −1.6  − 1.44Y, are used for all the 
trials. The number of samples is 1000. The PI is plotted versus the SNR on Fig 4. 

 

 
Fig 4 

The PI is plotted versus the Signal to Noise Ratio (SNR) 

 

 

It can be noted from this plot that in very low SNRs all three methods have about the 
same performance, but for higher SNRs (>0 dB) the SOC2 algorithm offers much 
better source extraction (well over a 20 dB improvement in PI). 

 

V-5 3 by 3 case 
 

In these investigations, simulations are performed with 3 sources and 3 sensors. The 
first two sources are the same as in the previous section and the third one is chosen 
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the same way with a carrier frequency Z[ = 0.03 modulated by a colored noise 
generated through a Butterworth low-pass filter of cut-off frequency Z][ = 0.018. The 
cyclic frequency used for the extraction is 10 *2 f=α . In the two following experiments, 
100 trials were performed with different source and a fixed mixing matrix: 

^ = _0.4927 1.2797 −0.94170.6393 0.063 1.15630.9172 0.4807 −0.3473a. 
The averaged PI and its standard deviation are recorded in Table 2 for the three 
methods. 

 

 ATH3 Phase-SCORE SOC2  

Average PI  0.02 1.2 * 10-4 7.0 * 10-7 

Standard deviation  0.02 2.7 * 10-4 12.5 * 10-7 

 

Table 2 

Average performance index and its standard deviation computed over 100 
experiments carried out with different sources but the same mixing matrix for 3 

sources and 3 sensors. 

 

V-6 Discussion 
 

It can be seen from the simulations that the SOC2 method exhibits better 
performances than the ATH3 and phase-SCORE algorithms. In the presence of 
much additive noise or strong interference (negative SNR or SIR) the performances 
are about the same but for good SNR and good SIR, the method that we propose 
achieves the extraction with much better accuracy. This can be explained by the fact 
that it is based only on very simple calculations such as matrix products whereas the 
other two methods imply matrix inversion and eigenvalue decomposition, which can 
lead to numerical errors. It is interesting to note that though the ATH3 algorithm uses 
more a priori information than the other two, since it needs the knowledge of all the 
cyclic frequencies of the sources, its performances are poorer. It can come from the 
fact that more subtle matrix calculations are required, such as the inverse of the 
covariance matrix which is used several times. These results are also verified in the 3 
by 3 case presented in the last section. 

 

  



 
 
 
 
 
 
 
 

VI Conclusion 
 

We have introduced a new source extraction algorithm based on the cyclostationary 
properties of the source to be extracted. The only information that needs to be known 
is the value of one cyclic frequency that the source of interest possesses and does 
not share with any interference. The SOC2 extraction criterion is built from the 
covariance matrix and the cyclic covariance matrix of the observations. The 
theoretical proof has been given that the proposed algorithm is relevant for the 
extraction of the source of interest in the case where there are at least as many 
sensors as sources. Some simulations bring further information about its behaviour in 
the presence of strong interferences or additive noise. It turns out to be a powerful 
tool to extract a cyclostationary source received along with stationary or 
cyclostationary interferences and the performances of the proposed method have 
been proven to outperform those of similar methods such as Agee’s phase-SCORE 
algorithm and Abed Meraim’s ATH3 extraction algorithm. In all the cases examined 
the SOC2 algorithm is found to be as good as the aforementioned two algorithms and 
it often leads to better source extractions. 

 



 
 
 
 
 
 
 
 

Appendix A 
Gradient of the criterion 
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Since ( )bbbb1c  and ( )bbbb2c are quadratic forms and XXXXRRRR  as well as 0000˞˞˞˞
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Appendix B 
Hessian of the criterion 
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Let us express the gradient as a sum of three function whose derivatives will be 
calculated separately: 
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Since the two matrices XXXXRRRR  and 0000˞˞˞˞

XXXXRRRR  do not depend on bbbb, they can be brought into 
the calculation after the derivation. We finally have to calculate the derivatives of 
three expressions of the form ( ) bbbbbbbbf  where ( )bbbbf  equals successively to : 
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Let us first calculate the expression of such a derivative in the more general case. 
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The Hessian is thus finally given by 
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