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On Intrinsic Formulation and Well-posedness of a Singular Limit of

Two-phase Flow Equations in Porous Media

Boris Andreianov∗, Robert Eymard†, Mustapha Ghilani‡, and Nouzha Marhraoui§¶

Dedicated to Monique Madaune-Tort on the occassion of her 60th anniversary

Abstract

Starting from a two-phase flow model in porous media with the viscosity of the “mobile” phase

going to infinity, the Generalized Richards Equation for the “viscous” phase:{
ut − div(kw(u)∇p) = s− θ s1l[u=1],

ka(u)∇(p+ pc(u)) = 0 a.e. in Ω× (0, T )

was derived in the works [6] and [2] (see also [4]). We discuss intrinsic formulations (weak solutions,

renormalized solutions) of this singular limit problem, using in particular the techniques developed

by Plouvier-Debaigt, Gagneux et al. [13, 11, 12]. For the no-source case, we justify the equivalence

of the Generalized Richards Equation and the classical Richards model.

Keywords: Flow in porous medium, two-phase flow model, Richards model, renormalized solutions.

1 Introduction

The widely accepted model for undersaturated water flow in porous medium, used in particular in the

hydrogeology context, is the Richards equation (see [14], see also [5]). Let us present this model in a

simplified mathematical setting. Assuming that gravity effects can be neglected and the porosity of the

media does not vary, setting most of the physically meaningful constants equal to one, we can write the

Richards model as follows: {
ut − div(kw(u)∇p) = sw,

u = pc
−1(patm − p).

(1)

Here (t, x) ∈ (0, T ) × Ω with Ω a bounded Lipschitz domain of Rd (d = 1, 2 or 3); u = u(t, x) is the

water saturation function that takes values in [0, 1]; kw(·), pc(·) : [0, 1] 7→ R are given nonlinear functions

(permeability and capillar pressure, respectively) whose properties will be made precise later on; and

sw = sw(t, x) is a source term, for which a particular form will be fixed later. An important feature of

the Richards model is that the reciprocal function of the capillar pressure (called the capacity function)

is prolonged for all negative values by the value 1. Finally, p = p(t, x) is the unknown liquid pressure

function and patm is a reference (normalization) value for the pressure. Boundary conditions should be

imposed; the simplest and most important ones are the homogeneous Neumann boundary conditions.

In the Richards equation, the conservation equation of the air phase is replaced by the assumption

that the air pressure p(x, t) + pc(u(x, t)) is equal to patm for (x, t) such that 1− u(x, t) > 0 (where 1− u
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†Université Paris-Est, 5, bd Descartes, Champs-sur-Marne 77454 Marne-La-Vallée, France
‡ENSAM, BP 4024 Bni M’hamed 50 000, Meknès, Morocco
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is the air saturation), due to its high mobility (in practice, the ratio µ of air and water mobilities is of

order 102). If this assumption is not done, one should consider the more precise two-phase flow model,

that describes the conservation of both components (see, e.g., [9]):{
ut − div(kw(u)∇p) = sw,

(1− u)t − div(µka(u)∇(p+ pc(u))) = sa.
(2)

Here, in addition to the previous notation, µ = const is the mobility coefficient, sa = sa(t, x) is the

corresponding source term, and ka(·) is another nonlinearity (the mobile phase permeability). In this

model, the pressure p = p(t, x) should be normalized, e.g., by imposing a mean value zero in Ω for p(t, ·),
for t ∈ (0, T ).

It is a natural question to investigate the limit of the two-phase problem, as µ→∞, and to compare

it to the Richards model. This question was addressed in the work of Eymard, Ghilani and Marhrauoi [4]

then pursued by Eymard, Henry and Hilhorst in [6] (from the theoretical perspective) and by the authors

of the present note in [2] (mainly from the numerical analysis perspective).

In these works, it was shown that (under restrictions recalled in Section 2, and given some fixed initial

condition u0 = u0(x), source and sink terms, and the homogeneous Neumann boundary conditions)

solutions (uµ, pµ) to the two-phase flow system (2) admit an accumulation point (u, p), as µ → 0. This

accumulation point satisfies a formulation that we will call Generalized Richards Equation:{
ut − div(kw(u)∇p) = sw,

∇(p+ pc(u)) = 0 a.e. on the set [u < 1],
(3)

the source term sw taking a particular form described in Section 2. Thus (3), obtained by a passage to

the limit in a subsequence of solutions to (2), should be considered as a singular limit of the two-phase

flow system.

One has to undertake the analysis of the Generalized Richards Equation (3), giving an intrinsic

definition of solution (definition independent of a particular approximation procedure used to construct

solutions), investigating existence and uniqueness of such solutions, and comparing Generalized Richards

and classical Richards equations. In this note, we make first steps towards this goal.

In Section 2, we give a synthetic presentation of the theoretical results of [4, 6, 2]. In Section 3,

we recall the weak formulation of (3) obtained in these works, and make precise the functional setting

suitable for this definition. Then, following the works of Plouvier-Debaigt, Gagneux et al. [13, 11, 12], we

give a notion of renormalized solution that allows to separate the singular set [u = 1] from the remaining

part of the physical domain. We show that weak solutions are renormalized ones; and, using an idea of

[7], we prove an incomplete contraction inequality for renormalized solutions u, û with data u0, û0, which

takes the form

‖(u− û)+‖L∞(0,T ;L1(Ω)) ≤ ‖(u0 − û0)+‖L1(Ω) +

∫ T

0

∫
Ω

s1l[u=û=1],

where s is the injection term for the model. The uniqueness follows directly only for the case the injection

term is zero; and for this case, we show in Section 4 coincidence of Richards and Generalized Richards

equations. In the final section, we give some conclusions and perspectives for a further study of the

Generalized Richards Equation.

2 The two-phase model and a singular limit formulation

The works [4, 6, 2], and also the present one, concern the particular situation where

– the gravity effects are neglected in (2);
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– the initial condition u0 = u0(x) is assumed to take values in some interval [um, 1] with um = const > 0;

– the right-hand side terms in (2) are actually u-dependent, and take the particular form

sw = fµ(c) s− fµ(u) s, sa = (1− fµ(c)) s− (1− fµ(u)) s. (4)

In (4), c = c(t, x) ≥ um is the given saturation in water of the injected fluid, s = s(t, x) and s = s(t, x)

are the intensities of sources and sinks, respectively, and fµ determines the fractional flow of the water

phase, given by

fµ(s) =
kw(s)

Mµ(s)
with Mµ(s) = kw(s) + µka(s). (5)

For the two-phase model, one requires that

s ≥ 0, s ≥ 0, s, s ∈ L2((0, T )× Ω), and

∫
Ω

( s(x)− s(x))dx = 0 (6)

(the latter constraint is needed to ensure the total mass conservation for the two phases). The interpre-

tation of (4)–(5) is clear: both sources and sinks operate on the mixture of the two phases, so that the

quantities of water and air that actually enter or exit the medium depend on the water saturation (c(t, x)

at sources, u(t, x) at sinks), on the permeabilities kw(·), ka(·) of the phases, and on the mobility ratio µ.

The set of the above assumptions, together with realistic assumptions on the profiles pc(·), kw(·), ka(·)
(see (8) below) leads to the

uniform in µ bound uµ(t, x) ≥ um on solutions of the two-phase flow system (2). (7)

This is important in order to avoid the degeneracy of the problem that happens at zero saturation.

Indeed, typical nonlinearities pc(·), kw(·), ka(·) satisfy

kw(·), ka(·) are continuous functions on [0, 1],

kw(·) is non-decreasing, kw(0) = 0, kw(1) = 1 and kw(um) > 0,

ka(·) is non-increasing with ka(1) = 0, ka(0) = 1 and ka(s) > 0 for all s ∈ [0, 1),

pc(·) is continuous strictly decreasing function on (0, 1], normalized by pc(1) = 0,

(8)

thus the lower bound by uµ ≥ um = const > 0 ensures that

kw(uµ) ≥ const > 0. (9)

Further uniform estimates obtained in [4, 6, 2] are the following:∫ T

0

∫
Ω

kw(uµ)|∇pµ|2 ≤ const, (10)

∫ T

0

∫
Ω

µka(uµ)|∇(pµ + pc(uµ))|2 ≤ const, (11)

moreover, ∫ T

0

∫
Ω

|∇ζa(uµ)|2 ≤ const (12)

where we use an auxiliary continuous strictly increasing on [um, 1] nonlinearity ζa(·) defined, e.g., by

ζa(s) :=

∫ 1

s

√
ka(σ) dpc(σ). (13)

Actually, in absence of general uniqueness result for (2), in [6, 2] one constructs solutions (uµ, pµ)

(using either the parabolic regularization by vanishing viscosity, or a specially designed finite volume

numerical scheme) satisfying the estimates (9)–(12). Equipped with these estimates, using in addition
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the evolution equation on (uµ)t contained in system (2) along with time compactness arguments developed

by Alt and Luckhaus [1], we can extract a (not labelled) sequence of values of µ going to infinity such

that
ζa(uµ)→ Z weakly in L2(0, T ;H1(Ω)) and a.e. on (0, T )× Ω,

pµ → p weakly in L2(0, T ;H1(Ω)), as µ→∞.
(14)

Because ζa(·) is a homeomorphism of [um, 1] on ζa([um, 1]), we deduce that uµ → u := ζ−1
a (Z) a.e. on

(0, T )×Ω. Moreover, the so created accumulation point (u, p) satisfies “ka(u)
(
∇(p+pc(u))

)
= 0” (which

can be expressed as ∇p = ∇ζa(u)/
√
ka(u) a.e. on [u < 1]) because we have∫ T

0

∫
Ω

∣∣√ka(u)∇p−∇ζa(u))
∣∣2 = 0, (15)

due to the lower semicontinuity of the L2 norm for the weak convergence. Thanks to properties (8), the

fractional flow function fµ(·) in (5) tends to 1l{1}(·) pointwise on [um, 1] as µ → ∞. Thus we can only

pass to the weak-* L∞ limit in the sink term, which leads to the following source term at the limit:

s 1l[c=1] − θ s 1l[u=1] for some measurable [0, 1]-valued function θ = θ(t, x).

This eventually leads to the following weak formulation for the accumulation point (u, p) of (uµ, pµ),

derived by passage to the limit in (a subsequence of) weak formulations of (2):

ut − div
(
F[u, p]

)
= s 1l[c=1] − θ s 1l[u=1],

F[u, p] · n |(0,T )×∂Ω = 0 and u |t=0 = u0

in D′([0, T )× Ω) (16)

with the flux

F[u, p] := kw(u)∇p ≡ kw(u)√
ka(u)

∇ζa(u) 1l[u<1] +∇p 1l[u=1]; (17)

in addition,

p , ζa(u) ∈ L2(0, T ;H1(Ω)) and

∫
Ω

p(t, ·) = 0 on (0, T ). (18)

From (17), (18) and (6) we see in particular that

ut ∈ (L2(0, T ;H1(Ω))′ and the equality in (16) holds in (L2(0, T ;H1(Ω))′, (19)

in the “variational” sense first introduced by Alt and Luckhaus in [1]. This means in particular that the

initial condition holds in the following precise sense:∫ T

0

< ut , ξ >(H1)′,H1= −
∫ T

0

∫
Ω

u ξt −
∫

Ω

u0ξ(0, ·)

for all ξ ∈ L2(0, T ;H1(Ω)) such that ξt ∈ L1((0, T )× Ω) and ξ(T, ·) = 0.

(20)

Then it is possible to test (16) with functions of the kind (H ◦ ζa)(u), with Lipschitz continuous H(·).
Indeed, (20) leads to the celebrated Mignot-Bamberger/Alt-Luckhaus chain rule (“integration-by-parts”)

argument, see [1, 8, 10, 3]:∫ T

0

< ut , H(ζa(u)) >(H1)′,H1=

∫
Ω

(
BH,a(u)(T, ·)−BH,a(u0)

)
with BH,a : s 7→ −

∫ 1

s

H(ζa(σ)) dσ.

(21)

Notice that, actually, formulation (16) concerns the triple (u, p, θ). In the sequel, we will focus on

description of the saturation u, while the functions p and θ will play the role of auxiliary quantities that

describe the balance of fluxes and sources on the set [u = 1] only.
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3 Weak and renormalized formulations of the Generalized Richards Equation

Let first provide an intrinsic weak formulation of the Generalized Richards Equation. Indeed, (16)–

(18) “keeps memory” of the limiting process by which solutions were obtained, in particular, ζa(·) keeps

memory of the nonlinearity ka(·). While in principle, it is possible that a singular limit of two-phase flow

equations depend on the full set of data and non-linearities also for the “carefully neglected” air phase,

we easily see that ka(·) can be eliminated from the formulation (16)–(18). Indeed, we have

Lemma 3.1 If (u, p, θ) verify the weak formulation (16)–(18), then

ζw(u) ∈ L2(0, T ;H1(Ω)), where ζw(z) :=

∫ 1

z

√
kw(σ) dpc(σ). (22)

Moreover, if pc(·) is bounded on (0, 1], then ‖∇ζw(u)‖L2((0,T )×Ω) is estimated uniformly with respect to

the lower bound um on the initial datum.

Notice that due to the specific structure of the source and sink terms, we have the lower bound (7) on

the saturation, inherited at the limit µ→∞.

Remark 3.1 Under the assumptions we have taken, we have 1 ≥ kw(u) ≥ kw(um) > 0, so that the

functions such as ∇ζw(u), ∇pc(u), ∇gw(u) with gw(s) =
∫ 1

s
kw(σ) dpc(σ) have the same integrability

properties. To simplify the calculations, and also because of the last claim of Lemma 3.1, we prefer to

work with ζw(u).

Proof: Formally, we would like to take ξ = −pc(u) for the test function in (16). In order to do so, we

use regularization. For δ > 0, for s ∈ [um, 1] consider the auxiliary nonlinearity

Gδ(s) :=

∫ 1

s

√
ka(σ)

ka(σ) + δ
dpc(σ) ≡ −

∫ 1

s

1√
ka(σ) + δ

dζa(σ) ≡ Hδ(ζa(s));

here Hδ(·) is a Lipschitz continuous function that we do not make explicit. Because pc(·) is bounded on

[um, 1], we have ‖Gδ‖∞ ≤ const uniformly in δ; also the primitives BHδ,a defined as in (21) are uniformly

bounded. In view of the “variational” reformulation explained in Section 2, we can use Gδ(u) ≡ H(ζa(u))

as a test function in (16) (it lies in L2(0, T ;H1(Ω)), due to (18)), and using the chain rule (21) and the

aforementioned L∞ bounds, we find that

Iδ :=

∫ T

0

∫
Ω

kw(u)√
ka(u)

1√
ka(σ) + δ

|∇ζa(u)|2 ≤
∫

Ω

(
BHδ,a(u0)−BHδ,a(u)(T, ·)

)
+ const(‖ s‖1 + ‖ s‖1)

(notice that we have ∇ζa(u) = 0 a.e. on the set [u = 1] ≡ [ζa(u) = 0], by a well-known property of

level sets of functions in Sobolev spaces). Due to the boundedness of BHδ,a, the right-hand side above is

bounded uniformly in δ. Now, due to the definition of ζa(·), we find that the map

s 7→ ζw,δ(s) :=

∫ 1

s

√√√√kw(σ)

√
ka(σ)

ka(σ) + δ
dpc(σ) ≡ −

∫ 1

s

√
kw(σ)√

ka(σ)(ka(σ) + δ)
dζa(σ)

is well defined and bounded on [um, 1]. Then Iδ =
∫ T

0

∫
Ω
|∇ζw,δ(u)|2, thus we have a uniform L2(0, T ;H1(Ω))

estimate for the functions ζw,δ(u). By weak compactness of bounded sets in L2(0, T ;H1(Ω)) and because

ζw,δ(·) converges to ζw(·) on [um, 1] as δ → 0, we deduce that also the limit ζw(u) of ζw,δ(u) belongs to

L2(0, T ;H1(Ω)).

At this point, we are also allowed to test (16) with −pc(u), since it lies in L2(0, T ;H1(Ω)) (recall that

1 ≥ k(u) ≥ k(um) > 0). Proceeding as for the above estimates, we get the L2((0, T ) × Ω) bound on

∇ζw(u) that only depends on ‖pc‖∞ and ‖ s‖1, ‖ s‖1. This concludes the proof of the lemma. 2
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It should be noticed that since kw(u) ≥ kw(um) > 0, the L2 integrability of ∇ζw(u) implies the one

of ζa(u). Thus we can give an equivalent weak formulation of the one-phase flow model (16)–(18):

Definition 3.1 Assume u0 takes values in [um, 1], the nonlinearities kw(·) and pc(·) satisfy the assump-

tions listed in (8); consider ζw(·) defined in (22). Consider s and s (the latter one now replaces s 1l[c=1])

two nonnegative functions in L2((0, T )× Ω).

A triple (u, p, θ) such that ζw(u) , p ∈ L2(0, T ;H1(Ω)), ut ∈ (L2(0, T ;H1(Ω))′, and θ is a [0, 1]-valued

measurable function on (0, T ) × Ω is a weak solution of the Generalized Richards Equation with initial

condition u0 and the homogeneous Neumann boundary condition if, firstly, ∇(p + pc(u))1l[u=1] = 0 a.e.

on (0, T )× Ω, secondly, (20) holds, and thirdly,

−
∫ T

0

∫
Ω

u ξt −
∫

Ω

u0ξ(0, ·) +

∫ T

0

∫
Ω

(
√
kw(u)∇ζw(u) +∇p 1l[u=1]) · ∇ξ =

∫ T

0

∫
Ω

(
s− θ s 1l[u=1]

)
ξ

for all ξ ∈ L2(0, T ;H1(Ω)) such that ξt ∈ L1((0, T )× Ω) and ξ(T, ·) = 0.

(23)

Definition 3.1 is indeed intrinsic, in the sense that it does not make appeal to the data of the neglected

mobile phase. Notice that∇pc(u) in the above definition makes sense because pc(u) is a Lipschitz function

of ζw(u), being understood that kw(u) ≥ kw(um) > 0 (cf. Remark 3.1).

The results of [6] and of [2] provide existence for the weak formulation of Definition 3.1. As a matter

of fact, uniqueness of a weak solution triple (u, p, θ) should not be true in general. Clearly, the main

difficulty in treating Generalized Richards Equation lies in treatment of the set [u = 1], called “saturated

region”, and on the interplay that could take place between the pressure p and the “sink efficiency

ratio” θ in the saturated region; we expect that, whenever s1l[u=1] is not zero, infinitely many solutions

(u, p, θ) corresponding to the same saturation u may co-exist. These different solutions may correspond

to different convergent approximations by the two-phase flow equations (2).

Remark 3.2 To give an idea of the possible interplay between p and θ in the saturated region, let us

assume that u is regular enough, namely, upon a choice of the representative of u, u ∈W 1,1((0, T );L1(Ω))

and for all t ∈ (0, T ), the set Ωt := {x ∈ Ω |u(t, x) = 1} is a set with Lipschitz boundary which depends

nicely on t. Such assumptions allow to separate the unsaturated zone Sc := {(x, t) | t ∈ (0, T ), x ∈ Ω\Ωt}
where u is governed by a parabolic equation, and the saturated region S := [u = 1] where p is governed by

an elliptic equation with θ-dependent right-hand side.

In this case, it is easily seen from Definition 3.1 that p is uniquely defined by u in Sc. Consequently,

the weak normal trace γext(kw(u)∇p · nt) of (kw(u)∇p)(·, t) on ∂Ωt is uniquely defined (nt being the

outer unit normal vector to ∂Ωt). These data are transmitted to the elliptic equation on p in the zone S.

Namely, due to the regularity of u assumed above, the couple (p, θ) solves the equation −kw(1)∆p(·, t) = s(·, t)− θ(·, t) s(·, t) in the interior of Ωt,

kw(1)∇p(t, ·) · nt = γext(kw(u)∇p · nt) on ∂Ωt.
(24)

Then the only constraint on θ is the compatibility condition∫
∂Ωt

γext(kw(u)∇p · nt)(t, ·) +

∫
Ωt

s(·, t) =

∫
Ωt

θ(·, t) s(·, t); (25)

whenever θ(t, ·) verifies (25), there exists a unique p(t, ·) solving (24).

Therefore we now focus on the information about the saturation u contained in the weak formulation

of Definition 3.1. Following the idea of the papers [13, 11, 12], let us carry out a renormalization of the

formulation (23), cutting off the saturated region [u = 1].
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In the sequel, for the sake of simplicity let us take the assumptions (that are realistic):

pc is absolutely continuous on [um, 1], i.e., pc
′(·) is an L1([um, 1]) function;

moreover, infσ∈[um,1−α] pc
′(σ) < 0 for every α > 0.

(26)

Consider the sequence of Lipschitz continuous, piecewise affine truncation functions (Tn(·))n∈N on [0, 1]:

Tn|[0,1− 1
n ] ≡ 1, Tn|[1− 1

2n ,1] ≡ 0, and T ′n|[1− 1
n ,1−

1
2n ] ≡ 2n.

Then the following properties are obvious:

bn(s) :=

∫ s

0

Tn(σ) dσ tends to the identity function; (27)

cn(s) =

∫ s

0

(1− Tn(σ)) dσ tends to the zero function. (28)

We define in addition the auxiliary nonlinearities

ϕn(s) =

∫ 1

s

kw(σ)Tn(σ) dpc(σ) ≡ −
∫ 1

s

√
kw(σ)Tn(σ) dζw(σ) and ψn(s) =

∫ 1

s

√
kw(σ)T ′n(σ)p′c(σ) dσ.

We are now in a position to define renormalized solutions of the Generalized Richards Equation.

Definition 3.2 Take the assumptions of Definition 3.1.

A couple (u, θ) such that ϕn(u), ψn(u) ∈ L2(0, T ;H1(Ω)), bn(u)t ∈ (L2(0, T ;H1(Ω))′+L1((0, T )×Ω),

and θ is a [0, 1]-valued measurable function on (0, T ) × Ω is a renormalized solution of the Generalized

Richards Equation with initial condition u0 and the homogeneous Neumann boundary condition if

• for every n ∈ N, the renormalized formulation on [u < 1]:{
bn(u)t −∆ϕn(u)− |∇ψn(u)|2 = s Tn(u)

ϕn(u) · n|(0,T )×∂Ω = 0 and bn(u)|t=0 = bn(u0)
in L2(0, T ; (H1(Ω))′) + L1((0, T )× Ω) (29)

holds1 in the “variational” sense of [1] (the term
∫ T

0

∫
Ω
bn(u)tξ is given sense using the initial

condition and the integration-by-parts formula analogous to (20)).

• there exists p ∈ L2(0, T ;H1(Ω)) such that the following constraint holds at the limit n→∞

lim
n→∞

∫ T

0

∫
Ω

|∇ψn(u)|2 ξ =

∫ ∫
[u=1]

[
( s− θ s) ξ −∇p · ∇ξ

]
for all ξ ∈ L2(0, T ;H1(Ω)) ∩ L∞((0, T )× Ω) .

(30)

Remark 3.3 The constraint (30) can be localized in time, upon taking ξ1l[0,t0](t). It implies, in particular,

the following constraint from which p is eliminated:

for all t0 ∈ (0, T ) lim
n→∞

∫ t0

0

∫
Ω

|∇ψn(u)|2 =

∫ t0

0

∫
[u=1]

( s− θ s). (31)

Let us stress that the components p and θ are eliminated from the renormalized formulation (29), because

“it only sees” the set [u < 1] and we have θ = 0, ∇p = −∇pc(u) =
√
kw(u)∇ζw(u) on the set [u < 1].

As it is usual in the context of renormalized solutions, some information concerning the quantities p and

θ on the singular set (here, this is the saturated region [u = 1]) and also the behaviour of u near the

boundary of this region is retained by means of the limit (30).

1As in [13, 11, 12], one can replace Tn by more general nonlinearities, and re-define bn, ϕn, ψn accordingly.
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Remark 3.4 In the renormalized formulation (29),(31), the L2 integrability assumption of the source

and sink terms s, s can be replaced by the L1 integrability provided the H1− (H1)′ duality is replaced by

X −X ′ duality with X = L∞ ∩H1, and the test functions ξ in (29) are chosen accordingly; notice that

the chain rule (21) extends to this setting ([3]).

Now, we will show

Proposition 3.1 A weak solution of the Generalized Richards Equation is also its renormalized solution.

Proof: Since u takes values in [um, 1], ϕn(u) = H(ζw(u)) for some Lipschitz continuous function H(·)
that we need not make precise. Due to assumptions (26) and the definition of Tn(·), writing

Tn(s) ≡
∫ 1

s

T ′n(σ) dσ ≡ −
∫

[s,1]∩[s,1− 1
2n ]

T ′n(σ)
1√

kw(σ)pc′(σ)
dζw(σ)

we see that also Tn(u) is the composition of ζw(u) by a Lipschitz continuous function. Analogous property

holds for ψn(u). Therefore for all n ∈ N, Tn(u), ϕn(u) and ψn(u) belong to L2(0, T ;H1(Ω)) whenever

u satisfies (22). Moreover, Tn(·) are bounded. It is therefore possible to take Tn(u)ξ (say, with ξ ∈
D([0, T ]×Ω)) and then (1−Tn(u))ξ as test functions in the weak formulation (23). Using the generalized

chain rule analogous to (21) for the term
∫ T

0
< ut , Tn(u) ξ >(H1)′,H1 , we find∫

Ω

(
bn(u(T, ·))ξ(T, ·)− bn(u0)ξ(0, ·)

)
−
∫ T

0

∫
Ω

bn(t) · ξt

+

∫ T

0

∫
Ω

(
∇ϕn(u) · ∇ξ − |∇ψn(u)|2 ξ

)
=

∫ T

0

∫
Ω

s Tn(u) ξ.

(32)

This means in particular that in the sense of distributions, bn(u)t = ∆ϕn(u) + |∇ψn(u)|2 + s Tn(u),

of which the right-hand side belongs to the space L2(0, T ; (H1(Ω))′) + L1((0, T ) × Ω). Then, using the

generalization of [3] of the chain rule argument, we can interpret the first line of (32) as∫ T

0

< bn(u)t , ξ >(H1)′+L1,H1∩L∞

(being understood that (H1)′ + L1 ⊂ (H1 ∩ L∞)′) and take ξ ∈ L2(0, T ;H1(Ω)) ∩ L∞((0, T ) × Ω) with

ξt ∈ L1((0, T ) × Ω). We end up with (29), which is the renormalized formulation on [u < 1] of the

Generalized Richards Equation.

Further, replacing Tn(u) by (1− Tn(u)) in the above arguments, we find the identities∫ T

0

∫
Ω

(
−cn(u)ξt + kw(u)(1− Tn(u))∇p · ∇ξ + |∇ψn(u)|2ξ

)
=

∫ T

0

∫
Ω

( s− θ s 1l[u=1])(1− Tn(u))ξ +

∫
Ω

cn(u0)ξ(·, 0).

(33)

for ξ ∈ D([0, T ) × Ω). Letting n → ∞, we make vanish the terms containing cn(u) (see (28)); we also

have kw(u)(1 − Tn(u)) → kw(1)1l[u=1] = 1l[u=1], so that we find the equality of (30) for regular ξ; this

equality can be extended by the density of D([0, T )× Ω) in L2(0, T ;H1(Ω)).

This concludes the proof. 2

The renormalized formulation on [u < 1] has the advantage of being easily exploited. Indeed, the

theory of degenerate elliptic-parabolic problems of the kind (29) is well established: we refer in particular

to Alt and Luckhaus [1], Otto [10], Carrillo and Wittbold [3]. Thus u a weak solution in the sense of

Definition 3.1 is also the unique solution of (29).

At this point, we use the idea of Igbida, Sbihi and Wittbold [7]: instead of working directly with the

renormalized formulation, one takes advantage of the well-known properties of equation (29), and con-

cludes by exploiting the constraint (30). In particular, the following L1 contraction and order-preservation
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principle can be easily established following [10, 3] (the only difference with the known results is that

here, we have the homogeneous Neumann boundary condition): for u, û associated with data (u0, s) and

(û0, ŝ), respectively,

for a.e. t ∈ (0, T )

∫
Ω

(bn(u)− bn(û))+(t, ·) ≤
∫

Ω

(b(u0)− b(û0))+

+

∫ t

0

∫
Ω

sgn+(bn(u)− bn(û))
(
s Tn(u)− ŝ Tn(û) + |∇ψn(u)|2 − |∇ψn(û)|2

)
.

(34)

For the proof, either one can use the nonlinear semigroup theory, as in [3]; or, following the idea of

[10], one uses the doubling of variables in time. Let us briefly recall the technique of Otto [10]. One

writes u = u(t, x) and û = û(τ, x). Taking Hα(·) a Lipschitz approximation of sgn+(·), taking δβ(·)
a smooth approximation of the Dirac mass, one uses Hα(ϕn(u(t, ·)) − ϕn(û(τ, ·)))δβ(t − τ) as the test

function in (29), written for both u and û. The time evolution terms (in t and in τ) are treated using

the generalization of the chain rule (21) (see [10, 3]). As α → 0, this technique makes appear the term

(bn(u)(t, ·)− bn(û)(τ, ·))+ weighted by δβ(t− τ) and its derivatives; then, letting β → 0, with the classical

Kruzhkov techniques we identify t and τ and find (34).

Theorem 3.1 Assume u, û are renormalized solutions of the Generalized Richards Equation correspond-

ing to data (u0, s) and (û0, ŝ). Then we have the following incomplete contraction inequality:

for a.e. t ∈ (0, T )

∫
Ω

(u− û)+(t, ·) ≤
∫

Ω

(u0 − û0)+ +

∫ t

0

∫
Ω

sgn+(u− û)( s− ŝ) +

∫ t

0

∫
[u=1=û]

s. (35)

In particular, (35) holds true for weak solutions of the Generalized Richards Equation corresponding to

data (u0, s, s ) and (û0, ŝ, ŝ ).

Proof: We let n→∞ in (34). Using (27) and the fact that Tn(u)→ 1l[u<1] pointwise, we find∫
Ω

(u− û)+(t, ·) ≤
∫

Ω

(u0 − û0)+

+ lim
n→∞

∫ t

0

∫
Ω

sgn+(bn(u)− bn(û))

(
s Tn(u)− ŝ Tn(û) + |∇ψn(u)|2 − |∇ψn(û)|2

) (36)

for a.e. t ∈ (0, T ). Let us treat the right-hand side term per term. The last one in non-positive, and

we drop it. The last but one term in lower bounded by the left-hand side, and then also by the right-

hand side of inequality (31). The integrands of the first two terms tend to 1l[û<u<1] s and to 1l[û<u]ŝ,

respectively; we can use the dominated convergence theorem for these two terms. Eventually, we find∫
Ω

(u− û)+(t, ·) ≤
∫

Ω

(u0 − û0)+ +

∫ t

0

∫
[û<u<1]

s−
∫ t

0

∫
[û<u<1]

ŝ+

∫ t

0

∫
[u=1]

( s− θ s)

≤
∫

Ω

(u0 − û0)+ +

∫ t

0

∫
[û<u]

( s− ŝ) −
∫ t

0

∫
[û<u=1]

s +

∫ t

0

∫
[u=1]

s.

(37)

This inequality is precisely (35), which was to be proved.

The last claim of the Theorem follows readily. Indeed, from the existence results on Eymard, Henry,

Hilhorst [6] and of the authors [2], taking into account the analysis of the beginning of this section

we derive existence of a weak solution. Then by Proposition 3.1 we deduce uniqueness of a unique

renormalized solution which is also the unique weak solution of the Generalized Richards Equation. 2

Remark 3.5 Clearly, the above technique for estimating (u − û)+ does not look optimal: in particular,

the passage from (36) to (37) includes several rather rough estimates. For instance, we have used only

the weakest form (31) of the constraint (30). For more subtle use of (30) (where the information on

∇p has to be eliminated anyway, because no sign could be given to this term), one can use it with test

functions that are constant a.e. in the saturated region [u = 1].

Yet inequality (35) remains the best of what we were able to prove with this kind of ideas.
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4 The no-source case: equivalence of Generalized and classical Richards equations

Although in general, the result of Theorem 3.1 does not yield uniqueness of a weak or a renormalized

solution to the Generalized Richards Equation, it is immediate that under the no-source assumption

s = 0 the incomplete contraction inequality (35) becomes a true comparison property.

In this section, we show that not only this leads to well-posedness of the Generalized Richards Equation

in the no-source case, but actually this model is equivalent to the classical Richards model without source.

Proposition 4.1 Assume that s = 0 a.e. on (0, T )× Ω.2

Then for every initial datum u0 taking values in [um, 1] there exists a unique u such that (u, p, θ) is

a weak solution of the Generalized Richards Equation, and it is also its unique renormalized solution.

Moreover, in this case we have θ s = 0 a.e. on (0, T )×Ω; and the saturation u of the solution coincides

with the unique solution of the classical Richards equation (1).

Proof: The uniqueness claim (for u) in the case of data with s = 0 is immediate from (35); existence

was already established. In order to observe that we necessarily have θ s = 0 a.e. on [u = 1], it is enough

to use (31) which readily yields
∫∫

[u=1]
θ s ≤ 0.

It remains to identify the saturation u with û the unique solution of the classical Richards equation (1).

Indeed, let us recall that (1), if written in terms of the unknown function p, falls into the elliptic-parabolic

framework of [1, 10, 3, 7]). Then, in absence of a source sw, existence, uniqueness and comparison principle

for variational solutions of (1) is well known, for arbitrary measurable data u0 taking values in [0, 1].

Now, let (û, p̂) be the solution of the classical Richards model with initial datum u0 and the homo-

geneous Neumann boundary condition. Setting θ̂ = 0, we readily see that the triple (û, p̂, θ̂) is a weak

solution of the Generalized Richards Equation. Thus, by the uniqueness result above we do have u = û.

This ends the proof. 2

Remark 4.1 Making appeal to the Richards model, or to the comparison principle for solutions of the

Generalized Richards Equation, we can extend the notion of weak solution to general data, for instance in

the case where pc(·) is bounded at zero. Indeed, in this case the last estimate on Lemma 3.1 allows to extend

Definition 3.1 to general [0, 1]-valued data u0; and existence can be established by truncating the data at

levels um = δ going to zero, which leads to a monotone non-increasing sequence of saturations uδ which

clearly converges (see e.g. [7] and references therein for this technique of monotone approximations).

Remark 4.2 It should be noticed that, although we have not assumed that the sink (or water production)

intensity s is zero, Proposition 4.1 shows that the effective production intensity θ s remains zero if s = 0.

This feature of the model is somewhat disappointing, and it can be seen as an argument in favor of

the complete two-phase model (2) with large but finite air mobility µ. Compared to its singular limit, the

two-phase model has this more realistic qualitative property: it allows for water production in saturated

or close to saturation regions that correspond to the set [u : fµ(u) is far enough from 0].

5 Conclusions

We have presented a one-phase model originating as a singular limit of the two-phase flow, analyzed the

notion of solution and investigated a uniqueness approach to this problem. It turns out that in the case

without water injection in the media, there is well-posedness to the singular limit model, but also, the

model actually coincides with the classical Richards one.

2recall that this corresponds to s1l[c=1] = 0, if we consider u as limit of the two-phase flow approximations with c = c(t, x)

the saturation in water of the injected fluid
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des milieux poreux. (French) [Renormalized solutions for some porous media models] C. R. Acad.

Sci. Paris Sér. I Math. 325(10):1091-1095, 1997.
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