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Kazhdan’s property (T ) with respect

to non-commutative Lp-spaces

Baptiste OLIVIER

July 7, 2011

Abstract

We show that a group with Kazhdan’s property (T ) has property (TB)
for B the Haagerup non-commutative Lp(M)-space associated with a von
Neumann algebra M, 1 < p < ∞. We deduce that higher rank groups
have property FLp(M).

Keywords: Haagerup non-commutative Lp(M)-spaces, property (T ), group
representations, Mazur map, property FLp(M).

1 Introduction

Kazhdan’s property (T ) of a topological groupG is an important rigidity property,
defined in terms of the unitary representations of G on Hilbert spaces. We recall
the precise definition :

Definition 1.1. A pair (G,H) of topological groups, where H is a closed sub-
group of G, is said to have relative property (T ) if there exist a compact subset
Q of G and ǫ > 0 such that : whenever a unitary representation π of G on a
Hilbert space H has a (Q, ǫ)-invariant vector, that is a vector ξ ∈ H such that

sup
g∈Q

||π(g)ξ − ξ|| < ǫ||ξ||

then π has a non-zero π(H)-invariant vector. The pair (Q, ǫ) is called a Kazhdan
pair.
A topological group G is said to have property (T ) if the pair (G,G) has relative
property (T ).

For more details on property (T ), see the monography [2].
The following variant of this property for Banach spaces was recently introduced
by Bader, Furman, Gelander and Monod in [1]. Let B be a Banach space and
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O(B) the orthogonal group of B, that is, the group of linear bijective isometries
of B. Recall that an orthogonal representation of a topological group G on a
Banach space B is a homomorphism ρ : G → O(B) such that the map g 7→ ρ(g)x
is continuous for every x ∈ B. If ρ : G → O(B) is an orthogonal representation
of a group G, we denote the subspace of ρ(G)-invariant vectors by

Bρ(G) = {x ∈ B | ρ(g)x = x for all g ∈ G }.

Observe that Bρ(G) is invariant under G. The representation ρ is said to almost
have invariant vectors if it has (Q, ǫ)-invariant vector for every compact subset
Q of G and ǫ > 0.

Definition 1.2. LetG be a topological group andH be a closed normal subgroup
of G. The pair (G,H) has relative property (TB) for a Banach space B if, for any
orthogonal representation ρ : G → O(B), the quotient representation ρ′ : G →
O(B/Bρ(H)) does not almost have ρ′(G)-invariant vectors.
A topological group G has property (TB) if the pair (G,G) has relative property
(TB).

The authors of [1] studied the case where B is a superreflexive Banach space,
and among other things, they showed that a group which has property (T ) has
property (TLp(µ)) for µ a σ-finite measure on a standard Borel space (X,B) and
1 < p < ∞. We will extend this result to the non- commutative setting.
Non-commutative Lp-spaces were introduced by Dixmier [3] and studied by var-
ious authors, among them Yeadon [13] and Haagerup [4] (for a survey on these
spaces, see Pisier and Xu [6]). Apart from the standard Lp(µ)-spaces, common
examples are the p-Schatten ideals

Sp = {x ∈ B(H) | tr(|x|p) < ∞ }

where H is a separable Hilbert space.
We review below (in Section 2) Haagerup’s definition of these non-commutative
Lp-spaces. Here is our main result :

Theorem 1.3. Let G be a topological group and H a closed normal subgroup of G.
Assume that the pair (G,H) has relative property (T ). For every von Neumann
algebra M, the pair (G,H) has relative property (TLp(M)) for 1 < p < ∞.

In particular, if G has property (T ), then G has property (TLp(M)) for
1 < p < ∞. Property (TB) has a stronger version which is a fixed point property
for affine actions.

Definition 1.4. Let B a Banach space. A topological group G has property (FB)
if every continuous action of G by affine isometries on B has a G-fixed point.

The authors of [1] showed that higher rank groups and their lattices have
property (FLp(µ)).
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Definition 1.5. For 1 ≤ i ≤ m, let ki be local fields and Gi(ki) be the ki-points
of connected simple ki-algebraic groups Gi. Assume that each simple factor Gi

has ki-rank ≥ 2. The group G = Πm
i=1Gi(ki) is called a higher rank group.

Our next result shows that Theorem B in [1] remains true for non-commutative
Lp-spaces.

Theorem 1.6. Let G be a higher rank group and M a von Neumann algebra.
Then G, as well as every lattice in G, has property FLp(M) for 1 < p < ∞.

Theorem 1.6 was proved by Puschnigg in [7] in the case Lp(M) = Sp. The
strategy of the proof of Theorem 1.3 (as in [7]) follows the one from [1]. To achieve
the result, we will need some results on the Mazur map and the description of
the surjective isometries of Lp(M) given by Sherman in [9].
The paper is organized as follows. In Section 2, useful properties of the Mazur
map are established. Group representations on Lp(M) are studied in Section
3. The proof of Theorem 1.3 is given in Section 4. In Section 5, we show how
Theorem 1.6 can be obtained from a variant of Theorem 1.3.

2 Some properties of the Mazur map

Let M be a von Neumann algebra, acting on a Hilbert space H, and equipped
with a normal semi-finite weight ϕ0. Let t 7→ σϕ0

t be the one-parameter group of
modular automorphisms of M with respect to ϕ0. We denote by Nϕ0

= M⋊ϕ0
R

the crossed product von Neumann algebra, which is a von Neumann algebra
acting on L2(R,H), and generated by the operators πϕ0

(x), x ∈ M, and λs,
s ∈ R, defined by

πϕ0
(x)(ξ)(t) = σϕ0

−t(x)ξ(t)

λs(ξ)(t) = ξ(t− s) for any ξ ∈ L2(R,H) and t ∈ R.

There is a dual action s 7→ θs of R on Nϕ0
. Then let τϕ0

be the semi-finite normal
trace on Nϕ0

satisfying

τϕ0
◦ θs = e−sτϕ0

for all s ∈ R.

We denote by L0(Nϕ0
, τϕ0

) the *-algebra of τϕ0
-measurable operators affiliated

with Nϕ0
. For 1 ≤ p ≤ ∞, the Haagerup non-commutative Lp-space associated

with M is defined by

Lp(M) = { x ∈ L0(Nϕ0
, τϕ0

) | θs(x) = e−s/px for all s ∈ R}.

It is known that this space is independant of the weight ϕ0 up to isomorphism.
The space L1(M) is isomorphic to M∗. The identification goes as follows : there
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exists a normal faithful semi-finite operator valued weight from Nϕ0
to M defined

by

Φϕ0
(x) = π−1

ϕ0
(

∫

R

θs(x)ds) , for x ∈ Nϕ0
.

Now, if ϕ ∈ M+
∗ , and ϕ̂ denotes the extension of ϕ to a a normal weight on M̂+,

the extended positive part of M, we then put

ϕ̃ϕ0 = ϕ̂ ◦ Φϕ0
.

We associate to ϕ the Radon-Nikodym derivative dϕ̃ϕ0

dτϕ0

of ϕ̃ϕ0 with respect to the

trace τϕ0
. This isomorphism between M+

∗ and L1(M)+ extends to the whole
spaces by linearity.
If x ∈ L1(M), and ϕx is the element of M+

∗ associated to x, we define a linear
functional Tr by

Tr(x) = ϕx(1)

and we have, p′ being the conjugate exponent of p,

Tr(xy) = Tr(yx) for x ∈ Lp(M), y ∈ Lp′(M)

For 1 ≤ p < ∞, if x = u|x| is the polar decomposition of x ∈ Lp(M), we define

||x||p = Tr(|x|p)1/p.

Equipped with ||.||p, Lp(M) is a Banach space. For 1 < p < ∞, the dual space
of Lp(M) is Lp′(M) and Lp(M, τ) is known to be superreflexive.

We now introduce the Mazur map and establish some of its properties.

Definition 2.1. Let 1 ≤ p, q < ∞. For an operator a, let α|a| be its polar
decomposition. The map

Mp,q :L0(Nϕ0
, τϕ0

) → L0(Nϕ0
, τϕ0

)

x = α|a| 7→ α|a|
p

q

is called the Mazur map.

We will need the following lemma.

Lemma 2.2. Let 1 ≤ p, q, r < ∞. Then Mr,q ◦Mp,r = Mp,q.

Proof. Let α|x| be the polar decomposition of x ∈ L0(Nϕ0
, τϕ0

). Let β > 0, and
set y = α|x|β. We claim that the polar decomposition of y is given by α and |x|β.
To show this, it suffices to prove that Im(|x|β) = Im(|x|).
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By taking orthogonals, we have to show that Ker(|x|) = Ker(|x|β) for all β > 0.
Recall that the domain D(|x|β) of |x|β is

D(|x|β) = {ξ |

∫
∞

0

λ2βdµξ(λ) < ∞}.

If ξ ∈ Ker(|x|), we have for all η ∈ L2(R,H)

< |x|ξ, η >=

∫
∞

0

λdµξ,η(λ) = 0.

In particular, µξ(]0,∞[) = 0. So ξ ∈ D(|x|β) and ξ ∈ Ker(|x|β) thanks to

< |x|βξ, η >=

∫
∞

0

λβdµξ,η(λ) = 0.

By exchanging the role of |x| and |x|β, we get the equality.
Let 1 ≤ p, q, r < ∞, and β = p/r; then Mp,r(x) = α|x|β. It follows from what we

have just seen that Mr,q(Mp,r(x)) = α|x|
p

q = Mp,q(x).

Proposition 2.3. Let 1 ≤ p, q < ∞, and a ∈ Lp(M). Then

||Mp,q(a)||
q
q = ||a||pp.

Proof. We denote again by α|a| the polar decomposition of a. We have already

seen that |Mp,q(a)| = |a|
p

q . So we have

Tr(|Mp,q(a)|
q) = Tr(|a|p).

Proposition 2.4. Let p, q ∈]1,∞[ be conjugate. The map

Lp(M) → Lq(M)

x 7→ Mp,q(x)
∗

is the duality map from Lp(M) to Lq(M).

Proof. We first notice thatMp,q sends Lp(M) into Lq(M). Let x = α|x| ∈ Lp(M)
and s ∈ R. By uniqueness in the polar decomposition, we have θs(α) = α and
θs(|x|) = e−s/p|x|, and then

θs(Mp,q(x)) = θs(α)θs(|x|
p

q )

= α(θs(|x|)
p

q )

= e−s/qMp,q(x).
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Thanks to the uniqueness of the duality map in superreflexive spaces, we just have
to check that Tr(Mp,q(a)

∗a) = 1 for a in the unit sphere S(Lp(M)) of Lp(M).

Let a = α|a| ∈ S(Lp(M)); then Mp,q(a) = α|a|
p

q . Since α∗α|a| = |a|, it follows
that

Tr(|a|
p

qα∗α|a|) = Tr(|a|
p

q |a|) = Tr(|a|p) = 1.

Proposition 2.5. If a, b ∈ L0(Nϕ0
, τϕ0

) and if e, f are two central projections in
Nϕ0

such that ef = 0, then Mp,q(ae + bf) = Mp,q(ae) +Mp,q(bf).

Proof. As is easily checked, we have

|ae+ bf | = |a|e+ |b|f.

Let γ be the partial isometry occuring in the polar decomposition of ae+ bf , and
let a = α|a|, b = β|b| be the polar decompositions of a and b. We claim that
γ = αe+ βf . Indeed, we have

ae + bf = γ|ae+ bf |

and ae+ bf = (αe)(|a|e) + (βf)(|b|f) = (αe+ βf)|ae+ bf |.

Since αe is zero on Ker(|a|e) and βf is zero on Ker(|b|f), αe + βf is zero on
Im(|ae + bf |)⊥ = Ker(|ae+ by|) = Ker(|a|e) ∩Ker(|b|f) (ef = 0).
Using again the fact that ef = 0 and that e, f are central elements, we deduce
that

Mp,q(ae + bf) = (αe+ βf)|ae+ bf |
p

q

= (αe+ βf)(e|a|
p

q + f |b|
p

q )

= Mp,q(ae) +Mp,q(bf).

Proposition 2.6. Let J be a Jordan-isomorphism of Nϕ0
, and let 1 ≤ p, q < ∞.

Then we have
J(x) = Mp,q ◦ J ◦Mq,p(x) for all x ∈ Nϕ0

.

Proof. By Lemma 3.2 in [10], we have a decomposition J = J1 + J2 with the
following properties : J1 is a *-homomorphism, J2 is a *-anti-homomorphism and
J1(x) = J(x)e, J2(x) = J(x)f for all x ∈ M, with e, f two orthogonal and central
projections such that e + f = I.
Observe first that, for a ∈ Nϕ0

with a ≥ 0 and a positive real number r, we have

J1(a
r) = J1(a)

r

and the same is true for J2.
If α is a partial isometry, then J1(α) and J2(α) are partial isometries with initial
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supports J1(α
∗α) and J2(αα

∗), and final supports J1(αα
∗)) and J2(α

∗α)) respec-
tively.
Let x = α|x| ∈ Nϕ0

. Since the supports of J1 and J2 are orthogonal, it follows
from Proposition 2.5 that

Mp,q ◦ J ◦Mq,p(x) = Mp,q(J1(Mq,p(x)) + Jq(Mq,p(x)))

= Mp,q(J1(Mq,p(x))) +Mp,q(J2(Mq,p(x))).

Moreover, we have

Mp,q(J1(Mq,p(x))) = Mp,q(J1(α|x|
2

p ))

= Mp,q(J1(α)J1(|x|)
2

p )

= J1(x)

and

Mp,q(J2(Mq,p(x))) = Mp,q(J2(α|x|
2

pα∗α))

= Mp,q(J2(α)J2(α|x|
2

pα∗))

= Mp,q(J2(α)J2((α|x|α
∗)

2

p ))

= Mp,q(J2(α)J2(α|x|α
∗)

2

p )

= J2(x).

An essential tool for the proof of Theorem 1.3 is the following result about
the local uniform continuity of Mp,q, which is proved in Lemma 3.2 of [8] (for an
independant proof in the case Lp(M, τ) = Sp, see [7]).

Proposition 2.7. [8] For 1 ≤ p, q < ∞, the Mazur map Mp,q is uniformly
continuous on the unit sphere S(Lp(M)).

3 Group representations on Lp(M)

Sherman’s description of the surjective isometries of Lp(M) in [9] is a crucial tool
in the following result (non surjective isometries in the semi-finite case, and 2-
isometries in the general case are described in [14] and [5] respectively). This will
allow us to transfer a representation of a group G on Lp(M) to a representation
of G on L2(M).

Proposition 3.1. For p > 2, and U ∈ O(Lp(M)), the map V = Mp,2 ◦ U ◦M2,p

belongs to O(L2(M)).
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Proof. The fact that ||V (x)||2 = ||x||2 for all x ∈ L2(M) follows from Proposition
2.3, and V is bijective by Lemma 2.2. We have to prove that V is linear on L2(M).
By Theorem 1.2 in [9], there exist a Jordan-isomorphism J of M and a unitary
w ∈ M such that

U(ϕ1/p) = w(ϕ ◦ J−1)1/p for all ϕ ∈ M+
∗ .

It was shown in [12] that J extends to a Jordan-*-isomorphism J̃ between L0(Nϕ0
, τϕ0

)

and L0(Nϕ0◦J−1 , τϕ0◦J−1); moreover, J̃ is an extension of an isomorphism be-
tween Nϕ0

and Nϕ0◦J−1 as well as a homeomorphism for the measure topology on

L0(Nϕ0
, τϕ0

) and L0(Nϕ0◦J−1 , τϕ0◦J−1). The isomorphism J̃ satisfies the relations

τϕ0
◦ J̃−1 = τϕ0◦J−1

J−1 ◦ Φϕ0◦J−1 = Φϕ0
◦ J̃−1

Lemma 3.2. For ϕ ∈ M+
∗ , we have

dϕ̃ϕ0

dτϕ0

= J̃−1(
d ˜ϕ ◦ J−1

ϕ0◦J−1

dτϕ0◦J−1

).

Proof. For all ϕ ∈ M+
∗ , we have

τϕ0
(
dϕ̃ϕ0

dτϕ0

. ) = ϕ ◦ Φϕ0

= ϕ ◦ J−1 ◦ Φϕ0◦J−1 ◦ J̃

= τϕ0◦J−1(
d ˜ϕ ◦ J−1

ϕ0◦J−1

dτϕ0◦J−1

J̃( . ))

= τϕ0
◦ J̃−1(

d ˜ϕ ◦ J−1
ϕ0◦J−1

dτϕ0◦J−1

J̃( . ))

= τϕ0
(J̃−1(

d ˜ϕ ◦ J−1
ϕ0◦J−1

dτϕ0◦J−1

) . ) ,

where in the last equality we used the fact that J̃ is Jordan homomorphism.

In Lemma 2.1 in [11], it is shown that there exists a topological ∗-isomorphism

K̃ between L0(Nϕ0
, τϕ0

) and L0(Nϕ0◦J−1, τϕ0◦J−1) which satisfies the following
relation on the Radon-Nikodym derivatives :

K̃(
dϕ̃ϕ0

dτϕ0

) =
dϕ̃ϕ0◦J−1

dτϕ0◦J−1

for all ϕ ∈ M+
∗ .

8



From Lemma 3.2, we obtain

d ˜ϕ ◦ J−1
ϕ0

dτϕ0

= K̃−1 ◦ J̃(
dϕ̃ϕ0

dτϕ0

) for all ϕ ∈ M+
∗ .

As a consequence, the linear and bijective isometry U of Lp(M) is given by the
following relation on positive elements :

U(x) = w (K̃−1 ◦ J̃(x)) for all x ∈ Lp(M)+.

This relation extends by linearity to the whole Lp(M).

Now notice that K̃−1 ◦ J̃ is a Jordan-isomorphism on Nϕ0
and a topological

isomorphism (for the measure topology) on L0(Nϕ0
, τϕ0

). By Proposition 2.6, for
x ∈ Nϕ0

, we have

V (x) = Mp,2 ◦ U ◦M2,p(x)

= w(Mp,2 ◦ K̃
−1 ◦ J̃ ◦M2,p(x))

= w(K̃−1 ◦ J̃(x)).

Recall from [8] that the Mazur map is continuous for the measure topology on
L0(Nϕ0

, τϕ0
). So by density of Nϕ0

in L0(Nϕ0
, τϕ0

) for the measure topology, we
have

V (x) = w(K̃−1 ◦ J̃(x)) for all x ∈ L2(M)

which gives the linearity of V on L2(M).

Remark 3.3. The proof of the linearity of the map V in Proposition 3.1 is
simpler in the case where M is a von Neumann algebra equipped with a faithful
semi-finite normal trace τ . Indeed, by Theorem 2 in [14], there exist a Jordan-
isomorphism J , a positive operator B commuting with J(M), and a partial
isometry W in M with the property that W ∗W is the support of B, such that

U(x) = WBJ(x) for all x ∈ M∩ Lp(M, τ).

Using the fact that B commutes with J(M), and as in the proof of Proposition
2.6, for all x = α|x| ∈ M∩ Lp(M, τ), we have

V (x) = WMp,2(BJ1(α|x|
p

2 ) +BJ2(α|x|
p

2 ))

= WMp,2(BJ1(α|x|
p

2 )) +WMp,2(BJ2(α|x|
p

2 ))

= WJ1(α)B
p

2J1(|x|) +WJ2(α)B
p

2J2(α|x|α
∗)

= WB
p

2J(x).

The linearity on the whole Lp(M, τ) follows from the density of M∩ Lp(M, τ)
in Lp(M, τ).
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Corollary 3.4. Let G be a topological group, p ≥ 2, and U : G → O(Lp(M)) be
a representation on Lp(M). For g ∈ G, define V (g) : L2(M) → L2(M) by

V (g) = Mp,2 ◦ U(g) ◦M2,p.

Then V is a representation of G on L2(M).

Proof. By the previous proposition, V (g) ∈ O(L2(M)) for every g in G. More-
over, the map g 7→ V (g)x is continuous, since g 7→ U(g)M2,p(x) is continuous
and since Mp,2 : Lp(M) → L2(M) is continuous.
It remains to check that V is a homomorphism. For this, let g1, g2 ∈ G. Then,
by Lemma 2.2,

V (g1)V (g2) = Mp,2 ◦ U(g1) ◦M2,p ◦Mp,2 ◦ U(g2) ◦M2,p

= Mp,2 ◦ U(g1) ◦ U(g2) ◦M2,p

= Mp,2 ◦ U(g1g2) ◦M2,p

= V (g1g2).

Let U be a representation of a topological group G on Lp(M) and let

Lp(M)U(G) = {x ∈ Lp(M) | U(g)x = x for all g ∈ G }

be the space of U(G)-invariant vectors in Lp(M). Let p′ be the conjugate of p and
U∗ the contragredient representation of U on the dual space Lp′(M) of Lp(M).
Since Lp(M) is superreflexive, there exists a complement Lp(M)

′

for Lp(M)U(G)

(see Proposition 2.6 in [1]) and we have

Lp(M)
′

= {v ∈ Lp(M) | Tr(vc) = 0 for all c ∈ Lp′(M)U
∗(G)}.

Proposition 3.5. Let v ∈ S(Lp(M)
′

), then

d(v, Lp(M)U(G)) ≥
1

2
.

Proof. Assume, by contradiction, that there exists b ∈ Lp(M)U(G) such that

||v − b||p <
1

2
.

Then 1
2
≤ ||b||p ≤

3
2
. Setting c =

b

||b||p
, we have ||b− c||p ≤

1
2
.

Since c ∈ Lp(M)U(G), it is easily checked that Mp,p′(c)
∗ ∈ Lp′(M)U

∗(G); hence

Tr((c− v)Mp,p′(c)
∗) = Tr(cMp,p′(c)

∗) = ||c||pp = 1.
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On the other hand, using Hölder’s inequality, we have

1 = Tr((c− v)Mp,p′(c)
∗)

≤ ||c− v||p||Mp,p′(c)
∗||p′

= ||c− v||p||c||
p

p′

p

= ||c− v||p.

This implies that

||v − b||p ≥ ||v − c||p − ||c− b||p

≥
1

2

and this is a contradiction.

4 Proof of Theorem 1.3

We follow the strategy of the proof of Theorem A in [1]. Let p ∈]1,∞[. and let
U be a representation on Lp(M) of a group G. Let H be a closed subgroup of
G such that the pair (G,H) has property (T ). We claim that the representation
U ′ of G on the complement Lp(M)

′

of Lp(M)U(H) has no almost U ′(G)-invariant
vectors. This will prove Theorem 1.3.
Let Q be a compact subset in G, and take ǫ > 0. Assume by contradiction that
there exists almost U(G)-invariant vectors in Lp(M)

′

. Then, we can find, for
every n, a unit vector vn such that

sup
g∈Q

||U(g)vn − vn||p <
1

n
.

By Corollary 3.4, V = Mp,2 ◦ U ◦M2,p defines a representation of G on L2(M).
Let wn be the orthogonal projection of Mp,2(vn) on the orthogonal complement
L2(M)

′

of L2(M)V (H). We claim that wn is (Q, ǫ)-invariant for V for n suffi-
ciently large. This will contradict property (T ) for the pair (G,H).

We first show that there exists δ
′

> 0 such that

d(Mp,2(vn), L2(M)V (H)) ≥ δ
′

for all n.

Indeed, otherwise for some n, there exists ak ∈ L2(M)V (H) such that

||Mp,2(vn)− ak||2 −−−→
k→∞

0.

By Proposition 2.3, we have

||Mp,2(vn)||2 = ||vn||
p

2

p = 1.
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Since ||ak||2 −−−→
k→∞

||Mp,2(vn)||2 = 1, we can assume that ||ak||2 = 1. Notice that

M2,p(L2(M)V (H)) = Lp(M)U(H).

Hence, M2,p(ak) belongs to Lp(M)U(H) for every k. Moreover

||vn −M2,p(ak)||p −−−→
k→∞

0

by the uniform continuity of M2,p on the unit sphere (see Proposition 2.4). This
is a contradiction to Proposition 3.5.
In particular, we have

||wn||2 = d(Mp,2(vn), L2(M)V (H)) ≥ δ
′

.

For g ∈ Q, we have

||V (g)wn − wn||2 ≤ ||V (g)Mp,2(vn)−Mp,2(vn)||2

= ||Mp,2(U(g)vn)−Mp,2(vn)||2.

Recall that ||vn||
p

2

p = 1 and that

sup
g∈Q

||U(g)vn − vn||p <
1

n
.

Hence, by the uniform continuity of Mp,2 on S(L2(M)), there exists an integer
N (depending only on (Q, ǫ)) such that

sup
g∈Q

||V (g)wn − wn||2 < ǫδ
′

for n ≥ N.

Since ||wn||2 ≥ δ
′

, it follows that

sup
g∈Q

||V (g)wn − wn||2 < ǫ||wn||2 for n ≥ N.

This shows that wn is (Q, ǫ)-invariant for U when n ≥ N . This finishes the proof
of Theorem 1.3.

5 Property (FLp(M)) for higher rank groups

LetH be a closed normal subgroup of G and let L be a closed group of G. Assume
that G = L ⋉H . The following strong relative property (TB) was considered in
[1] :

Definition 5.1. A pair (L⋉H,H) has property (TB) if, for any orthogonal rep-
resentation ρ : L⋉H → O(B), the quotient representation ρ′ : L → O(B/Bρ(H))
does not almost have ρ′(L)-invariant vectors.

12



A straightforward modification of our proof of Theorem 1.3 shows that we
also have the following result :

Theorem 5.2. Let (L⋉H,H) be a pair with strong relative property (T ). Then
(L⋉H,H) has strong relative property (TLp(M)) for 1 < p < ∞.

LetG be a higher rank group as defined in the introduction. Using an analogue
of Howe-Moore’s theorem on vanishing of matrix coefficients, the authors of [1]
showed that G has property (FB) whenever B is a superreflexive Banach space
and a certain pair (L ⋉ H,H) of subgroups, which has property (T ), has also
(TB). The property (FLp(M)) for higher rank groups in Theorem 1.6 is then a
consequence of Theorem 5.2. Moreover, the result for lattices in higher rank
groups is obtained by an induction process exactly as in the Proposition 8.8 of
[1].
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