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Introduction

A three-dimensional cone-manifold is a metric space obtained from a collection of disjoint simplices in the space of constant sectional curvature k by isometric identification of their faces in such a combinatorial fashion that the resulting topological space is a manifold (also called the underlying space for a given cone-manifold). Such the metric space inherits the metric of sectional curvature k on the union of its 2-and 3-dimensional cells. In case k = +1 the corresponding cone-manifold is called spherical (or admits a spherical structure). By analogy, one defines euclidean (k = 0) and hyperbolic (k = -1) cone-manifolds. The metric structure around each 1-cell is determined by a cone angle that is the sum of dihedral angles of corresponding simplices sharing the 1-cell under identification. The singular locus of a cone-manifold is the closure of all its 1-cells with cone angle different from 2π. For the further account we suppose that every component of the singular locus is an embedded circle with constant cone angle along it. A particular case of cone-manifold is an orbifold with cone angles 2π/m, where m is an integer (cf. [START_REF] Thurston | The geometry and topology of 3-manifolds[END_REF]). The present paper considers two infinite families of cone-manifolds with underlying space the three-dimensional sphere S 3 . The first family consists of cone-manifolds with singular locus the torus knot t(2n + 1, 2) with n ≥ 1. In the rational census [START_REF] Rolfsen | Knots and links[END_REF] these knots are denoted by (2n + 1)/1. The second family of cone-manifolds consists of those with singular locus a two-component torus link t(2n, 2) with n ≥ 2. These links are two-bridge and correspond to the links 2n/1 in the rational census. The simplest examples of such the knots and links are the trefoil knot 3/1 and the link 4/1. In the Rolfsen table [START_REF] Rolfsen | Knots and links[END_REF] one finds them as the knot 3 1 and the link 4 2 1 . By the Theorem of W. Thurston [START_REF] Thurston | Hyperbolic geometry and 3-manifolds[END_REF], the manifold S 3 \3 1 does not admit a hyperbolic structure. However, it admits two other geometric structures [START_REF] Neumann | Notes on geometry and 3-manifolds, with appendix by Paul Norbury[END_REF]: H 2 × R and PSL(2, R). It follows from the paper [START_REF] Seifert | Die beiden Dodecaederräme // Math[END_REF] that the spherical dodecahedron space (i.e. Poincaré homology sphere) is a cyclic 5-fold covering of S 3 branched over 3 1 . Thus, the orbifold 3 1 ( 2π 5 ) with singular locus the trefoil knot and cone angle 2π 5 is spherical. Due to the Dunbar's census [START_REF] Dunbar | Geometric orbifolds[END_REF], orbifold 3

1 ( 2π n ) is spherical if n ≤ 5, Nil-orbifold if n = 6 and PSL(2, R)-orbifold if n ≥ 7.
Spherical structure on the cone-manifold 3 1 (α) with underlying space the three-dimensional sphere S 3 is studied in [START_REF] Derevnin | Geometry of trefoil conemanifold[END_REF]. The consideration of two-bridge torus links is carried out starting with the simplest one possessing non-abelian fundamental group, namely 4 2 1 . The previous investigation on spherical structures for cone-manifolds is carried out mainly in the papers [START_REF] Hilden | On a remarkable polyhedron geometrizing the figure eight cone manifolds[END_REF][START_REF] Mednykh | Volumes and degeneration of cone-structures on the figure-eight knot // Tokyo[END_REF][START_REF] Porti | Spherical cone structures on 2-bridge knots and links // Kobe[END_REF]. The present paper develops a method to analyse existence of a spherical metric for two-bridge torus knot and link conemanifolds. Also, the lengths of singular geodesics are calculated and the volume formulae are obtained (cf. Theorem 1 and Theorem 2).

Projective model S 3 λ

The purpose of the present section is to construct the projective model S 3 λ that one can use to study geometric properties of two-bridge torus knots and links and to build up holonomy representation for the corresponding cone-manifolds. Other projective models for homogeneous geometries are described in [START_REF] Molnár | The projective interpretation of the eight 3-dimensional homogeneous geometries // Beiträge zur Algebra und Geometrie[END_REF]. Consider the set C 2 = {(z 1 , z 2 ) : z 1 , z 2 ∈ C} as a four-dimensional vector space over R. We denote it by C 2 R and equip with Hermitian product

(z 1 , z 2 ), (w 1 , w 2 ) H = (z 1 , z 2 )H (w 1 , w 2 ) T ,
where

H = 1 λ λ 1 is a symmetric matrix with -1 < λ < +1.
The natural inner product is associated to the Hermitian form above:

(z 1 , z 2 ), (w 1 , w 2 ) = Re (z 1 , z 2 ), (w 1 , w 2 ) H
and the respective norm is

(z 1 , z 2 ) = |z 1 | 2 + |z 2 | 2 + λ(z 1 z 2 + z 1 z 2 ).
Call two elements (z 1 , z 2 ) and (w 1 , w 2 ) in

• C 2 R = C 2 R \ (0, 0) equivalent if there is µ > 0 such that (z 1 , z 2 ) = (µ w 1 , µ w 2 ). We denote this equivalence relation as (z 1 , z 2 ) ∼ (w 1 , w 2 ).
Identify the factor-space

• C 2
R / ∼ with the three-dimensional sphere

S 3 λ = {(z 1 , z 2 ) ∈ C 2 R : (z 1 , z 2 ) = 1}, endowed with the Riemannian metric ds 2 λ = |dz 1 | 2 + |dz 2 | 2 + λ(dz 1 dz 2 + dz 1 dz 2 ).
By means of equality

ds 2 λ = 1 + λ 2 |dz 1 + dz 2 | 2 + 1 -λ 2 |dz 1 -dz 2 | 2 ,
the linear transformation

ξ 1 = 1 + λ 2 (z 1 + z 2 ), ξ 2 = 1 -λ 2 (z 1 -z 2 )
provides an isometry between (S 3 λ , ds 2 λ ) and (S 3 , ds 2 ), where ds 2 = |dξ 1 | 2 + |dξ 2 | 2 is the standard metric of sectional curvature +1 on the unit sphere

S 3 = {(ξ 1 , ξ 2 ) ∈ C 2 : |ξ 1 | 2 + |ξ 2 | 2 = 1}. Let P, Q be two points in S 3
λ . The spherical distance between P and Q is a real number d λ (P, Q) that is uniquely determined by the conditions 0 ≤ d λ (P, Q) ≤ π and cos d λ (P, Q) = P, Q .

Torus knots T n

Let T n , n ≥ 1 be the torus knot t(2n + 1, 2) embedded in S 3 . The knot T n is the two-bridge knot (2n + 1)/1 in the rational census (Fig. 1). Let T n (α) denote a cone-manifold with singular locus T n and the cone angle α along it. The aim of the present section is to investigate cone-manifolds T n (α), n ≥ 1 to find out the domain of sphericity in terms of the cone angle and to derive the volume formulae. Two lemmas precede the further exposition: Lemma 1 For every 0 < α < 2π and -1 < λ < +1 the linear transformations

A = 1 0 -2 i e i α 2 λ sin α 2 e iα and B = e iα -2 i e i α 2 λ sin α 2 0 1 are isometries of S 3 λ .
Proof. For the further account let us assume that the multiplication of vectors by matrices is to the right. A linear transformation L of the space C 2 R preserves the corresponding Hermitian form if and only if for every pair of vectors

P, Q ∈ C 2 R it holds that P, Q H = P H Q T = P LHL T Q T = P L, QL H .
The condition above is equivalent to

H = LHL T .
In particular,

cos d λ (P, Q) = P, Q = P L, QL = cos d λ (P L, QL),
that means L preserves the spherical distance between P and Q. Let L = A and L = B in series, one verifies that A and B preserve the Hermitian norm on C 2 R and, consequently, the spherical distance on S 3 λ .

Lemma 2 Let A and B be the same matrices as in the affirmation of Lemma 1.

Then for all integer n ≥ 1 one has

(AB) n A -B(AB) n = 2 U 2n (Λ) e i (2n+1)(π+α) 2 sin α 2 M,
where M is a non-zero 2 × 2-matrix and U 2n (Λ) is the second kind Chebyshev polynomial of power 2n in variable Λ = λ sin α 2 .

Proof. As far as -1 < λ < +1, one obtains

-1 < Λ = λ sin α 2 < +1. Substitute Λ = cos θ,
with the unique 0 < θ < π.

Then matrices A and B are rewritten in the form

A = 1 0 -2 i e i α 2 cos θ e iα , B = e iα -2 i e i α 2 cos θ 0 1 .
On purpose to diagonalize the matrix AB, use

V = i e -i α 2 e -iθ i e -i α 2 e iθ 1 1 ,
and obtain

D = V -1 (AB)V = -e iα e 2iθ 0 0 -e iα e -2iθ .
Note, that V might be not an isometry, but it is utile for computation.

Thus (AB) n A -B(AB) n = (V D n V -1 )A -B(V D n V -1 ) = = 2 sin(2n + 1)θ sin θ e i (2n+1)(π+α) 2 sin α 2 -1 λ -λ 1 = = 2 U 2n (cos θ) e i (2n+1)(π+α) 2 sin α 2 M = 2 U 2n (Λ) e i (2n+1)(π+α) 2 sin α 2 M,
with the matrix

M = -1 λ -λ 1
as the present Lemma claims.

The main theorem of the section follows:

Theorem 1 The cone-manifold T n (α), n ≥ 1 is spherical if 2n -1 2n + 1 π < α < 2π - 2n -1 2n + 1 π.
The length of its singular geodesic (i.e. the length of the knot T n ) equals

l α = (2n + 1) α -(2n -1) π. The volume of T n (α) is Vol T n (α) = 1 2n + 1 2n + 1 2 α - 2n -1 2 π 2 .
Proof. The fundamental group of the knot T n is presented as

π 1 (S 3 \T n ) = a, b|(ab) n a = b(ab) n ,
with generators a and b as at Fig. 1.

Since the cone-manifold T n (α) admits a spherical structure, then there exists a holonomy mapping [START_REF] Thurston | The geometry and topology of 3-manifolds[END_REF], that is a homomorphism

h : π 1 (S 3 \T n ) -→ Isom S 3 λ .
We will choose h in respect with geometric construction of the cone-manifold. All the further computations to find the length of the knot T n and the volume of the cone-manifold T n (α) are performed making use of the corresponding fundamental polyhedron P n (Fig. 2). The construction algorithm for the polyhedron is given in [START_REF] Mednykh | On the structure of the canonical fundamental set for the 2-bridge link orbifolds[END_REF]. The combinatorial polyhedron P n has vertices P i , i ∈ {1, . . . , 4n + 2} and edges 

P i P i+1 , i ∈ {1, . . . ,
h(a) = A, h(b) = B,
where A and B are matrices from Lemma 1.

The generators of the fundamental group for T n under the holonomy mapping h correspond to isometries acting on P n . These isometries identify its faces by means of rotation about the edge P 1 P 2n+2 for the top "cupola" of P n and rotation about P 2 P 2n+3 for the bottom one (see, Fig. 2). Then the edges P 1 P 2n+2 and P 2 P 2n+3 knot itself to produce T n (cf. [START_REF] Mednykh | On the structure of the canonical fundamental set for the 2-bridge link orbifolds[END_REF][START_REF] Minkus | The branched cyclic coverings of 2-bridge knots and links // Mem[END_REF]).

In order to construct the polyhedron P n assume that its edge P 1 P 2 is given by

P 1 = (1, 0), P 2 = (0, 1).
Then one has cos d λ (P 1 , P 2 ) = P 1 , P 2 = λ, i.e. the spherical distance between the points P 1 and P 2 can vary from 0 to π. Thus, prescribing certain coordinates to the end-points of the edge P 1 P 2 we do not loss in generality of the consideration. Note, that the axis of the isometry A from Lemma 1 contains P 1 and the axis of B contains P 2 . The aim of the construction for the polyhedron P n is to bring its edges P 1 P 2n+2 and P 2 P 2n+3 to be axes of the respective isometries A and B.

The other vertices P i has to be images of P (c) sum of the inner dihedral angles ψ i along P i P i+1 , i ∈ {1, . . . , 4n + 1} equals 2π;

(d) sum of the dihedral angles φ i for corresponding tetrahedra N SP i P i+1 , i ∈ {1, . . . , 4n + 1} at their common edge N S is 2π; By the orientation of a tetrahedron N SP i P i+1 one means the sign of the Gram determinant det(S, N, P i , P i+1 ) for corresponding quadruple S, N , P i , P i+1 ∈ C 2 R , where i ∈ {1, . . . , 4n + 2}, P 4n+3 = P 1 . A tetrahedron is non-degenerated if det(S, N, P i , P i+1 ) = 0. Thus, claim (e) is satisfied if all the Gram determinants are non-zero and of the same sign. If α = 2π m , m ∈ N, then due to the Poincaré Theorem [14, Theorem 13.5.3] claims (a) -(e) imply that the group generated by the isometries A and B is discreet and its presentation is

Γ = A, B|(AB) n A = B(AB) n , A m = B m = id . The metric space S 3 λ /Γ ∼ = T n ( 2π m
) is a spherical orbifold, and P n is its fundamental polyhedron. If m / ∈ N then the group generated by A and B might be non-discreet. However, the identification for the faces of P n is of the same fashion as if it were m ∈ N and as the result one obtains the cone-manifold T n (α). By means of Lemma 1 and construction of P n claims (a) and (b) are satisfied. For the holonomy mapping h to exist the following relation should be satisfied:

h((ab) n a) -h(b(ab) n ) = (AB) n A -B(AB) n = 0.
By Lemma 2, the condition above is satisfied if and only if U 2n (Λ) = 0, where Λ = λ sin α 2 . Thus, the parameter λ of the metric ds 2 λ is determined completely by a root of the polynomial U 2n (Λ). From the above formula, λ is related to the cone angle α by means of the equality

λ = Λ sin α 2 .
The roots of U 2n (Λ) are given by the following formula:

Λ k = cos kπ 2n + 1 , with k ∈ {1, . . . , 2n}.
The parameter λ for the metric ds 2 λ has to be chosen in order the polyhedron P n be proper and the metric itself be spherical. Note, that the edges P i P i+1 , i ∈ {1, . . . , 4n + 2}, P 4n+3 = P 1 are equivalent under action of the group Γ = A, B . Thus, the relation (AB) n A = B(AB) n implies the equality

2(2n+1) i=1 ψ i = 2kπ,
where k is an integer. Show that one can choose λ for the equality k = 1 to hold for all α in the affirmation of the Theorem. Due to the paper [START_REF] Hodgson | Involutions and isotopies of lens spaces, Knot theory and manifolds[END_REF], every two-bridge knot conemanifold with cone angle π is a spherical orbifold. In this case all the vertices P i of the fundamental polyhedron belong to the same circle and all the dihedral angles ψ i and φ i are equal to each other [START_REF] Mednykh | On the structure of the canonical fundamental set for the 2-bridge link orbifolds[END_REF]:

φ i = ψ i = π 2n + 1 .
As far as cos d λ (N, S) = cos d λ (P i , P i+1 ) = λ, then in case α = π one obtains

λ = Λ k sin π 2 = cos θ
for certain k ∈ {1, . . . , 2n} and then

2(2n+1) i=1 ψ i = 2(2n + 1)θ.
Using the formula for the roots of U 2n (Λ) obtain that 

i=1 φ i = 2π
holds, that means claim (d) is also satisfied. Verify that under conditions of the Theorem the metric ds 2 λ is spherical. This claim is equivalent to the inequality

-1 < λ < +1. Note, that for 2n -1 2n + 1 π < α < 2π - 2n -1 2n + 1 π it follows sin α 2 > sin (2n -1)π 2(2n + 1) .
As far as sin α 2 > 0 and Λ 1 = sin (2n-1)π 2(2n+1) > 0, one has 0 < λ < 1.

By analogy with Lemma 1 verify that

C = 0 1 1 0 is an isometry of ds 2 λ . Fixed point sets of A and B in S 3 λ are circles Fix A = {(z 1 , 0) : z 1 ∈ C, |z 1 | = 1} and Fix B = {(0, z 2 ) : z 2 ∈ C, |z 2 | = 1},
correspondingly. The geometric meaning of C is that it maps the first fixed circle to the other. Thus, the relation B = CAC -1 holds.

The following equalities 

P 2k+1 = P 1 (AB) k , k ∈ {0, . . . ,
ε(m) = m 2 α - 4n -m 2 π.
By analogy with the proof of Lemma 2 it follows that

(AB) k = C(BA) k C -1 = = -sin(2k-1)θ
sin θ e i ε(2k) -sin 2kθ sin θ e i ε(2k-1) sin 2kθ

sin θ e i ε(2k+1) 2k) ,

sin(2k+1)θ sin θ e i ε(
where θ = π 2n+1 . Suppose N and S to be middle-points of the edges P 1 P 2n+2 and P 2 P 2n+3 , respectively. Then

N = (e i ε(2n+1) 2 , 0), S = (0, e i ε(2n+1) 2 ).
For the lengths l α of the singular geodesic one has cos l α 4 = P 1 , N = P 1 C, N C = P 2 , S .

Thus cos l α 4 = cos (2n + 1)α -(2n -1)π 4 .
By construction of the polyhedron P n , the inequality 0 < l α < 4π holds. Then it follows l α = (2n + 1)α -(2n -1)π.

Given the coordinates of the vertices P i and the poles N and S of the polyhedron P n , verify claim (e). For every four points A, B, C, D ∈ C 2 R , where

A = (A 1 , A 2 ), B = (B 1 , B 2 ), C = (C 1 , C 2 ), D = (D 1 , D 2 ), their Gram determinant is det(A, B, C, D) := det     Re A 1 Im A 1 Re A 2 Im A 2 Re B 1 Im B 1 Re B 2 Im B 2 Re C 1 Im C 1 Re C 2 Im C 2 Re D 1 Im D 1 Re D 2 Im D 2     .
Each tetrahedron N SP i P i+1 with i ∈ {1, . . . , 2n + 1} is isometric to N SP 2n+i+1 P 2n+i+2 , i ∈ {1, . . . , 2n + 1}, P 4n+3 = P 1 by means of the isometry C defined above. Thus, we consider only the tetrahedra N SP i P i+1 with i ∈ {1, . . . , 2n + 1}. Split them into two groups: the tetrahedra N SP 2k+1 P 2k+2 with k ∈ {0, . . . , n} and the tetrahedra N SP 2k P 2k+1 with k ∈ {1, . . . , n}. Substitute α = β + π and proceed with straightforward calculations: ∆

k (β) = det(S, N, P 2k+1 , P 2k+2 ) = cos 2 L 1 β 4 -U 2 2k-1 (cos θ) sin 2 β 2 = = T 2 L1 (cos β 4 ) -U 2 2k-1 (cos θ) sin 2 β 2 , (1) 
where k ∈ {0, . . . , n}, L

1 = |2n -4k + 1|, θ = π 2n+1 , β ∈ [-2 θ, 2 θ]; ∆ (2) 
k (β) = det(S, N, P 2k , P 2k+1 ) = cos 2 L 2 β 4 -U 2 2k-2 (cos θ) sin 2 β 2 = = T 2 L2 (cos β 4 ) -U 2 2k-1 (cos θ) sin 2 β 2 ,
where k ∈ {1, . . . , n}, L 2 = |2n -4k + 3|, θ and β the same as above. The first kind Chebyshev polynomial of degree k ≥ 0 is denoted by T k . Assume that

U -1 (cos θ) = 0, U 0 (cos θ) = 1
for the sake of brevity.

All the functions ∆ Then for all β ∈ (-2θ, 2θ) (i.e. for all α in the affirmation of the Theorem) det(S, N, P i , P i+1 ) > 0 where i ∈ {1, . . . , 4n + 2}, P 4n+3 = P 1 . Thus, claim (e) for the polyhedron P n is satisfied. Use the Schläfli formula [START_REF] Hodgson | Degeneration and regeneration of hyperbolic structures on three-manifolds[END_REF] to obtain the volume formula for T n (α). One has

dVol T n (α) = l α 2 dα = (2n + 1)α -(2n -1)π 2 dα.
Note, that Vol T n (α) → 0 with α → 2n-1 2n+1 π. In this case d λ (P i , P i+1 ) → 0, where i ∈ {1, . . . , 4n+2}, P 4n+3 = P 1 and the fundamental polyhedron collapses to a point. Thus

Vol T n (α) = 1 2n + 1 2n + 1 2 α - 2n -1 2 π 2 .
Remark 1 The domain of the spherical metric existence in Theorem 1 was indicated before in [10, Proposition 2.1].

Torus links L n

Let L n , n ≥ 2 be a torus link t(2n, 2) with two components. The corresponding link in the rational census is 2n/1 (Fig. 3). The fundamental group of L n is presented as π 1 (S 3 \L n ) = a, b|(ab) n = (ba) n . By Lemma 1, linear transformations A and B are isometries of S 3 λ .

Lemma 3 For every integer n ≥ 2 the following equality holds

(AB) n -(BA) n = 4 U n-1 (Λ) λ e i( α+β 2 +π) n sin α 2 sin β 2 M,
where M is a non-zero 2 × 2 matrix and U n-1 (Λ) is the second kind Chebyshev polynomial of degree n -1 in variable

Λ = (1 -λ 2 ) cos α -β 2 + λ 2 cos α + β 2 .
Proof. By analogy with Lemma 2. With Lemma 3 the main theorem of the section follows: (c) sum of the inner dihedral angles ψ i along the edges P i P i+1 , i ∈ {1, . . . , 4n -1} equals 2π;

(d) sum of the dihedral angles φ i for tetrahedra N SP i P i+1 , i ∈ {1, . . . , 4n-1} at their common edge N S equals 2π;

(e) all the tetrahedra N SP i P i+1 with i ∈ {1, . . . , 4n}, P 4n+1 = P 1 are non-degenerated and coherently oriented.

In order to choose the parameter λ for the corresponding metric consider the fundamental polyhedron F n with α = β = π. Then all its vertices belong to the same circle and all the dihedral angles ψ i of the tetrahedra N SP i P i+1 along the edges P i P i+1 are equal to ψ = π 2n [START_REF] Mednykh | On the structure of the canonical fundamental set for the 2-bridge link orbifolds[END_REF]. Also the dihedral angles φ i of the tetrahedra N SP i P i+1 along their common edge N S are equal to each other:

φ i = φ = π 2n .
In this case λ = P 1 , P 2 = cos φ and Λ = -cos 2φ = cos (n -1)π n .

All the roots of U n-1 (Λ) are given by the formula By analogy with the proof of Theorem 1 one obtains

l α = l β = α + β 2 n -π(n -1).
Given the coordinates of the vertices for the fundamental polyhedron verify claim (e) for all (α, β) in the domain D. Make use of the Schläfli formula [START_REF] Hodgson | Degeneration and regeneration of hyperbolic structures on three-manifolds[END_REF] to obtain the volume of L n (α, β):

d Vol L n (α, β) = l α 2 dα + l β 2 dβ = α + β 2 n -π(n -1) d α + β 2 .
Note, that with α = β → π n -1 n the fundamental polyhedron F n collapses to a point (i.e. the volume tends to 0). The last affirmation of the Theorem follows. 
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 1 Figure 1: Knot (2n + 1)/1
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 2 Figure 2: Fundamental polyhedron P n for T n (α)

  if α = π. Thus, claim (c) for the polyhedron P n with α = π is satisfied if k = 1. As far as the parameter α varies continuously and sum of the angles ψ i represents a multiple of 2π, one has that

k

  (β), j ∈ {1, 2} are even on the interval [-2θ, 2θ]. Then one considers them only on the interval [0, 2θ]. Note, that the polynomial T 2 Lj (cos β) monotonously decreases and the function sin 2 β 2 monotonously increases with β ∈ [0, 2θ]. Moreover, T 2 Lj (cos 0) = T 2 Lj (1) = 1. Then it follows that ∆ (j) k (β) > 0 with β ∈ (-2θ, 2θ). Also, one has ∆ (j) k (±2 θ) = 0.
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 3 Figure 3: Link 2n/1Let L n (α, β) denote a cone-manifold with singular locus the link L n and the cone angles α, β along its components. For every α, β ∈ (0, 2π) and λ ∈ (-1, +1), we denoteA = 1 0 -2 i e i α 2 λ sin α 2 e iα
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 4 Figure 4: The fundamental polyhedron F n for L n (α, β)

Λ 2 = cos α-β 2 + cos π n cos α-β 2 -cos α+β 2 .cos l α 2 = P 1 , N , cos l β 2 =

 22212 k = cos kπ n , k ∈ {1, . . . , n -1}, so one choose the root Λ k with k = n -1. Then, by analogy with Theorem 1are satisfied at the point α = β = π of the domainD = (α, β) : |α -β| < 2π 1 -1 n , |α + β -2π| < 2π n ,depicted at Fig.5.In terms of the parameter λ, that defines the metric ds 2 λ , one has λ As for all (α, β) ∈ D the inequality 0 < λ 2 < 1 is satisfied, the metric ds 2 λ is spherical regarding the corresponding domain. By analogy with Theorem 1 one can show that claims (a) -(d) for the polyhedron F n are satisfied in the interior of D. The lengths l α and l β of singular geodesics for the cone-manifold L n (α, β) meet the relations P 2 , S .

Figure 5 :Remark 2 Remark 3

 523 Figure 5: The domain D of sphericity for L n (α, β)

  4n + 2}, with P 4n+3 = P 1 , also P 1 P 2n+2 and P 2 P 2n+3 . Let N , S denote the middle points (the North and the South poles of P n ) on the edges P 1 P 2n+2 and P 2 P 2n+3 , respectively. Then, consider also edges N P i , SP i , i ∈ {1, . . . , 4n + 2}. Without loss in generality, choose the holonomy representation such that

  1 and P 2 under action of A and B. The polyhedron P n is said to be proper if (a) inner dihedral angles along P 1 P 2n+2 and P 2 P 2n+3 are equal to α; (b) the following curvilinear faces are identified by A and B: A : N P 1 P 2 . . . P 2n+2 → N P 1 P 4n+2 . . . P 2n+3 P 2n+2 , B : SP 2 P 1 P 4n+2 . . . P 2n+3 → SP 2 P 3 . . . P 2n+3 ;

  n}, P 2k = P 2 (AB) k-1 , k ∈ {1, . . . , n + 1}; and P 2k+1 = P 1 (BA) 2n-k+1 , k ∈ {n + 1, . . . , 2n}, P 2k = P 2 (BA) 2n-k+2 , k ∈ {n + 2, . . . , 2n + 1}, follow from the identification scheme of the edges of P n . Define the auxiliary function

The work is performed under auspices of the Swiss National Science Foundation no. 200020-113199/1, "Scientific Schools"-5682.2008.1 and RFBR no. 06-01-00153.

Theorem 2 The cone-manifold L n (α, β), n ≥ 2 is spherical if

The lengths l α , l β of its singular geodesics (i.e. lengths of the components for L n ) are equal to each other and

Proof. One continues the proof by analogy with Theorem 1. Suppose that L n (α, β) is spherical. Then there exists a holonomy mapping [START_REF] Thurston | The geometry and topology of 3-manifolds[END_REF]:

By means of Lemma 3 the equality above holds either if λ = 0, or if

In case λ = 0 the image of h is abelian, because of the additional relation AB = BA. With n ≥ 2 this leads to a degenerate geometric structure. Thus, one has to choose the parameter λ for the metric ds 2 λ using roots of the Chebyshev polynomial U n-1 (Λ). The fundamental polyhedron F n for the cone-manifold L n (α, β) is depicted at Fig. 4. Suppose its vertices P 1 and P 2 to be

The axes of isometries A and B correspond to the edges P 1 P 2n+1 and P 2 P 2n+2 . Points N and S are respective middles of the edges P 1 P 2n+1 and P 2 P 2n+2 . Those are called North and South poles of the polyhedron. The polyhedron F n is said to be proper if (a) respective inner dihedral angles along the edges P 1 P 2n+1 and P 2 P 2n+2 are equal to α and β;