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A polynomial procedure for
trimming visibly pushdown automata

Mathieu Caralp, Pierre-Alain Reynier, and Jean-Marc Talbot

Laboratoire d’Informatique Fondamentale de Marseille
Aix-Marseille Universit́e & CNRS, France

Abstract. We describe a polynomial procedure which, given a visibly pushdown
automaton that accepts only well-nested words, returns an equivalent visibly
pushdown automaton that is trimmed.

1 Introduction

Visibly pushdown automata (VPA) are a particular class of pushdown automata working
over an alphabet splitted into call, internal and return symbols [1,2]. InVPA’s, the stack
behaviour is imposed by the input word: on a call symbol, theVPA pushes a symbol
onto the stack, on a return symbol, it must pop the top symbol of the stack, and on an
internal symbol, the stack remains unchanged.

Trimming a finite state automaton amounts to remove useless states, that is states
that do not occur in some accepting computation of the automaton. This can be done
easily in linear time simply by solving two reachability problems in the graph repre-
senting the automaton. However, the problem is more difficult for VPA’s as the current
state of a computation (called a configuration) is given by both a ”control” state and a
stack content.

To the best of our knowledge, the only trimming procedure forVPA can be deduced
from the one on pushdown automata given in [3] yielding an exponential algorithm.

2 Definitions

Words and nested wordsLet Σ be a finite alphabet partitioned into three disjoint sets
Σc, Σr andΣι, denoting respectively thecall, returnandinternalalphabets. We denote
by Σ∗ the set of (finite) words overΣ and byǫ the empty word. The length of a word
u is denoted by|u|. The set ofwell-nestedwordsΣ∗

wn
is the smallest subset ofΣ∗

such thatΣ∗
ι ⊆ Σ∗

wn
and for all c ∈ Σc, all r ∈ Σr, all u, v ∈ Σ∗

wn
, cur ∈ Σ∗

wn

anduv ∈ Σ∗
wn

. We define the heighth(u) of some well-nested wordu by induction
as follows:h(u) = 0 if u ∈ Σ∗

ι , h(uv) = max(h(u), h(v)) for u, v ∈ Σ∗
wn

, and
h(cur) = 1 + h(u). Given a familly of wordsw1, w2, . . . , wn, we denote byΠn

i=1wi

the concatenationw1w2 . . . wn.



Visibly pushdown automata (VPA) Visibly pushdown automata are a restriction of
pushdown automata in which the stack behaviour is imposed bythe input word. On
a call symbol, theVPA pushes a symbol onto the stack, on a return symbol, it must pop
the top symbol of the stack, and on an internal symbol, the stack remains unchanged.
Formally:

Definition 1 (Visibly pushdown automata). A visibly pushdown automaton(VPA)
on finite words overΣ is a tupleA = (Q, I, F, Γ, δ) whereQ is a finite set of states,
I ⊆ Q is the set of initial states,F ⊆ Q the set of final states,Γ is a finite stack
alphabet,δ = δc ⊎ δr ⊎ δι the (finite) transition relation, withδc ⊆ Q × Σc × Γ ×Q,
δr ⊆ Q×Σr × Γ ×Q, andδι ⊆ Q×Σι ×Q.

A configurationof a VPA is a pair(q, σ) ∈ Q × Γ ∗. A run of A on a wordu =
a1 . . . al ∈ Σ∗ from a configuration(q, σ) to a configuration(q′, σ′) is a finite sequence
of configurationsρ = {(qk, σk)}0≤k≤l such thatq0 = q, σ0 = σ, ql = q′, σl = σ′

and for each1 ≤ k ≤ l, there existsγk ∈ Γ such that either(qk−1, ak, γk, qk) ∈ δc
andσk = σk−1γk or (qk−1, ak, γk, qk) ∈ δr andσk−1 = σkγk, or (qk−1, ak, qk) ∈ δι

andσk = σk−1. We write(q, σ)
u
−→ (q′, σ′) when there exists a run onu from (q, σ)

to (q′, σ′). We may omit the superscriptu when irrelevant. We denote by⊥ the empty
word onΓ .

Initial (resp. final) configurations are configurations of the form(q,⊥), with q ∈ I

(resp.q ∈ F ). A configuration(q, σ) is accessible(resp. isco-accessible) if there exist
u ∈ Σ∗ and a configurationc such thatc is initial andc

u
−→ (q, σ) (resp. such thatc is

final and(q, σ)
u
−→ c).

Definition 2. An automatonA is trimmedif every configuration ofA is accessible iff it
is co-accessible.

We say that a run is accepting if it starts in an initial configuration and ends in a
final configuration. A word is accepted byA iff there exists an accepting run ofA on
this word. The language ofA, denoted byL(A), it the set of words accepted byA. Note
that we require here to end up with an empty stack, while the definition of [1] considers
acceptance by final states only. This restriction implies that all accepted words are well-
nested.

3 Trimming VPA

Let A = (Q, I, F, Γ, δ) be aVPA on the structured alphabetΣ. In this section, we
define a newVPA A′ = (Q′, I ′, F ′, Γ ′, δ′) onΣ, denotedtrim(A), which recognizes
the same language, and in addition is trimmed.

First, we define the following set:

WN = {(p, q, r) ∈ Q3 | ∃(p,⊥) →∗ (q,⊥) →∗ (r,⊥)}

This set can be computed in polynomial time. More precisely,the following set can
be computed first:WN2 = {(p, q) ∈ Q2 | ∃(p,⊥) →∗ (q,⊥)}.

WN2 can be defined as the least set such that
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– {(q, q) | q ∈ Q} ⊆ WN2,
– if (p, r) ∈ WN2 and(r, q) ∈ WN2, then(p, q) ∈ WN2

– if (p, q) ∈ WN2, and∃(q, i, q′) ∈ δι, then(p, q′) ∈ WN2

– if (p, q) ∈ WN2 and∃(p′, c, γ, p) ∈ δc, (q, r, γ, q
′) ∈ δr, then(p′, q′) ∈ WN2

Then,WN is obtained fromWN2 by the following property:

(p, q, r) ∈ WN ⇐⇒ (p, q) ∈ WN2 ∧ (q, r) ∈ WN2

We now define the four first components of the trimmedVPA A′ as follows:

– Q′ = WN

– I ′ = WN ∩ (I × I × F )
– F ′ = WN ∩ (I × F × F )
– Γ ′ = Γ ×Q×Q

Intuitively, theVPA A′ simulates theVPA A as follows: if a run ofA′ goes through
a state(p, q, r) with a stackσ′ of heightn, then the run ofA′ at this position mimicks
a run ofA whose current configuration is(q, σ), with σ of heightn, and such that the
top symbol ofσ has been pushed when reaching the statep, and will be popped when
leaving the stater. Moreover, fromp to r in the run ofA, the height of the stack is
always larger or equal ton.

It remains to define the last componentδ′. We define it by its restrictions on call,
return and internal symbols respectively (namelyδ′c, δ

′
r andδ′ι).

Call symbols.Let (p1, p2, p4) ∈ WN, c ∈ Σc. Then((p1, p2, p4), c, (γ, p1, p4), (q1, q1, q2)) ∈
δ′c iff the following three conditions hold:

– (p2, c, γ, q1) ∈ δc,
– (q1, q1, q2) ∈ WN,
– there exists a statep3 such that(q2, r, γ, p3) ∈ δr, and(p3, p3, p4) ∈ WN.

Return symbols.Let (q1, q2, q2) ∈ WN, r ∈ Σr. Then((q1, q2, q2), r, (γ, p1, p4), (p1, p3, p4)) ∈
δ′r iff the following three conditions hold:

– (q2, r, γ, p3) ∈ δr,
– (p1, p3, p4) ∈ WN,
– there exists a statep2 such that(p2, c, γ, q1) ∈ δc, and(p1, p2, p2) ∈ WN.

Schematically, forw1, w2, w3 ∈ Σ∗
wn

, c ∈ Σc, andr ∈ Σr, we have:

(p1, σ) (p2, σ)

(q1, σ.γ) (q2, σ.γ)

(p3, σ) (p4, σ)
w1

c

w2

r

w3

Internal symbols.Let (p1, q, p2), (p1, q′, p2) ∈ WN, a ∈ Σι. Then((p1, q, p2), a, (p1, q′, p2)) ∈
δ′ι iff the transition(q, a, q′) belongs toδι.

Proposition 3. For anyVPA A, trim(A) can be computed in polynomial time.
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This result easily follows from the definition oftrim(A).

Proposition 4. For anyVPA A, L(A) = L(trim(A)).

To prove this result, we will first prove different lemmas.

Lemma 5. Let A be aVPA andA′ = trim(A). Let ρ be a run ofA′ such thatρ :

((p, q, r), σ)
w
−→

∗
((p′, q′, r′), σ), with σ ∈ Γ ′∗ andw ∈ Σ∗

wn
. Then we havep = p′

andr = r′.

Proof. The proof goes by induction on the structure of the wordw. It holds trivially
whenw is the empty word. Consider now a non-empty wordw. There are two cases:

– First case:w = aw′, with a ∈ Σι, w′ ∈ Σ∗
wn

and((p1, q1, r1), a, (p, q, r)) ∈ δ′ι.
By construction ofA′, p1 = p andr1 = r. We conclude by using the induction
hypothesis onw′.

– Second case:w = cw′rw′′, with c ∈ Σc, r ∈ Σr, w′, w′′ ∈ Σ∗
wn

. There exists a
transition((p1, p2, p4), c, (γ, p1, p4), (q1, q1, q2)) ∈ δ′c which is used when reading
the first letterc. There exists a state(r1, r2, r3) such that the run ofA′ onw′ goes
from state(q1, q1, q2) to state(r1, r2, r3). As w′ is well-nested, the induction hy-
pothesis applied onw′ entails thatr1 = q1 andr3 = q2. In addition, as a return tran-
sition is used after readingw′, the definition ofδ′r implies thatr2 = r3. Thus by def-
inition of δ′c andδ′r, a transition of the form((q1, q2, q2), r, (γ, p1, p4), (p1, p3, p4)) ∈
δ′r for some statep3 is used when reading the letterr. We conclude by induction
hypothesis applied onw′′. ⊓⊔

We build a bijection between accepting runs ofA andA′. First, we go from runs
of A′ to runs ofA. We define the following standard projection mappings. Consider
two integers1 ≤ j ≤ k. Given a tuples = (s1, s2, . . . , sk), we denote byπj(s)
the elementsj . In addition, we extend this mapping over words on tuples, byletting
πj(σ) = πj(γ1)πj(γ2) . . . πj(γn) whereσ = γ1γ2 . . . γn.

Lemma 6. LetA be aVPA andA′ = trim(A). For any accepting runρ′ = (q′i, σ
′
i)1≤i≤k

of A′, ρ = (π2(q
′
i), π1(σ

′
i))1≤i≤k is an accepting run ofA.

Proof. We prove by induction onρ′ that the projection runρ defined above is a correct
run of A. The fact that accepting runs ofA′ are projected on accepting runs ofA is
trivial. ⊓⊔

Conversely, considering translation of runs ofA to runs ofA′. States ofA′ extend
states ofA by considering starting and ending states for the current stack level. There-
fore we prove the following lemma in which we consider a wordw2 ∈ Σ∗

wn
embedded

into a context(w1, w3) ∈ Σ∗
wn

× Σ∗
wn

such thatw1w2w3 corresponds to the current
stack level.

Lemma 7. Let A be aVPA andA′ = trim(A). For all w1, w2, w3 ∈ Σ∗
wn

, if there

exists a runρ of the form(p,⊥)
w1−→

∗
(q,⊥)

w2−→
∗
(r,⊥)

w3−→
∗
(s,⊥) in theVPA A,

then there is a runρ′ of the form((p, q, s),⊥)
w2−→

∗
((p, r, s),⊥) of A′.

4



Proof. We prove this lemma by induction on the height of the wordw2. If h(w2) = 0,
thenw2 ∈ Σ∗

ι , assumingw2 = a1a2 . . . an, the restriction ofρ onw2 is of the form

(q,⊥)
a1−→ (q1,⊥) . . .

an−→ (qn,⊥) with r = qn.

Observe that for alli, (p, qi, s) ∈ WN. By definition ofA′ the following is a run of
A′ onw2:

ρ′ = ((p, q, s),⊥)
a1−→ ((p, q1, s),⊥) . . .

an−→ ((p, qn, s),⊥) with r = qn.

We now assume for the induction that the property holds whenh(w2) ≤ n and
considerw2 such thath(w2) = n + 1. There exists a unique decomposition ofw2 as
follows:

w2 = [Πk
i=1(w

int

i ciw
wn

i ri)]w
int

k+1

with for all i, wint

i ∈ Σ∗
ι , wwn

i ∈ Σ∗
wn, ci ∈ Σc, andri ∈ Σr.

Let w1, w3 ∈ Σ∗
wn andρ be a run ofA on w1w2w3. We decompose the runρ as

follows:

– onw1: (p,⊥)
w1−−→

∗
(p11,⊥)

– on eachwint

i ciw
wn

i ri:

(p1i ,⊥)
wint

i−−→
∗

(p2i ,⊥)
ci−→ (q1i , γi)

wwn

i−−→
∗

(q2i , γi)
ri−→ (p1i+1,⊥)

– onwint

k+1
: (p1k+1

,⊥)
wint

k+1

−−−→

∗

(p2k+1
,⊥)

– onw3: (p2k+1
,⊥)

w3−−→
∗
(s,⊥)

Note thatq = p11 andr = p2k+1
.

As wwn

i is well-nested, there exists a run inA of the form(q1i ,⊥)
wwn

i−−→
∗

(q2i ,⊥).

By induction hypothesis, this implies that there exists a run ρ′i = ((q1i , q
1
i , q

2
i ),⊥)

wwn

i

−→∗

((q1i , q
2
i , q

2
i ),⊥) of A′ onwwn

i . Again, using the fact thatwwn

i is well-nested, we have

((q1i , q
1
i , q

2
i ), γ

′
i)

wwn

i

−→∗ ((q1i , q
2
i , q

2
i ), γ

′
i) in A′ for anyγ′

i ∈ Γ ′.
We now describe the other parts of the runρ′ of A′ onw2.

Internal actions For all i ∈ {1, . . . , k + 1}, ((p, p1i , s),⊥)
wint

i

−→∗ ((p, p2i , s),⊥) on
wint

i , by the base induction withw1 andw3 well defined.

Calls For all i ∈ {1, . . . , k}, we have(p2i , ci, γi, q
1
i ) ∈ δc in A. Thus by definition of

A′, there exists a transition((p, p2i , s), ci, (γi, p, s), (q
1
i , q

1
i , q

2
i )) ∈ δ′c in A′.

Returns For alli ∈ {1, . . . , k}, we have(q2i , ri, γi, p
1
i+1) ∈ δr in A. Thus by definition

of A′ there exists a transition((q1i , q
2
i , q

2
i ), ri, (γi, p, s), (p, p

1
i+1, s)) ∈ δ′r in A′.

One can then easily check that all the above transitions and partial runs can be
gathered to obtain a run ofA′ onw2 with the expected form. ⊓⊔
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To conclude the proof of Proposition 4, note that Lemma 6 implies thatL(trim(A)) ⊆
L(A). Conversely, using Lemma 7 forw1 = w3 = ǫ yields p = q ansr = s and if
moreoverp is initial andq is final then any accepting run inA is associated with an
accepting run intrim(A). Hence,L(A) ⊆ L(trim(A)).

Proposition 8. For anyVPA A, trim(A) is trimmed.

Proof. Let A′ be trim(A). Therefore, we first prove that any accessible configuration
of A′ is also co-accessible, and then the converse.

Let co = ((p, q, r), σ) be an accessible configuration ofA′. There exists a runρ of
A′ of the form((i, i, f),⊥) →∗ co between an initial configuration((i, i, f),⊥) andco.
We show by induction on the height of the stack that we can reach a final configuration
from co.

If |σ| = 0, by the lemma 5, we obtainp = i andr = f . In particular, this implies
p ∈ I andr ∈ F . Since(p, q, r) ∈ WN, there is a run(p,⊥) →∗ (q,⊥) →∗ (r,⊥) in
A, thus by Lemma 7 we have a run((p, q, r),⊥) →∗ ((p, r, r),⊥) of A′. This concludes
this case as by the above observation, we have(p, r, r) ∈ I × F × F = F ′.

We now assume for the induction that the property holds when|σ| ≤ n and we
consider a stackσ such that|σ| = n + 1. Let denote by(γ, p′, r′) the top symbol of
σ, write σ = σ′.(γ, p′, r′), and consider the first position in the runρ that pushes this
symbol onto the stack. We denote byc the associated call. More precisely, there exists
a unique decomposition ofρ as follows:

((i, i, f),⊥) →∗ ((p′, q′, r′), σ′)
c
−→ ((p′′, p′′, r′′), σ) →∗ ((p, q, r), σ)

such that the run from((p′′, p′′, r′′), σ) to ((p, q, r), σ) is associated with a well-nested
word. By Lemma 5, we obtainp′′ = p and r′′ = r. Considering the call transi-
tion associated withc, and by definition ofδ′c and δ′r, there exists a return transi-
tion ((p, r, r), r, (γ, p′, r′), (p′, q′′, r′)) ∈ δ′r for some letterr ∈ Σr. In addition, as
(p, q, r) ∈ WN, there is a run(p, σ) →∗ (q, σ) →∗ (r, σ) in A, and thus by Lemma 7
we have a run((p, q, r), σ) →∗ ((p, r, r), σ). As the top symbol ofσ is (γ, p′, r′), the
above return transition can be used to reach configuration((p′, q′′, r′), σ′) whose height
is n. The result follows by induction hypothesis.

Conversely, letco = ((p, q, r), σ) be a co-accessible configuration ofA′. There
exists a runρ of A′ of the formco →∗ ((i, f, f),⊥) betweenco and a final configuration
((i, f, f),⊥). We show by induction on the height of the stack thatco can be reached
from an initial configuration.

If |σ| = 0, by the lemma 5, we obtainp = i andr = f . In particular, this implies
p ∈ I andr ∈ F . Since(p, q, r) ∈ WN, there is a run(p,⊥) →∗ (q,⊥) →∗ (r,⊥) in A,
thus by Lemma 7 we have a run((p, p, r),⊥) →∗ ((p, q, r),⊥) of A′. This concludes
this case as by the above observation, we have(p, p, r) ∈ I × I × F = I ′.

We now assume for the induction that the property holds when|σ| ≤ n and we
consider a stackσ such that|σ| = n + 1. Let denote by(γ, p′, r′) the top symbol of
σ, write σ = σ′.(γ, p′, r′), and consider the first position in the runρ that pops this
symbol from the stack. We denote byr the associated return. More precisely, there
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exists a unique decomposition ofρ as follows:

((p, q, r), σ) →∗ ((p′′, r′′, r′′), σ)
r
−→ ((p′, q′, r′), σ′) →∗ ((i, f, f),⊥)

such that the run from((p, q, r), σ) to ((p′′, r′′, r′′), σ) is associated with a well-nested
word. By Lemma 5, we obtainp′′ = p and r′′ = r. Considering the return tran-
sition associated withr, and by definition ofδ′c and δ′r, there exists a call transition
((p′, q′′, r′), c, (γ, p′, r′), (p, p, r)) ∈ δ′c for some letterc ∈ Σc. In addition, as(p, q, r) ∈
WN, there is a run(p, σ) →∗ (q, σ) →∗ (r, σ) in A, and thus by Lemma 7 we have a run
((p, p, r), σ) →∗ ((p, q, r), σ). As the top symbol ofσ is (γ, p′, r′), the above call tran-
sition can be used. As a consequence, we have proven that there exists a run from config-
uration((p′, q′′, r′), σ′) to configurationco. In particular, configuration((p′, q′′, r′), σ′)
is a co-accessible configuration whose height isn, and the result follows by induction
hypothesis. ⊓⊔

To summarize the results presented in this paper, we have thefollowing theorem:

Theorem 9. LetA be aVPA. Then:

– trim(A) can be built in polynomial time
– L(A) = L(trim(A))
– trim(A) is trimmed

Note that by definition of trimmedVPA, some useless state may remain in the con-
struction producingtrim(A): indeed,trim(A) may contain some stateq such that for
no stackσ, (q, σ) is accessible (and thus co-accessible). However, decidingwether for
some stackσ, (q, σ) is accessible can be reduced to the emptiness problem of pushdown
automata accepting on final states. This problem is decidable in polynomial time.
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