N
N

N

HAL

open science

A polynomial procedure for trimming visibly pushdown
automata

Mathieu Caralp, Pierre-Alain Reynier, Jean-Marc Talbot

» To cite this version:

Mathieu Caralp, Pierre-Alain Reynier, Jean-Marc Talbot. A polynomial procedure for trimming
visibly pushdown automata. 2011. hal-00606778v1

HAL Id: hal-00606778
https://hal.science/hal-00606778v1
Submitted on 7 Jul 2011 (v1), last revised 29 Mar 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00606778v1
https://hal.archives-ouvertes.fr

A polynomial procedure for
trimming visibly pushdown automata

Mathieu Caralp, Pierre-Alain Reynier, and Jean-Marc Talbo

Laboratoire d’'Informatique Fondamentale de Marseille
Aix-Marseille Universié & CNRS, France

Abstract. We describe a polynomial procedure which, given a visibly pushdown
automaton that accepts only well-nested words, returns an equivasgioly v
pushdown automaton that is trimmed.

1 Introduction

Visibly pushdown automata/(PA) are a particular class of pushdown automata working
over an alphabet splitted into call, internal and returnisgi®[1,2]. InVPA's, the stack
behaviour is imposed by the input word: on a call symbol,\if& pushes a symbol
onto the stack, on a return symbol, it must pop the top symbthiestack, and on an
internal symbol, the stack remains unchanged.

Trimming a finite state automaton amounts to remove usetassssthat is states
that do not occur in some accepting computation of the autmmd his can be done
easily in linear time simply by solving two reachability ptems in the graph repre-
senting the automaton. However, the problem is more difffoulVPA’s as the current
state of a computation (called a configuration) is given biylao’control” state and a
stack content.

To the best of our knowledge, the only trimming proceduréfBA can be deduced
from the one on pushdown automata given in [3] yielding aroeemntial algorithm.

2 Definitions

Words and nested wordket X' be a finite alphabet partitioned into three disjoint sets
Y., X andX,, denoting respectively theall, returnandinternalalphabets. We denote
by X* the set of (finite) words oveE and bye the empty word. The length of a word
u is denoted byju|. The set ofwell-nestedwords X, is the smallest subset df*
such that¥ C X and forallc € X, allr € X, all u,v € X%, cur € X7,
anduv € X . We define the height(u) of some well-nested word by induction

as follows:h(u) = 0 if u € X¥, h(uv) = max(h(u),h(v)) for u,v € X%, and

h(cur) = 1+ h(u). Given a familly of wordsw,, wa, . .., w,, we denote byI? ;w;
the concatenatiomws . .. w,,.



Visibly pushdown automata/PA) Visibly pushdown automata are a restriction of
pushdown automata in which the stack behaviour is imposethdéynput word. On

a call symbol, thé&/PA pushes a symbol onto the stack, on a return symbol, it must pop
the top symbol of the stack, and on an internal symbol, theksamains unchanged.
Formally:

Definition 1 (Visibly pushdown automata). A visibly pushdown automatofVPA)
on finite words over is a tupleA = (Q, I, F, I',§) whereQ is a finite set of states,
I C Q is the set of initial statesl’ C @ the set of final stated] is a finite stack
alphabety = §. W 6, W §, the (finite) transition relation, with, C Q x Y. x I" x Q,
6 CQxX. xI'xQ,andd, CQ x X, x Q.

A configurationof a VPA is a pair(q,o) € @ x I'*. A run of A on a wordu =
ay ...a; € X* from a configuratioriq, o) to a configuratior{q’, o’) is a finite sequence
of configurationsy = {(gx, o%) }o<k<; SUch thatyy = ¢, 09 = 0, ¢t = ¢, 07 = 0’
and for eachl < k < [, there existsy, € I" such that eithefqr_1, ax, Vi, qx) € Oc
andoy = ox_17k Of (qk—1, Gk, Vks k) € Or ANAOL_1 = OpYk, OF (Qr—1, Ak, qr) € O,
andoy, = oy_1. We write (¢,0) - (¢/,0’) when there exists a run anfrom (¢, o)
to (¢, o’). We may omit the superscriptwhen irrelevant. We denote hy the empty
word on[".

Initial (resp. final) configurations are configurations o form (g, L), withq € T
(resp.q € F). A configuration(q, o) is accessibldresp. isco-accessiblgif there exist
u € X* and a configuratiom such that is initial andc = (¢, o) (resp. such that is
final and(q, o) = ).

Definition 2. An automatord is trimmedif every configuration ofd is accessible iff it
is co-accessible.

We say that a run is accepting if it starts in an initial confegion and ends in a
final configuration. A word is accepted by iff there exists an accepting run df on
this word. The language of, denoted by (A), it the set of words accepted by, Note
that we require here to end up with an empty stack, while tffieitlen of [1] considers
acceptance by final states only. This restriction impli@s &l accepted words are well-
nested.

3 Trimming VPA

Let A = (Q,I,F,I,)) be aVPA on the structured alphabéi. In this section, we
define anewPA A’ = (Q',I',F’',I",¢’) on X, denotedtrim(A), which recognizes
the same language, and in addition is trimmed.

First, we define the following set:

WN = {(p.q,7) € @* | 3(p, L) =" (g, L) =" (r, L)}

This set can be computed in polynomial time. More precigbb/following set can
be computed firstWN2 = {(p,q) € Q% | 3(p, L) —* (¢, L)}
WN, can be defined as the least set such that



{(¢;9) | g € Q} S WNy,

if (p,7) € WNy and(r,q) € WNy, then(p, g) € WN»

if (p,q) € WNy, and3(q,i,q’) € 4,, then(p, ¢') € WNq

If (pa q) S WN2 andzl(p/a 6777p) S 6(17 (q’ﬁ% q/) c 57"! then(plyq/) S WN2

Then,WN is obtained fromWN, by the following property:
(p,g;7) € WN <= (p,q) € WN2 A (g,7) € WN,
We now define the four first components of the trimnvtA A’ as follows:

— Q' =WN
—I'=WNN({IxIxF)
— F'=WNN(I xF x F)
-I"'=I'xQxQ

Intuitively, theVPA A’ simulates th&/PA A as follows: if a run of4’ goes through
a state(p, ¢, r) with a stacks’ of heightn, then the run ofd’ at this position mimicks
a run of A whose current configuration {g, o), with o of heightn, and such that the
top symbol ofc has been pushed when reaching the gtatnd will be popped when
leaving the state. Moreover, fromp to » in the run of A4, the height of the stack is
always larger or equal to.

It remains to define the last componeht We define it by its restrictions on call,
return and internal symbols respectively (nam&lys.. and4!).

Call symbolsLet (p1,p2, pa) € WN, ¢ € X.. Then((p1, p2, pa), ¢, (v, p1,p4): (a1, 41, 42)) €
o7, iff the following three conditions hold:

- (p276777q1) S 5C!
- (q1,q1,92) € WN,
— there exists a statg such thaf(gs, 7, v, p3) € 0., and(ps, ps,p4) € WN.

Return 5ymb0|1e‘t (q17 q2, q2) S WNa T e ET' Then((Qla q2, q2)a T, (77p17p4>7 (p17p37p4)) S
or. iff the following three conditions hold:

- (QQ7T777p3) € 57”
— (p1,p3,p1) € WN,
— there exists a sta® such that(ps, ¢,7v,q1) € d., and(p1, p2, p2) € WN.

Schematically, fotwy, wo, ws € X, ¢ € X, andr € X,., we have:

(q1,07) —> (g2,0.7)
/ \

(p1,0) —2+ (p, ) (p3,0) —= (p1,0)

Internal SymbOISLet (p17 qap2)v (pla q/7p2) € WN7 a € EL' Then((plv Q7p2)7 a, (pla qlap2)) S
4! iff the transition(q, a, ¢’) belongs tdj, .

Proposition 3. For anyVPA A, trim(A) can be computed in polynomial time.



This result easily follows from the definition ofim(A).
Proposition 4. For anyVPA A, L(A) = L(trim(A)).
To prove this result, we will first prove different lemmas.

Lemma5. Let A be aVPA and A’ = trim(A). Let p be a run of A’ such thatp :
((p.q,7),0) %" (. q,7"),0), withe € T"* andw € X,. Then we have = p/
andr = r'.

Proof. The proof goes by induction on the structure of the wordt holds trivially
whenw is the empty word. Consider now a hon-empty wardlhere are two cases:

— First casew = aw’, witha € ¥, v’ € X% and((p1,q1,71),a,(p,q,7)) € J,.
By construction ofd’, p; = p andr; = r. We conclude by using the induction
hypothesis onv’.

— Second casey = cw'rw”, withc € Y., r € X, w',w"” € X . There exists a
transition((p1, p2, pa), ¢, (v,p1,p4), (g1, 41, 92)) € J.. which is used when reading
the first letterc. There exists a state, 2, r3) such that the run oft’ onw’ goes
from state(q1, q1, ¢2) to state(ry, o, 73). Asw’ is well-nested, the induction hy-
pothesis applied om’ entails thai; = ¢; andrs = ¢». In addition, as a return tran-
sition is used after reading’, the definition of,. implies that-y = r5. Thus by def-
inition of 6. and?’., a transition of the fornt(qu, q2, ¢2), 7, (7, 1, p4), (P1,P3,P4)) €
4! for some states is used when reading the letterWe conclude by induction
hypothesis applied om”. O

We build a bijection between accepting runsAufind A’. First, we go from runs
of A’ to runs of A. We define the following standard projection mappings. @iers
two integersl < j < k. Given a tuples = (s1,s2,...,5s;), we denote byr;(s)
the element;. In addition, we extend this mapping over words on tuplesletiyng
(o) = mi(y1)mj(v2) ... 7 () Whereo = y1y2 ... yp.

Lemma 6. Let A be aVPA andA’ = trim(A). For any accepting rup’ = (¢;, o} )1<i<
of A', p = (m2(q}), m1(0}))1<i<k iS an accepting run ofl.

Proof. We prove by induction op’ that the projection rup defined above is a correct
run of A. The fact that accepting runs a&f are projected on accepting runs fis
trivial. O

Conversely, considering translation of runs4fo runs ofA’. States ofd’ extend
states ofA by considering starting and ending states for the curreckdevel. There-
fore we prove the following lemma in which we consider a wotde X7 embedded
into a context(wy,w3) € Xk x X% such thatw;wews corresponds to the current
stack level.

Lemma 7. Let A be aVPA and A’ = trim(A). For all ’U)l,wg,wg e Xy, if there
exists a rurp of the form(p, L) 5" (g, L) 2" (r, L) %" (s, L) in the VPA A,

(r,
then there is a rup’ of the form((p, ¢, s), L) ~2" ((p,r, s), L) of A".



Proof. We prove this lemma by induction on the height of the ward If h(ws) = 0,
thenws € X, assumingus = ajas . . . a,, the restriction op onws, is of the form

(g 1) 5 (g1, 1) . 5 (o, L) with 7 = gy,

Observe that for all, (p, ¢;, s) € WN. By definition of A’ the following is a run of
A’ onwy:

an

P =((p.q,9),L) =5 ((p,aq1,9), L) ... = (D, qn 8), L) with 7 = gy,.

We now assume for the induction that the property holds whemn) < n and
considerws such thath(we) = n + 1. There exists a unique decompositiomnaf as
follows:

int

wa = [T}y (Wi cw}™ry)Jwil

[
with for all 4, wi' € X*, w € X%, ¢; € X., andr; € X,..

Letwi, w3 € X, andp be a run ofA on wywews. We decompose the rynas
follows:

onwi: (p, L) 5 (ph, L)
on eachw!™c;w"r;:

B * *
wlznt w "

(pi, L) == (0f, L) = (@i, ) == (&%) = (i, L)

i . wizgt 1
onwyt (plli‘-l—l’J‘) . — (p%+1>J-)
w3

— onws: (phoq, L) == (s,1)

Note thaty = p; andr = pj_ ;.

*

As w!" is well-nested, there exists a run ihof the form (¢}, L) —— (g2, L).

By induction hypothesis, this implies that there existsragu= ((¢}, ¢}, ¢?), L) N
((¢},42,42), L) of A’ onw". Again, using the fact that!" is well-nested, we have

w; .
((afsafa?)sv) —* (4}, 47, q7), ;) in A" forany~) € T
We now describe the other parts of the pirof A’ onws.

Internal actions For alli € {1,...,k + 1}, ((p,pi,s), L) s ((p,p?,s),L) on
wi™, by the base induction witly; andws well defined.

Calls Foralli € {1,...,k}, we have(p?, ¢;, v, q}) € d. in A. Thus by definition of
A’, there exists a transitiofip, p?, s), ¢i, (i, p, 8), (¢}, 4}, ¢2)) € 6. in A'.

Returns Foralli € {1,...,k}, we have(q?, i, i, piy1) € 6 in A. Thus by definition
of A’ there exists a transitiof{q; , 47, ¢7), 7, (7i, P, 5), (D, P41, 8)) € 0, in A'.

One can then easily check that all the above transitions antiapruns can be
gathered to obtain a run of onw, with the expected form. ad



To conclude the proof of Proposition 4, note that Lemma 6iiesghatZ (trim(A)) C
L(A). Conversely, using Lemma 7 far;, = ws = e yieldsp = ¢ ansr = s and if
moreoverp is initial andq is final then any accepting run iA is associated with an
accepting run inrim(A). Hence,L(A) C L(trim(4)).

Proposition 8. For anyVPA A, trim(A) is trimmed.

Proof. Let A’ betrim(A). Therefore, we first prove that any accessible configuration
of A’ is also co-accessible, and then the converse.

Letco = ((p,q,7), o) be an accessible configuration 4f. There exists a rup of
A’ ofthe form((i, i, f), L) —=* co between an initial configuratiofii, 7, f), L) andco.
We show by induction on the height of the stack that we cantradal configuration
from co.

If |o| = 0, by the lemma 5, we obtaim = < andr = f. In particular, this implies
p € I andr € F. Since(p, ¢,r) € WN, there is arur{p, L) —* (¢, L) =* (r, L) in
A, thus by Lemma 7 we have argfp, ¢, ), L) —=* ((p,r,r), L) of A’. This concludes
this case as by the above observation, we ljayer) € I x F' x F = F’.

We now assume for the induction that the property holds whén< »n and we
consider a stack such thato| = n + 1. Let denote by(y, p’, r') the top symbol of
o, write 0 = ¢’.(,p’,7"), and consider the first position in the rprthat pushes this
symbol onto the stack. We denote bthe associated call. More precisely, there exists
a uniqgue decomposition @fas follows:

((iyi, ), L) = (0, ¢, 7"),0") = (0", 0", 7"),0) =" ((pq,7), 0)

such that the run fron(p”, p”,r""), o) to ((p, ¢, ), o) is associated with a well-nested
word. By Lemma 5, we obtaip” = p andr” = r. Considering the call transi-
tion associated withe, and by definition ofé’. and ¢/, there exists a return transi-
tion ((p,r,r),r, (v,p',r"), (¥, q",r")) € 6. for some letterr € X.. In addition, as
(p,q,7) € WN, there is arur{p, o) —=* (¢,0) —=* (r,0) in A, and thus by Lemma 7
we have a rur{(p, q,7),0) —=* ((p,r,7),0). As the top symbol of is (v, p’,r’), the
above return transition can be used to reach configuréfidrng”, r’), ') whose height
is n. The result follows by induction hypothesis.

Conversely, lekto = ((p,q,r),0) be a co-accessible configuration 4f. There
exists a rurp of A’ of the formco —* ((4, f, f), L) betweerco and a final configuration
((z, f, ), L). We show by induction on the height of the stack thatan be reached
from an initial configuration.

If |o| = 0, by the lemma 5, we obtaim = ¢ andr = f. In particular, this implies
p € Iandr € F. Since(p, q,r) € WN, thereisarurip, L) —* (¢, L) —=* (r, L) in A,
thus by Lemma 7 we have a rdfp,p,r), L) —=* ((p,q,7), L) of A’. This concludes
this case as by the above observation, we lfayg,7) € I x I x F = 1TI'.

We now assume for the induction that the property holds whén< » and we
consider a stack such thaio| = n + 1. Let denote by(y, p’, r’) the top symbol of
o, write o = o’.(~,p’,r"), and consider the first position in the rprthat pops this
symbol from the stack. We denote bythe associated return. More precisely, there



exists a unique decomposition pfs follows:

((pq,m),0) =" (@",r"1"),0) = (W' 1), 0") =7 (G0, f, ). L)

such that the run fror(p, ¢, ), o) to ((p”, r”,r"), o) is associated with a well-nested
word. By Lemma 5, we obtaip” = p andr” = r. Considering the return tran-
sition associated with, and by definition of!, and .., there exists a call transition
(@, q" "), ¢, (v, 07", (p,p,7)) € &, for some letter € X... In addition, asp, q,r) €
WN, thereisarurp, o) —=* (¢,0) —=* (r,0) in A, and thus by Lemma 7 we have arun
((p,p,7),0) =* ((p,q,7),0). As the top symbol of is (v, p’,r’), the above call tran-
sition can be used. As a consequence, we have proven thaettists a run from config-
uration((p’, ¢”,r"), ¢") to configuratiorco. In particular, configuratioQ(p’, ¢”, '), o’)

is a co-accessible configuration whose height,iand the result follows by induction
hypothesis. O

To summarize the results presented in this paper, we haveltbeing theorem:
Theorem 9. Let A be aVPA. Then:

— trim(A) can be built in polynomial time
— L(A) = L(trim(A))
— trim(A) is trimmed

Note that by definition of trimme#PA, some useless state may remain in the con-
struction producingrim(A): indeed,trim(A) may contain some statesuch that for
no stacks, (¢, o) is accessible (and thus co-accessible). However, decidatlyer for
some stack, (¢, o) is accessible can be reduced to the emptiness problem ad@ush
automata accepting on final states. This problem is de@dalgolynomial time.

References

1. R. Alur and P. Madhusudan. Visibly pushdown languageS&TI®C pages 202-211, 2004.

2. R. Alur and P. Madhusudan. Adding nesting structure to wald€M 56(3):1-43, 2009.

3. D. Girault-Beauquier. Some results about finite and infinite behavidarpushdown automa-
ton. InAutomata, Languages and Programminglume 172 ofLecture Notes in Computer
Sciencepages 187-195. Springer, 1984.



