
HAL Id: hal-00606653
https://hal.science/hal-00606653

Submitted on 7 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conserved current for the Cotton tensor, black hole
entropy and equivariant Pontryagin forms

Roberto Ferreiro Pérez

To cite this version:
Roberto Ferreiro Pérez. Conserved current for the Cotton tensor, black hole entropy and equivari-
ant Pontryagin forms. Classical and Quantum Gravity, 2010, 27 (13), pp.135015. �10.1088/0264-
9381/27/13/135015�. �hal-00606653�

https://hal.science/hal-00606653
https://hal.archives-ouvertes.fr


Conserved current for the Cotton tensor, black hole

entropy and equivariant Pontryagin forms

Roberto Ferreiro Pérez
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Abstract. The Chern-Simons lagrangian density in the space of metrics of a 3-
dimensional manifold M is not invariant under the action of diffeomorphisms on M .
However, its Euler-Lagrange operator can be identified with the Cotton tensor, which is
invariant under diffeomorphims. As the lagrangian is not invariant, Noether Theorem
cannot be applied to obtain conserved currents. We show that it is possible to obtain
an equivariant conserved current for the Cotton tensor by using the first equivariant
Pontryagin form on the bundle of metrics. Finally we define a hamiltonian current
which gives the contribution of the Chern-Simons term to the black hole entropy,
energy and angular momentum.
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1. Introduction

In Topologically Massive Gravity the lagrangian is given by the Hilbert Einstein

lagrangian plus a Chern-Simons term (e.g. see [1]). In dimension 3, although the

Chern-Simons lagrangian for metrics is not invariant under the action of the group

of diffeomorphisms on the manifold, its the Euler-Lagrange operator can be identified

with the Cotton tensor which is invariant. In fact, the Cotton tensor does not admit

a diffemorphisms invariant lagrangian (see [2] and references therein for the properties

and history of the Cotton tensor).

Since the Chern-Simons lagrangian is not diffeomorphisms invariant, we cannot

apply Noether theorem in order to obtain the corresponding conserved currents. This

note aims to show that it is possible to define an equivariant conserved current. We

show in Section 4 that this current appears in a natural way from the geometry of the jet

bundle of metrics and that it is provided by the equivariant Pontryagin forms defined

in [3]. As the conserved currents associated to invariance under diffeomorphisms are

globally exact on shell we have JCS ≈ dQCS(X), where QCS is the Noether charge. We

show that QCS is given by the Schouten tensor of the metric. Finally in Section 5 we

follow Wald’s Noether method to compute the contribution of the Chern-Simons term

to the black hole entropy. As the Chern-Simons lagrangian is not invariant, the current

QCS does not give the correct value of the entropy. We define a Hamiltonian current

qCS for the Chern-Simons term by adding to the Noether charge QCS an additional

term which is also obtained from the equivariant Pontryagin form. We show that this

hamiltonian current coincides with a current defined in [4] for constant vector fields,

and hence gives the same value for the contribution of the Chern-Simons term to the

black-hole energy and angular momentum. Moreover, we show that the current qCS also

gives the correct value of the contribution of the Chern-Simons term to the black-hole

entropy computed in [5].

We use the approach to the calculus of variations in terms of differential forms

on jet bundles. In Section 3 we recall the basics results on the geometry of the jet

bundle of the bundle of metrics JMM , and we define the Pontryagin forms, equivariant

Pontryagin forms and Chern-Simons forms on JMM .

Most of our results are based on very general properties of the geometry of the jet

bundle that can be easily generalized to higher dimensions. However the final result for

the black hole entropy is not so easily obtained in higher dimensions and for this reason

we consider only the 3-dimensional case.

In the following, the word metric means Riemannian or pseudo-Riemannian metric.

2. The Cotton tensor and the Chern-Simons lagrangian

Let us recall the computation of the Euler Lagrange operator of the gravitational Chern-

Simons lagrangian. We follow the exposition in [6].

In dimension 3 the Chern-Simons lagrangian for metrics on a 3-manifold M is given
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locally by

λCS = αtr

(
Γ ∧ dΓ +

2

3
Γ ∧ Γ ∧ Γ

)
, (1)

(in Section 3 we give a definition of Chern-Simons lagrangian valid globally).

If we consider an arbitrary variation of the metric δgab, then the variation of λCS

is given by

δλCS = 2αtr (δΓ ∧R) + αd (δΓ ∧ Γ) (2)

Using the expression for the variation of the Christoffel simbols

δΓa
bc =

1

2
gaj (∇bδgjc +∇cδgjb −∇jδgbc)

and the expression for the Riemann tensor in terms of the Ricci tensor in dimension 3

Ra
bcd = δa

c

(
Rbd −

1

2
gbdR

)
− δa

d

(
Rbc −

1

2
gbcR

)
+ gbdR

a
c − gbcR

a
d (3)

we obtain

tr (δΓ ∧R) = ∇bδgiaR
i
cdxa ∧ dxb ∧ dxc

If we integrate by parts it follows that

tr (δΓ ∧R) =
(
∂b

(
δgiaR

i
c

)
− δgia

(
∇bR

i
c

))
dxa ∧ dxb ∧ dxc

= −
(
d

(
δgiaR

i
cdxa ∧ dxc

)
+ δgia

(
∇bR

i
c

)
dxa ∧ dxb ∧ dxc

)
.

The first term is an exact form, and the second one can be expressed in terms of

the Cotton tensor

Cab = − 1

2
√
− |g|

(
εija∇iR

b
j + εijb∇iR

a
j

)
and we obtain

tr (δΓ ∧R) = δgijC
ijvol + dN(δg) (4)

where vol =
√
|g|d3x and N(δg) = −δgiaR

i
cdxa ∧ dxc.

By replacing (4) on (2) we obtain the first variational formula

δλCS = 2αδgijC
ijvol + αd(N(δg) + tr(δΓ ∧ Γ)) (5)

Hence the Euler-Lagrange operator of λCS can be identified with the Cotton tensor.

Now we consider the natural action of the diffeomorphism group of M in the space

of metrics on M . Let us consider a variation of the metric δXg = −LXg induced by an

infinitesimal diffeomorphism X ∈ X(M). If in local coordinates we have X = X i∂/∂xi

then

δXgab = −
(
∂kgabX

k + gkb∂aX
k + gak∂bX

k
)

= −
(
gja∇bX

j + gjb∇aX
j
)
(6)

By replacing (6) on (5) we obtain

δXλCS = 2αδXgabC
abvol + αd(N(δXg) + tr(δXΓ ∧ Γ)). (7)

It can be seen (see Section 3.4) that we have δXλCS = dσ for certain form σ,

and hence JCS = N(δXg) + tr(δXΓ ∧ Γ) − σ is a conserved current, i.e. dJCS =

2αδXgabC
abvol ≈ 0. We show in Section 4 that this conserved current can be obtained

directly by combining equation (4) with the equivariant Pontryagin forms.
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3. Equivariant Pontryagin forms in the jet bundle of metrics

3.1. The jet bundle of the bundle of metrics

Let us recall some results on the geometry of the jet bundle of the bundle of metrics

and the relation with the concepts introduced in the previous section. We refer to [7, 8]

for more details on the description of variational calculus in terms of the geometry of

jet bundles and to ([9, 3]) for the geometry of the bundle of metrics.

We denote by JMM the jet bundle of the bundle of metrics i.e., JMM is the

space obtained when the derivatives of the metric are considered as independent

variables. Hence if (xi) are coordinates on M , then the coordinates on JMM are

(xi, gij, gij,k, gij,kr, . . .).

Sometimes it is interesting to consider JMM as an infinitesimal version of the

product M × MetM , where MetM is the space of metrics on M . Both spaces are

related by the evaluation map M ×MetM → JMM , (x, g) 7→ (xi, gij(x), ∂kgij(x), . . .).

For example, we have a canonical decomposition T ∗JMM
∼= T ∗M ⊕ V ∗(JMM),

where V ∗(JMM) is the space contact (or vertical) 1-forms generated by the 1-forms

δgij,I = Dgij,I − gij,I+kDxk, and D denotes the exterior differential on Ωr(JMM).

Accordingly we have

Ωr(JMM) = ⊕p+q=rΩ
p,q(JMM), (8)

where Ωp,q(JMM) is the space of p-horizontal and q-vertical forms. The exterior

differential D on Ωr(JMM) splits into horizontal and vertical differentials D = d + δ,

where the horizontal differential d: Ωp,q(JMM) → Ωp+1,q(JMM) measures the changes

on M, whereas the vertical differential δ: Ωp,q(JMM) → Ωp,q+1(JMM) measures the

changes under variations of the metric. As a consequence of D2 = 0 we obtain d2 =

δ2 = dδ+δd = 0. For example we have dxk = Dxk, δxk = 0, δgij,I = Dgij,I−gij,I+kDxk,

dgij,I = gij,I+kDxk.

The diffeomorphisms group of M acts in a natural way on the metrics on M and

induces an action on its derivatives. Hence DiffM acts on JMM . At the infinitesimal

level, for every X ∈ X(M) we obtain a vector field XJ ∈ X(JMM).

Accordingly to the splitting (8) the vector field XJ can be expressed as XJ =

HX + VX where HX and VX are the horizontal and vertical components respectively. If

in local coordinates X = X i∂/∂xi then we have

HX = X i d

dxi
, (9)

VX = δXgij
∂

∂gij

+
d(δXgij)

dxk

∂

∂gij,k

+ . . . =
∑
ij,I

d|I|(δXgij)

dxI

∂

∂gij,I

, (10)

where the total derivatives are defined by d
dxk = ∂

∂xk +
∑

ij,I gij,I+k
∂

∂gij,I
and

δXgij = −
(
gij,kX

k + gkj∂iX
k + gik∂jX

k
)
.

Note that the last expression is similar formula (6) of the previous section and that

δXgij = ιVX
δgij.
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If α ∈ Ωp,q(JMM) then LXJ
α ∈ Ωp,q(JMM) and hence we have

LXJ
α = ιHX

dα + dιHX
α + ιVX

δα + διVX
α,

ιHX
δα + διHX

α = 0,

ιVX
dα + dιVX

α = 0.

The usual constructions in the calculus of variations can be expressed as differential

forms in JMM . For example, if λ is a lagrangian density then λ ∈ Ωn,0(JMM) and

δλ ∈ Ωn,1(JMM).

We denote by F 1(JMM) ⊂ Ωn,1(JMM) the subspace of forms of the type Aijδgij∧
vol (usually this space it is called the space of functional 1-forms or source forms).

General results on the variational bicomplex assert that for every α ∈ Ωn,1(JMM) we

have α = F − dθ, where F ∈ F 1(JMM) and θ ∈ Ωn−1,1(JMM), and the form F is

uniquely determined by α. Moreover, if α is DiffM -invariant then F and θ can be

chosen DiffM -invariant.

In particular, if λ ∈ Ωn,0(JMM) is a lagrangian density then we obtain the first

variational formula δλ = E − dθ, where E = E ijδgij ∧ vol ∈ F 1 is the Euler-Lagrange

form of λ (i.e. E ij = 0 are the Euler-Lagrange equations for λ) and θ ∈ Ωn−1,1(JMM)

is the symplectic potential. Another example is equation (12) bellow.

If λ is DiffM -invariant we have 0 = LXJ
λ = ιVX

δλ+dιHX
λ = ιVX

E+dιVX
θ+dιHX

λ,

and hence the conserved current can be defined by J(X) = ιVX
θ + ιHX

λ as we have

dJ(X) = −ιVX
E ≈ 0.

3.2. Pontryagin forms

At every point of JMM the first derivatives can be used to define the Christoffel symbols

Γi
jk = 1

2
gia (gak,j + gaj,k − gjk,a) and a covariant derivative

(
DΓA

)i
= DAi + Γi

jkA
jdxk

for A = Ai∂/∂xi ∈ Γ(JMM , TM). It can be shown that in this way we obtain a

well defined connection Γ (called the horizontal Levi -Civita connection) and that Γ is

invariant under the natural action of DiffM (see [9] for details).

Let Ω ∈ Ω2(JMM , EndTM) be the curvature of the connection Γ. Then locally we

have

Ωi
j = DΓi

jk ∧ dxk + Γi
asΓ

a
jrdxs ∧ dxr

= δΓi
jk ∧ dxk +

1

2
Ri

jsrdxs ∧ dxr (11)

We write this equation simply by Ω = δΓ + R. Note that this decomposition

corresponds to that in (8). By applying the first Pontryagin polynomial to Ω we obtain

the first Pontryagin form p1(Ω) = − 1
8π2 tr(Ω ∧ Ω) ∈ Ω4(JMM). For simplicity we

set P = −8π2p1(Ω). In dimension 3 if we consider the components of this form,

using formula (11) we obtain P = P1 + P2 with P1 = 2tr(δΓ ∧ R) ∈ Ω3,1(JMM),

P2 = tr(δΓ ∧ δΓ) ∈ Ω2,2(JMM).

Equation (4) expressed in terms of forms in the jet bundle gives

P1 = 2tr(δΓ ∧R) = C − dη (12)
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where

C = Cabδgab ∧ vol ∈ F 1 ⊂ Ω3,1(JMM)

η = −2Ri
bδgia ∧ dxa ∧ dxb ∈ Ω2,1(JMM)

In this case both C and η are DiffM -invariant.

3.3. Equivariant Pontryagin forms

We recall the definition of equivariant Pontryagin forms given in [3]. They are used in

[10] to study the problem of local gravitational anomaly cancellation, and in [3, 11] are

shown to be related to symplectic structures and moment maps in the space of metrics

in dimensions 4k− 2. In this paper we show that they are related to conserved currents

and black hole entropy of Chern-Simons terms in dimension 3.

We recall that when a connection is invariant under the action of a group G, in

addition to the ordinary characteristic classes, we can consider the corresponding G-

equivariant characteristics classes, which are closed under the Cartan differential (see

[12, 13]). In our case the connection Γ is invariant under the action of DiffM and we

can consider the DiffM -equivariant Pontryagin forms.

The construction of equivariant Pontryagin forms is based on the following equation

(see [3]), which can be obtained directly from equations (9), (10) and (11)

ιXJ
Ω = −DΓ(∇X), (13)

where ∇Xa
b = ∂bX

a + Γa
bcX

c. In the decomposition (8) this equation becomes

ιVX
δΓ + ιHX

R = −dΓ(∇X), (14)

ιHX
δΓ = −δ(∇X). (15)

The first equivariant Pontryagin form is defined by (see [3])

− 1

8π2
tr(Ω−∇X)2 = − 1

8π2
tr(Ω ∧ Ω) +

1

4π2
tr(∇X · Ω)− 1

8π2
tr(∇X2),

for X ∈ X(M), and is closed under the Cartan differential DC = D − ιXJ
by virtue

of equation (13). In particular this implies that we have ιXJ
P = D (β(X)), where

β(X) = 2tr(∇X · Ω).

A map µ: X(M) → Ωk(JMM) is DiffM -equivariant if LYJ
(µ(X)) = µ([Y,X]) for

every X,Y ∈ X(M). For example, if α ∈ Ωk+1(JMM) is DiffM -invariant, then the map

X 7→ ιXJ
α is equivariant. One of the properties of equivariant Pontryagin forms is that

the form β: X(M) → Ω2(JMM) is DiffM -equivariant.

According to decomposition (8) we have β(X) = β0(X) + β1(X) , where

β0(X) = 2tr(∇X ·R) ∈ Ω2,0(JMM), (16)

β1(X) = 2tr(∇X · δΓ) ∈ Ω1,1(JMM). (17)

We show below that β0 appears on the computation of the conserved current and

β1 appears on the computation of the hamiltonian current and the black hole entropy.
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Under the decomposition (8) into horizontal and vertical terms equation ιXJ
P =

D (β(X)) becomes

ιVX
P1 = dβ0(X), (18)

ιHX
P1 + ιVX

P2 = δβ0(X) + dβ1(X), (19)

ιHX
P2 = δβ1(X). (20)

3.4. Chern-Simons forms

As commented before, the expression (1) for the Chern-Simons lagrangian is only valid

locally. However, we show that the Cotton tensor admits a global lagrangian which can

be constructed by fixing a metric.

Let g ∈ MetM be a fixed metric on M , let Γ be its Levi-Civita connection

and R its curvature. Then by applying the usual transgression formula we obtain

tr (Ω2)− tr(R
2
) = DCS, where

CS = 2tr
(
a ∧R

)
+ tr

(
a ∧DΓa

)
+

2

3
tr

(
a3

)
.

and a = Γ − Γ. However, tr(R
2
) = 0 because it is a horizontal 4-form, and hence

P = tr (Ω2) = DCS.

Accordingly with the decomposition (8) we have CS = CS0+CS1 where the second

term is CS1 = tr(a ∧ δΓ) ∈ Ω2,1(JMM), and the first term λCS = CS0 ∈ Ω3,0(JMM)

is a lagrangian density

λCS = 2tr
(
a ∧R

)
+ tr

(
a ∧ dΓa

)
+

2

3
tr

(
a3

)
If in a local chart we choose g a constant metric then λCS = tr

(
Γ ∧ dΓ + 2

3
Γ3

)
is the

usual expression of the Chern-Simons lagrangian. Hence λCS is a globally well defined

lagrangian density with generalizes (1).

The equation P = DCS expressed in terms of the decomposition (8) gives

P1 = δCS0 + dCS1, (21)

P2 = δCS1. (22)

Obviously CS is not DiffM -invariant as it depends on the metric g. In fact we have

LXJ
CS = ιXJ

DCS + DιXJ
CS = ιXJ

P + DιXJ
CS = D(β(X) + ιXJ

CS).

In the decomposition (8) this equation becomes

LXJ
λCS = d(β0(X) + ιVX

CS1 + ιHX
λCS). (23)

LXJ
CS1 = δ(β0(X) + ιHX

λCS + ιVX
CS1) + d(β1(X) + ιHX

CS1) (24)

By equation (12) we have P1 = C − dη. Using this equation and equation (21) we

obtain the first variational formula for λCS

δλCS = P1 − dCS1 = C − d
(
η + CS1

)
= C − dθ, (25)
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where we define the symplectic potential by θ = η + CS1 (this equation generalizes

formula (5)). In particular the Cotton form C is the Euler-Lagrange form of the Chern-

Simons lagrangian. Hence λCS is a globally defined lagrangian density, whose Euler-

Lagrange operator is the Cotton tensor.

4. Conserved current for the Cotton tensor

The construction of the conserved current for the Chern-Simons term is based on

equations (12) and (16). By combining these equations we obtain

dβ0 = ιVX
P1 = 2δXgabC

abvol + dιVX
η.

If we define

JCS(X) = α(ιVX
η − β0(X))

then we have dJCS(X) = −2αδXgabC
abvol ≈ 0 and hence JCS(X) is a conserved current.

Moreover, the invariance of η and the DiffM -equivariance of β0 imply that the map

JCS: X(M) → Ω2,0(JMM) is DiffM -equivariant. An alternative way to obtain the same

current is by combining equations (23) and (25).

Next we compute the explicit expression of the conserved current using the results

of the preceding sections. We have

ιVX
η = −2Ri

c

(
gja∇iX

j + gji∇aX
j
)
dxa ∧ dxc (26)

Moreover, using the formula (3) in the expression (16) of β0(X) we obtain

β0(X) = 2

((
gji∇aX

j − gja∇iX
j
)
Ri

c −
1

2
R∇aX

jgjc

)
dxa ∧ dxc (27)

Finally using (26) and (27) we obtain the expression for the conserved current

JCS(X) given by

JCS(X) = −4α∇aX
j(Rjb −

1

4
Rgjb)dxa ∧ dxb (28)

It is well known that the conserved currents corresponding to DiffM invariance

are globally exact on shell (e.g. see [14]), i.e. we have JCS(X) ≈ dQCS(X) for every

X ∈ X(M) where QCS(X) is called the Noether charge. In our case, if we define the

Noether charge by

QCS(X) = −4αX i(Rij −
1

4
Rgij)dxj (29)

then, a direct computations shows that we have

dQCS(X) = JCS(X)− 4αgkaC
iaXkvoli ≈ JCS(X), (30)

where voli = ι∂i
vol. Moreover, the map Q: X(M) → Ω1,0(JMM) is DiffM -equivariant.

The tensor Sij = Rij − R
4
gij which appears in the expression of the Noether potential is

called the Schouten tensor.
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5. Black hole entropy in the presence of Chern-Simons terms

In this section we follow Wald’s Noether charge approach to compute the black hole

entropy corresponding to the Chern-Simons term in 3 dimensions by using the results of

the previous sections. Our approach is similar to that in [5] but we use the geometrical

constructions of the previous sections. As it is shown below, in the computation of the

black hole entropy the Noether charge disappears, but it appears an additional term

related to the form β1(X) given by the equivariant Pontryagin form.

First we recall the basic ideas of Wald’s Noether charge method for computing black

hole entropy for a DiffM -invariant lagrangian. Let λ ∈ Ωn,0(JMM) be a DiffM invariant

lagrangian density and suppose that we have the first variational formula δλ = E − dθ,

where E ∈ Ωn,1(JMM) is the Euler-Lagrange form of λ and θ ∈ Ωn−1,1(JMM) is the

symplectic potential, and both of them are DiffM -invariant. The conserved current is

given by J(X) = ιVX
θ + ιHX

λ . Moreover, we have J(X) ≈ dQ(X) where Q(X) is the

Noether charge.

The form ω = δθ ∈ Ωn−1,2(JMM) determines a presymplectic structure on the

space of extremals by setting

σg(Y, Z) =

∫
Ξ

jg∗(ιZJ
ιYJ

ω)

where Ξ is a Cauchy hypersurface, g is an extremal metric, and Y, Z are Jacobi fields

on g (i.e. variations of the metric satisfying the linearized equations LY E|g = 0)

and if locally we have Y = yijdxidxj then YJ is the vector field on JMM given by

YJ =
∑

ij,I
∂|I|yij

∂xI
∂

∂gij,I
.

Using the invariance of θ we obtain

ιVX
ω ' d(δQ(X)− ιHX

θ), (31)

where ' means modulo terms that vanish when the form is contracted with a Jacobi

field and evaluated in an extremal metric. Hence we have

ιδXgσ =

∫
Ξ

d(δQ(X)− ιHX
θ) = δ

∫
∂Ξ

Q(X)−
∫

∂Ξ

ιHX
θ (32)

If ∂Ξ is an asymptotic (n − 2)-sphere at infinity Σ∞ and ιHX
θ = δB(X) for certain

B(X) ∈ Ωn−2,0(JMM) then H(X) =
∫

Σ∞
(Q(X) − B(X)) can be considered as the

Hamiltonian function corresponding to the vector field X, as it satisfies Hamilton’s

equation ιδXgσ = δH(X).

Now let us suppose that we have a stationary black hole spacetime with a bifurcate

Killing horizon Σ generated by ξ, and let Ξ be an asymptotically flat surface having Σ

as its only interior boundary. As ξ is a Killing vector field we have δξg = 0 and the

right hand side of equation (32) vanishes. If ξ = ∂t + Ω∂φ where ∂t is the generator of

the global time translation, Ω the angular velocity of the horizon and ∂φ the angular

rotation then we obtain

δ

∫
Σ

Q(ξ) = δ

∫
Σ∞

Q(∂t) + Ωδ

∫
Σ∞

Q(∂φ)−
∫

Σ∞

ιH∂t
θ
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where Σ∞ is the asymptotic infinity of the Cauchy surface, and we have used that

ξ|Σ = 0 and hence ιHξ
θ|Σ = 0, and that ιH∂φ

θ|Σ∞ = 0 because ∂φ is tangent to Σ∞.

By defining the energy by E =
∫

Σ∞
(Q(∂t) − B(∂t)), the angular momentum by

J = −
∫

Σ∞
Q(∂φ) and the entropy by S = 2π

κ

∫
Σ

Q(ξ) we obtain the first law of black

hole thermodynamics κδS = δE − ΩδJ where κ is the surface gravity of the black hole

characterized by ∇ξ|Σ = κε and ε is the binormal to Σ.

For a DiffM -invariant lagrangian Wald’s formula gives a general expression (see

[14, 15, 16])

S = −2π

∫
Σ

δL

δRabcd

εabεcdi1...id−2
dxi1 . . . dxid−2

where λ = Lvol and L is considered as a function of the curvature tensor R and its

covariant derivatives.

In 3D topologically massive gravity the lagrangian includes a Chern-Simons term

which is not DiffM -invariant, and hence Wald’s formula cannot be applied in this case.

We follow Wald’s Noether charge approach to obtain a formula for the entropy and we

show that our result coincides with that obtained in [5].

For the Chern-Simons lagragian we have the first variational formula (25). Hence

in our case the presymplectic structure on the space of solutions σ is determined by the

form αω, where

ω = δθ = δη + δCS1 = δη + P2.

Note that although θ depends on the metric g and hence is not DiffM -invariant,

the form ω is DiffM -invariant. As η is DiffM -invariant we have

LXJ
η = ιHX

dη + dιHX
η + διVX

η + ιVX
δη = 0.

Using this equation we obtain

ιVX
ω = ιVX

δη + ιVX
P2 = −ιHX

dη − dιHX
η − διVX

η + ιVX
P2 (33)

By equations (12) and (19) we have

ιHX
dη = ιHX

C − ιHX
P1 ' −δβ0(X)− dβ1(X) + ιVX

P2

Moreover, by equation (30) we have

ιVX
η − β0(X) = JCS(X) = dQCS(X) + 2gkaCiaXkvoli ' dQCS(X).

Replacing this equations on (33) we obtain

ιVX
ω ' d (δQCS(X) + β1(X)− ιHX

η) (34)

Finally, using equation (15) we have

β1(X) = 2tr(∇X · δΓ) = δ (2tr(∇X · a)− tr(ιHX
a · a)) + ιHX

tr(a ∧ δΓ)

By replacing the last equation on (34) we obtain the analogous of equation (31) for the

Chern-Simons lagrangian

ιVX
ω ' d (δqCS(X) + ιHX

ν) . (35)
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where we define

qCS(X) = QCS(X) + 2tr(∇X · a)− tr(ιHX
a · a),

ν = tr(a ∧ δΓ)− η

Hence for the Chern-Simons lagrangian the hamiltonian current qCS plays the same

role as Q for DiffM -invariant lagrangians in the computation of black hole entropy.

Choosing g a constant metric we obtain q(X) = Q(X)+ tr(2∇X ·Γ)− tr(ιHX
Γ ·Γ).

In local coordinates we have

qCS(X) =
(
−4SirX

idxr + 2∂jX
iΓj

ir + Γi
jkΓ

j
irX

k
)
dxr

where Sij are the components of the Schouten tensor.

This expression is similar to the current defined in [4], given by

q2(X) =
(
−4SirX

i + Γi
jkΓ

j
irX

k
)
dxr

Note that the difference between qCS and q2 are the terms containing derivatives of X,

and hence for a constant vector both expressions coincide. For example in [4] q2(X) is

used to compute the contribution of the Chern-Simons term to the energy (or mass)

and angular momentum for BTZ black holes, Log-gravity and Warped AdS3 black holes

by setting ECS = α
∫

Σ∞
q2(∂t) and JCS = α

∫
Σ∞

q2(∂φ). If the vector fields ∂t and ∂φ are

constant we have ECS = α
∫

Σ∞
qCS(∂t) and JCS = α

∫
Σ∞

qCS(∂φ).

Moreover, the current qCS also gives the correct result for the entropy. If ξ = ∂t +

Ω∂φ, over Σ we have ξ|Σ = 0 and hence ιHξ
ν = 0 and q(ξ)|Σ = 2tr(∇ξ ·Γ)|Σ = 2κtr(ε ·Γ).

Hence we can define the contribution of the Chern-Simons term to the black hole entropy

by

SCS =
2πα

κ

∫
Σ

q(ξ) = 4πα

∫
Σ

tr(ε · Γ).

This expression coincides with the result obtained in [5, §3.1]. In [5] this expression is

computed for the BTZ black hole and shown to coincide with the results obtained by

other methods in [17, 18, 19, 20, 21, 22].

As commented in the Introduction, most of our geometrical constructions can be

extended to higher dimensions. However, the analogous of equation (35) needed to

define the black hole entropy is not so simple in dimensions greater than 3.
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