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Within the post Newtonian framework the fully reduced Hamiltonian (i.e., with eliminated spin supplementary condition) for the next-to-leading order spin-squared dynamics of general compact binaries is presented. The Hamiltonian is applicable to the spin dynamics of all kinds of binaries with self-gravitating components like black holes and/or neutron stars taking into account spin-induced quadrupolar deformation effects in second post-Newtonian order perturbation theory of Einstein's field equations. The corresponding equations of motion for spin, position and momentum variables are given in terms of canonical Poisson brackets. Comparison with a nonreduced potential calculated within the Effective Field Theory approach is made.

Introduction

A crucial prediction of Einstein's theory of General Relativity is the existence of gravitational waves (GWs), e.g. resulting from the inspiralling and merging process of two compact objects. Up till now those waves are purely theoretical predictions with lack of direct experimental verification, but their direct detection is under preparation by gravitational wave observatories on Earth, e.g., LIGO, VIRGO, GEO, or LISA, a future space mission [START_REF] Rowan | Gravitational wave detection by interferometry (ground and space)[END_REF].

A first indirect evidence for the existence of GWs was the observation of energy loss in the orbital motion of the Hulse-Taylor binary pulsar PSR B1913+16 being in full agreement with the predictions of Einstein's theory using the quadrupole radiation formula. This discovery was awarded the Nobel Prize in 1993. In the meantime another strong indirect evidence occurred with the double pulsar system PSR J0737-3039A and B [START_REF] Kramer | Tests of general relativity from timing the double pulsar[END_REF]. For analysis of the measured GW patterns one has to provide very accurate templates following from theory. This can be achieved by numerical calculations with the matching of functions to the results or directly using analytic tools. In the latter case, waveforms can be obtained only perturbatively due to missing analytic solutions of the Einstein field equations for two or more (spinning) compact objects (black holes, neutron stars). One of the most successful approximation methods is the post-Newtonian one in which the metric keeps close to the flat spacetime relying on the assumption that the typical velocity v in a system divided by the speed of light c is always small, v/c ∼ 1. The deviations from the flat metric can be characterized by the Newtonian potential Φ; so for a binary system, Φ/c 2 ∼ v 2 /c 2 ∼ 2 . In an appropriate limit (as → 0), the post-Newtonian (PN) approximation yields Newton's equations.

The merging process of two compact objects is divided into three time scale sectors: inspiral, merger, and ring-down. Each sector delivers characteristic theoretical wave patterns, that are hoped to be matched against measured signals in the future. The PN approximation provides an excellent analytic handling for the inspiral phase. If the PN calculations are very accurate and thus high in order one can make very sensible predictions when comparing with measured signals. In this article we focus on calculations of the next-to-leading order (NLO) dynamics of spin-induced quadrupolar deformation effects. Surely, the most compact dynamical object is the Hamiltonian, generating the equations of motion, so we calculate in section 2 the NLO spin-squared one including a constant C Q parameterizing spin-induced quadrupolar deformation effects. C Q can be given definite values describing black holes (BHs) or neutron stars (NSs). For neutron stars C Q also depends on the model or equation of state (EoS). Thus our result, as it seems to be necessary to accurately measure C Q within future GW astronomy, could help to find the right EoS. The Hamiltonian in the present paper is calculated within the canonical formalism of Arnowitt, Deser, and Misner (ADM) [START_REF] Arnowitt | The dynamics of general relativity[END_REF]. It should be noted that our Hamiltonian is fully reduced in the sense that the spin supplementary condition (SSC) is eliminated on the level of the Hamiltonian. Further we make a formal counting of the spin as c 0 and do not distinguish between fast and slowly spinning objects (see, e.g., [START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance[END_REF] and also Appendix A of [START_REF] Steinhoff | Canonical formulation of gravitating spinning objects at 3.5 post-Newtonian order[END_REF]).

By now there are a lot of results regarding spin effects at the conservative orders in the PN approximation. The leading order (LO) spin effects are well-known for black holes, see, e.g., [START_REF] Barker | Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments[END_REF][START_REF] Peter | Interaction of two black holes in the slow-motion limit[END_REF][START_REF] Barker | The gravitational interaction: Spin, rotation, and quantum effects-a review[END_REF][START_REF] Thorne | Laws of motion and precession for black holes and other bodies[END_REF][START_REF] Thorne | Multipole expansions of gravitational radiation[END_REF]. The LO C Q -dependence is given in [START_REF] Barker | The gravitational interaction: Spin, rotation, and quantum effects-a review[END_REF][START_REF] Poisson | Gravitational waves from inspiraling compact binaries: The quadrupole-moment term[END_REF]. The NLO spin effects were only tackled recently. The first derivation of the NLO spin-orbit (SO) equations of motion (EoM) is given in [START_REF] Tagoshi | Gravitational field and equations of motion of spinning compact binaries to 2.5 post-Newtonian order[END_REF] which became further developed in [START_REF] Faye | Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion[END_REF],

both in harmonic gauge. Later, within the ADM canonical formalism, a Hamiltonian presentation was achieved [START_REF] Thibault Damour | Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling[END_REF] (see also [START_REF] Steinhoff | ADM canonical formalism for gravitating spinning objects[END_REF]). The NLO spin(1)-spin(2) dynamics was found in [START_REF] Steinhoff | Next-to-leading order gravitational spin(1)spin(2) dynamics in Hamiltonian form[END_REF][START_REF] Steinhoff | ADM canonical formalism for gravitating spinning objects[END_REF] and confirmed by [START_REF] Porto | Spin(1)spin(2) effects in the motion of inspiralling compact binaries at third order in the post-Newtonian expansion[END_REF][START_REF] Levi | Next to leading order gravitational spin-spin coupling with Kaluza-Klein reduction[END_REF]. Higher PN orders linear in spin were tackled recently in [START_REF] Steinhoff | Canonical formulation of self-gravitating spinning-object systems[END_REF][START_REF] Barausse | Hamiltonian of a spinning testparticle in curved spacetime[END_REF][START_REF] Steinhoff | Canonical formulation of gravitating spinning objects at 3.5 post-Newtonian order[END_REF]. In particular, Ref. [START_REF] Steinhoff | Canonical formulation of self-gravitating spinning-object systems[END_REF] extended the point-mass ADM formalism to spinning objects, valid to any order linear in spin. Even Hamiltonians of cubic and higher order in spin were obtained for binary black holes (BBHs) [START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from source terms of Kerr geometry in approximate ADM coordinates[END_REF][START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance[END_REF]. Besides quadrupolar deformations induced by proper rotation (spin) and treated in the present paper, tidal deformations induced through the gravitational field of the other object were also treated, see, e.g., [START_REF] Hartle | Tidal shapes and shifts on rotating black holes[END_REF][START_REF] Damour | Effective one body description of tidal effects in inspiralling compact binaries[END_REF][START_REF] Taylor | Nonrotating black hole in a post-Newtonian tidal environment[END_REF].

A nonreduced potential (i.e., with SSC not eliminated on the level of the potential) corresponding to the result of the present paper was already calculated in [START_REF] Porto | Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries[END_REF], however, a term relevant for the center-of-mass motion was missing and only found recently [START_REF] Porto | Erratum: Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries[END_REF]. A comparison with the result of the present paper is not trivial, if one wants to avoid comparing all (rather long) equations of motion; instead it is more efficient to stay on the level of the (relatively short) potential. In section 3 we sketch how to transform the potential from [START_REF] Porto | Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries[END_REF][START_REF] Porto | Erratum: Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries[END_REF] into a reduced Hamiltonian where we will find full agreement with our result of the present paper. Considering the special case of black holes (or C Q = 1), we already succeeded in calculating the Hamiltonian of the present paper in [START_REF] Steinhoff | Spin-squared Hamiltonian of next-to-leading order gravitational interaction[END_REF][START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance[END_REF], providing for the first time both the spin and correct center-of-mass dynamics in this case. There we were only able to find agreement with [START_REF] Porto | Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries[END_REF] in the spin precession equation, see [START_REF] Steinhoff | Comment on two recent papers regarding next-to-leading order spin-spin effects in gravitational interaction[END_REF] (after identifying a sign typo in [START_REF] Porto | Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries[END_REF]). With the correction in [START_REF] Porto | Erratum: Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries[END_REF] a full comparison can now be attempted. It will be provided in section 3.

More work needs to be done for an application of the result of the present paper to GW astronomy. In order to obtain the NLO radiation field (for the SO case see [START_REF] Blanchet | Higher-order spin effects in the dynamics of compact binaries. II. Radiation field[END_REF][START_REF] Blanchet | Erratum: Higher-order spin effects in the dynamics of compact binaries. II. Radiation field[END_REF]) the stress-energy tensor has to include spin-squared corrections. This stressenergy tensor arises from the one with a general quadrupole [START_REF] Steinhoff | Multipolar equations of motion for extended test bodies in general relativity[END_REF] by a spin-squared ansatz for the mass-quadrupole, see [START_REF] Steinhoff | Spin-squared Hamiltonian of next-to-leading order gravitational interaction[END_REF]. Moreover, the NLO spin contribution should be of importance for data analysis. In a recent publication [START_REF] Reisswig | Gravitational-wave detectability of equal-mass black-hole binaries with aligned spins[END_REF] it has been shown that for maximal spins (aligned with the total orbital angular momentum), the event rates are roughly thirty times larger than of those matter systems with anti-aligned spins to orbital angular momentum and eight times as large as for non-spinning binaries. So especially considering such sources the event rate will increase with the inclusion of spin effects. Further, for the creation of templates, it is useful to find a parametrization of the orbits by solving the EoM. It is common to describe the conservative dynamics in terms of certain orbital elements. Spin precession and dissipative effects can then be formulated as secular EoM of the orbital elements. For explicit solutions including spin at LO SO see, e.g., [START_REF] Königsdörffer | Post-Newtonian accurate parametric solution to the dynamics of spinning compact binaries in eccentric orbits: The leading order spin-orbit interaction[END_REF][START_REF] Tessmer | Gravitational waveforms from unequal-mass binaries with arbitrary spins under leading order spin-orbit coupling[END_REF].

The NLO Spin-Squared Hamiltonian

We start with giving a short overview concerning the calculation of the Hamiltonian in question. This calculation is done within the ADM canonical formalism [START_REF] Arnowitt | The dynamics of general relativity[END_REF]. We use units in which 16πG = c = 1, where G is the Newtonian gravitational constant and c the velocity of light. Greek indices will run over 0, 1, 2, 3, Latin over 1, 2, 3. For the signature of spacetime we choose +2. We employ the following notations: x = x i (i = 1, 2, 3) denotes a point in the 3-dimensional Euclidean space R 3 endowed with a standard Euclidean metric and a scalar product (denoted by a dot). Letters a and b are body labels (usually they are set to 1 or 2), so x a ∈ R 3 denotes the position of the ath point mass. We also define r a := xx a , r a := |r a |, n a := r a /r a ; and for a = b, r ab := x ax b , r ab := |r ab |, n ab := r ab /r ab ; | • | stands here for the length of a vector. The linear momentum vector of the ath body is denoted by p a = (p ai ), and m a denotes its mass parameter. The usual flat space spin vector of the ath body (in local coordinates) is denoted by S a = S a(i) in correspondence with our paper [START_REF] Steinhoff | Spin-squared Hamiltonian of next-to-leading order gravitational interaction[END_REF] and its associated antisymmetric tensor by S a(i)(j) = ijk S a(k) with the total antisymmetric -symbol defined as 123 = 1. We abbreviate δ (xx a ) by δ a . The partial differentiation with respect to x i is denoted by ∂ i or by a comma, i.e., ∂ i φ ≡ φ ,i ; the partial differentiation with respect to x i a we denote by ∂ ai . Following the ADM canonical formalism, the independent degress of freedom of the gravitational field are described by h T T ij , the transverse-traceless part of

h ij = g ij -δ ij (h T T ii = 0, h T T ij,j = 0)
, and by conjugate momenta π ij T T . The needed energy and linear momentum density expressions are given by

γ 1 2 T µν n µ n ν = H m(atter) , (1) 
-γ

1 2 T µ i n µ = H m(atter) i , (2) 
where γ = det(g ij ), γ ij is inverse to g ij , n ν is a unit timelike normal to hypersurface x 0 = const, and T µν is the energy-momentum tensor of the matter system. Hereafter, we call its constituents the "particles", but they may well represent neutron stars or black holes. This is substantiated by "general relativity's adherence to the strong equivalence principle": black holes and other compact bodies, to some approximation, obey the same laws of motion as test bodies; see, e.g., [START_REF] Peter | Black holes: Gravitational interactions[END_REF]. Also, the analysis of the initial-value solutions for black holes shows that as in electromagnetism, where image charges are described by delta functions, black holes in full general relativity can be represented by "image masses" with delta functions support [START_REF] Jaranowski | Bare masses in time-symmetric initial-value solutions for two black holes[END_REF]. It is convenient to choose the following four coordinate conditions

π ii = 0 , g ij = ψ 4 δ ij + h T T ij , ψ = 1 + 1 8 φ . (3) 
The standard ADM Hamiltonian (cf. [START_REF] Arnowitt | The dynamics of general relativity[END_REF])

H = dS i (g ij,i -g jj,i ), (4) 
then becomes, using the Gauss theorem,

H = -d 3 x∆φ . (5) 
The integrand ∆φ = ∂ i ∂ i φ can be expressed in terms of x a , p a , S a , h T T ij and π ij T T using the constraint equations. By expansions of the field equations in powers of G and after adopting suitable regularization procedures of integrals involved (see, e.g., Ref. [START_REF] Jaranowski | Technicalities in the calculation of the 3rd post-Newtonian dynamics[END_REF] and the Appendix in [START_REF] Jaranowski | Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems[END_REF]), one can determine the Hamiltonian.

Following the procedure outlined in our previous papers [START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance[END_REF][START_REF] Steinhoff | Spin-squared Hamiltonian of next-to-leading order gravitational interaction[END_REF], the Hamiltonian and the other generators are constructed as to fulfill the Poincaré algebra up to 2PN order depending on standard canonical variables

{x i a , p bj } = δ i j δ ab , (6) 
{S (i) a , S (j) a } = ijk S (k) a , (7) 
with all other brackets being zero. The coefficient equations resulting from this procedure will change due to a modified Hamiltonian and CoM vector entering the crucial relation {G i , H} = P i see Equation (2.4) in [START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance[END_REF]. The modification leading to spin quadrupolar deformation effects of a general compact object has to be made in the leading order spin-squared Hamiltonian labeled as H S 2 1 in equation (2.8) in [START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance[END_REF], which now has to include a general spin-quadrupole constant C Q see [START_REF] Poisson | Gravitational waves from inspiraling compact binaries: The quadrupole-moment term[END_REF]; additionally an appropriate S 2 1 -CoM vector has to be found. Both can be accomplished by adopting the static source expression for H m from our paper [START_REF] Steinhoff | Spin-squared Hamiltonian of next-to-leading order gravitational interaction[END_REF] equation ( 4) and incorporating the C Q constant reading

H matter S 2 1 ,static = c 1 m 1 I ij 1 δ 1 ;ij + 1 8m 1 g mn γ pj γ ql γ mi ,p γ nk ,q Ŝ1ij Ŝ1kl δ 1 + 1 4m 1 γ ij γ mn γ kl ,m Ŝ1ln Ŝ1jk δ 1 ,i , (8) 
c 1 = - 1 2 C Q , (9) 
meaning C Q = 1 for BH. Symbolic abbreviations in this formula are taken unaltered from the original paper thus denoting the same mathematical objects. This means that S (i) being given in an Euclidean basis can be related to a spin tensor Ŝij in a coordinate basis with the help of a triad (dreibein) e i(j) by Ŝij = e i(k) e j(l) klm S (m) .

The dreibein as a function of the metric is just e i(j) = ψ 2 δ ij because the metric can be taken as conformally flat, g ij = ψ 4 δ ij , in our approximation. The mass-quadrupole tensor of object 1, I ij 1 , is given by

I ij 1 ≡ γ ik γ jl γ mn Ŝ1km Ŝ1nl + 2 3 S 2 1 γ ij , (10) 
2S 2 1 = γ ik γ jl Ŝ1ij Ŝ1kl = const . (11) 
The relation to

Q ij 1 and a 2 1 is I (i)(j) 1 = m 2 1 Q ij 1 and S 2 1 = m 2 1 a 2 1
, so in leading order the related quadrupole-moment tensor Q ij 1 is just given by

Q ij 1 = a (i) 1 a (j) 1 - 1 3 a 2 1 δ ij (12) 
This static source alone is also enough to determine all the G 2 terms (static, free of linear momenta) of the Hamiltonian in question. The LO spin-squared Hamiltonian and the S 2 1 -CoM vector are calculated via the formulae H =d 3 x∆φ and G i =d 3 x x i ∆φ, respectively, with a post-Newtonian perturbatively expanded ∆φ and H matter S 2 1 ,static according to equations (4.14) -(4.16) in [START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance[END_REF]. The results are

H CQ S 2 1 = G 2 m 1 m 2 r 3 12 C Q 3 (S 1 • n 12 ) 2 m 2 1 - S 2 1 m 2 1 , (13) 
and

G S 2 1 = G m 2 m 1 ν 1 (S 1 • n 12 ) S 1 r 2 12 + (S 1 • n 12 ) 2 r 3 12 (ν 2 x 1 + ν 3 x 2 ) + S 2 1 r 3 12 (ν 4 x 1 + ν 5 x 2 ) ( 14 
)
with coefficients

ν 1 = - 1 2 - 3 2 C Q , ν 2 = 3 4 C Q , ν 3 = 3 4 C Q , ν 4 = 1 2 + 1 4 C Q , ν 5 = - 1 2 - 3 4 C Q . ( 15 
)
The non-static (momenta based) terms of the Hamiltonian will be determined via the same ansatzes for the source terms in H m and H m i as in [START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance[END_REF] with the LO quadrupole moment [START_REF] Tagoshi | Gravitational field and equations of motion of spinning compact binaries to 2.5 post-Newtonian order[END_REF] reading

H m = 2 b=1 - m b 2 C Q Q ij b ∂ i ∂ j - 1 2 p b • (a b × ∂) + γ ij p bi p bj + m 2 b 1/2 + λ 1 p 2 b 2m b Q ij b ∂ i ∂ j + λ 2 m b (p b • ∂)Q ij b p bi ∂ j + λ 3 m b a 2 b (p b • ∂) 2 -λ 8 p b • (a b × ∂) Q ij b ∂ i ∂ j δ b , (16) 
H m i = -2 2 b=1 Q kl b λ 5 p bk ∂ l ∂ i + λ 6 p bi ∂ k ∂ l + λ 7 (p b • ∂) δ li ∂ k + λ 4 a 2 b (p b • ∂)∂ i + m b 4 (a b × ∂) i 1 - 1 6 Q kl b ∂ k ∂ l - 1 2 p bi δ b . ( 17 
)
Notice that the static term in H m involves the C Q constant which follows from the expansion of ( 8) being the only modification of Eq. (4.11) in [START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance[END_REF]. These sources allow the calculation of the NLO spin-squared Hamiltonian (with yet undetermined coefficients) leading to the same coefficient equations (4.50) -(4.62) in [START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance[END_REF] except for the test particle terms β 2 and β 4 which are just multiplied by the quadrupole constant C Q . These equations have to be matched to the ones resulting from the requirement of fulfilling the Poincaré algebra which now include the C Q constant and for that reason will slighty differ from the equations (3.8) - (3.22) in [START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance[END_REF]. The matching procedure then fixes all the coefficients left attributing to the source term coefficients the values

λ 1 = 7 4 - 3 2 C Q , λ 2 = - 5 4 + 3 2 C Q , λ 3 = - 1 24 , λ 4 = 0, (18) 
λ 5 = 1 12 - C Q 6 , λ 6 = - 1 8 + C Q 4 , λ 7 = 1 8 , (19) 
which agrees with our results obtained in [START_REF] Hergt | Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance[END_REF] when setting C Q = 1. In view of section 3 we label from now on standard canonical variables with a 'hat' specifying its affiliation to the Newton-Wigner (NW) SSC except for the momentum which is chosen to be the same for NW and covariant SSC. The 'hated' variables are then called NW variables in the sense that they are standard canonical, meaning

{x i a , pbj } = δ i j δ ab , (20) 
{ Ŝ(i) a , Ŝ(j) a } = ijk Ŝ(k) a , (21) pai 
= p ai , (22) 
all other brackets being zero. Subtleties arising from that definition of NW variables are discussed in detail in our Comment [START_REF] Steinhoff | Comment on two recent papers regarding next-to-leading order spin-spin effects in gravitational interaction[END_REF]. The resulting NLO spin-squared Hamiltonian for general compact binaries reads

H ADMcan NLO S 2 1 = G r3 12 m 2 m 3 1 - 21 8 + 9 4 C Q p 2 1 ( Ŝ1 • n12 ) 2 + 15 4 - 9 2 C Q (p 1 • n12 )( Ŝ1 • n12 )( Ŝ1 • p 1 ) + - 5 4 + 3 2 C Q ( Ŝ1 • p 1 ) 2 + - 9 8 + 3 2 C Q (p 1 • n12 ) 2 Ŝ2 1 + 5 4 - 5 4 C Q p 2 1 Ŝ2 1 + 1 m 2 1 - 15 4 C Q (p 1 • n12 )(p 2 • n12 )( Ŝ1 • n12 ) 2 + 3 - 21 4 C Q (p 1 • p 2 )( Ŝ1 • n12 ) 2 + - 3 2 + 9 2 C Q (p 2 • n12 )( Ŝ1 • n12 )( Ŝ1 • p 1 ) + -3 + 3 2 C Q (p 1 • n12 )( Ŝ1 • n12 )( Ŝ1 • p 2 ) + 3 2 - 3 2 C Q ( Ŝ1 • p 1 )( Ŝ1 • p 2 ) + 3 2 - 3 4 C Q (p 1 • n12 )(p 2 • n12 ) Ŝ2 1 + - 3 2 + 9 4 C Q (p 1 • p 2 ) Ŝ2 1 + C Q m 1 m 2 9 4 p 2 2 ( Ŝ1 • n12 ) 2 - 3 4 p 2 2 Ŝ2 1 + G 2 m 2 r4 12 2 + 1 2 C Q + m 2 m 1 1 + 2C Q Ŝ2 1 + -3 - 3 2 C Q - m 2 m 1 1 + 6C Q ( Ŝ1 • n12 ) 2 , (23) 
for C Q = 1 being in full agreement with the result for BH presented for the first time in [START_REF] Steinhoff | Spin-squared Hamiltonian of next-to-leading order gravitational interaction[END_REF].

Comparison with the NLO spin(1)spin(1) potential

In order to transform the Routhian R obtained within the Effective Field Theory (EFT) approach [START_REF] Porto | Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries[END_REF][START_REF] Porto | Erratum: Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries[END_REF] to a nonreduced Hamiltonian H, we first have to eliminate the acceleration term [START_REF] Porto | Erratum: Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries[END_REF] with the help of the Newtonian equations of motion (corresponding to a redefinition of the position variables, see [START_REF] Schäfer | Acceleration-dependent Lagrangians in general relativity[END_REF]). This generates corrections terms to the order G 2 in the NLO spin-squared potential. Next, one must replace velocities by canonical momenta p a = ∂R ∂va to get the Hamiltonian by a Legendre transformation, i.e.,

H = v 1 • p 1 + v 2 • p 2 -R . (24) 
The canonical momentum p 1 necessary to cover all NLO spin effects explicitly reads

p 1 = 1 + 1 2 v 2 1 m 1 v 1 + Gm 1 m 2 2r 12 [6v 1 -7v 2 -(n 12 • v 2 )n 12 ] + G r 2 12 [m 2 (n 12 × S 1 ) + 2m 1 (n 12 × S 2 )] , (25) 
and similarly for particle 2. The Poisson brackets at this stage are

{x i a , p bj } = δ i j δ ab , (26) 
{S (i) a , S (j) a } = ijk S (k) a , (27) 
{S (i) a , S (0)(j) a } = ijk S (0)(k) a , (28) 
{S (0)(i) a , S (0)(j) a } = -ijk S (k) a , (29) 
and zero otherwise. ‡ Notice that these are not yet the reduced or standard canonical brackets as S (0)(i) a is still an independent degree of freedom and was not eliminated using the covariant SSC S µν a u ν = 0. It is well known that one has to proceed to Dirac brackets (DBs) if S (0)(i) a is going to be eliminated from the Hamiltonian H using a SSC, see, e.g., [START_REF] Paul | Lectures on Quantum Mechanics[END_REF][START_REF] Hanson | The relativistic spherical top[END_REF]. However, it is possible to find new variables xi a , pbj and Ŝ(j) a for which the Dirac brackets take on the standard form,

{x i a , pbj } DB = δ i j δ ab , (30) 
{ Ŝ(i) a , Ŝ(j) a } DB = ijk Ŝ(k) a , (31) 
and zero otherwise. These new variables can only be unique up to canonical transformations. This freedom allows us to choose p 1i = p1i , as for the flat space case [START_REF] Hanson | The relativistic spherical top[END_REF]. A possible transition to xi a and Ŝj a then reads,

S 1(i)(j) = Ŝ1(i)(j) - p 1[i Ŝ1(j)](k) p 1k m 2 1 1 - 3p 2 1 4m 2 1 - 2Gm 2 m 2 1 r12 p 1[i Ŝ1(j)](k) p 1k + 3G m 1 r12 p 1[i Ŝ1(j)](k) p 1k + G m 1 r12 p 1[i Ŝ1(j)](k) nk 12 (n 12 • p 2 ) + 2Gm 2 m 2 1 r2 12 p 1[i Ŝ1(j)](l) Ŝ1(k)(l) nk 12 + 2G m 1 r2 12 p 1[i Ŝ1(j)](l) Ŝ2(k)(l) nk 12 , (32) 
x 1i = x1i - 1 2m 2 1 p 1k Ŝ1(i)(k) 1 - p 2 1 4m 2 1 -G m 2 m 2 1 p 1k Ŝ1(i)(k) r12 + 3 2 G p 2k Ŝ1(i)(k) m 1 r12 + G 2 nk 12 (n 12 • p 2 ) Ŝ1(i)(k) m 1 r12 + G m 2 m 2 1 Ŝ1(k)(l) Ŝ1(i)(l) nk 12 r2 12 + G nk 12 Ŝ1(i)(l) Ŝ2(k)(l) m 1 r2 12 , (33) 
where the antisymmetrization of indices pertaining to a tensor A ij is defined as

A [ij] = 1/2(A ij -A ji ).
The rather complicated form of these variable transformations reflects the complicated structure of the DBs for self-interacting spinning objects in the covariant SSC. We will elaborate on its specific calculation in another paper. Notice that these results are applicable to all NLO spin effects (for the spin-orbit contributions the corrected form of the tetrad from [START_REF] Steinhoff | Comment on two recent papers regarding next-to-leading order spin-spin effects in gravitational interaction[END_REF] has to be inserted into the SSC). To best of our knowledge this is the first time that DBs are applied to gravitationally selfinteracting spinning objects. In [START_REF] Barausse | Hamiltonian of a spinning testparticle in curved spacetime[END_REF] test-spinning objects are considered and [START_REF] Hanson | The relativistic spherical top[END_REF] covers the flat space case only. The Routhian from [START_REF] Porto | Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries[END_REF] now leads us to the reduced NLO spin-squared Hamiltonian in the form [START_REF] Porto | Spin(1)spin(2) effects in the motion of inspiralling compact binaries at third order in the post-Newtonian expansion[END_REF][START_REF] Porto | Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries[END_REF] a different sign convention was used for the Poisson brackets of the spin. As usual, we are not showing the canonical conjugate of the spin here; see [START_REF] Hanson | The relativistic spherical top[END_REF].

H EFTcan NLOS 2 1 = G r3 12 m 2 m 3 1 - 21 8 + 9 4 C Q p 2 1 ( Ŝ1 • n12 ) 2 ‡ Notice that in
+ 21 4 - 9 2 C Q (p 1 • n 12 )( Ŝ1 • n12 )( Ŝ1 • p 1 ) + - 7 4 + 3 2 C Q ( Ŝ1 • p 1 ) 2 + - 21 8 + 9 2 C Q (p 1 • n12 ) 2 Ŝ2 1 + 7 4 - 9 4 C Q p 2 1 Ŝ2 1 + 1 m 2 1 - 15 4 C Q (p 1 • n12 )(p 2 • n12 )( Ŝ1 • n12 ) 2 + 3 - 21 4 C Q (p 1 • p 2 )( Ŝ1 • n12 ) 2 + -3 + 9 2 C Q (p 2 • n12 )( Ŝ1 • n12 )( Ŝ1 • p 1 ) + -3 + 3 2 C Q (p 1 • n12 )( Ŝ1 • n12 )( Ŝ1 • p 2 ) + 2 - 3 2 C Q ( Ŝ1 • p 1 )( Ŝ1 • p 2 ) + 3 - 15 4 C Q (p 1 • n12 )(p 2 • n12 ) Ŝ2 1 + -2 + 13 4 C Q (p 1 • p 2 ) Ŝ2 1 + C Q m 1 m 2 9 4 p 2 2 ( Ŝ1 • n12 ) 2 - 3 4 p 2 2 Ŝ2 1 + G 2 m 2 r4 12 2 + 1 2 C Q + m 2 m 1 1 2 + 3C Q Ŝ2 1 + -3 - 3 2 C Q - m 2 m 1 1 2 + 6C Q ( Ŝ1 • n12 ) 2 . ( 34 
)
This Hamiltonian and the one calculated in the last section should differ only up to a canonical transformation. It should thus be possible to generate the difference ∆H NLOS 2 1 = H EFTcan 

with H N being the Newtonian Hamiltonian of a two-body system and g being an appropriate generator. It turns out that with the generator

g can NLOS 2 1 = G r2 12 m 2 m 2 1 - 1 2 + C Q (p 1 • n12 ) Ŝ2 1 + 1 2 ( Ŝ1 • n12 )( Ŝ1 • p 1 ) , (36) 
equation ( 35) can be fulfilled and so agreement is achieved. This means that the Hamiltonian H ADMcan NLOS 2 1 calculated with the aid of the ADM method, in terms of invariant physical quantities, agrees with the Routhian from above, hence there is great confidence that H ADMcan NLOS 2 1 correctly describes a binary consisting of BHs and/or NSs or other kinds of compact objects in post-Newtonian Einsteinian theory. The new Hamiltonian may find immediate application in the problem of motion of orbiting binaries as investigated and solved in e.g., [START_REF] Tessmer | Gravitational waveforms from unequal-mass binaries with arbitrary spins under leading order spin-orbit coupling[END_REF][START_REF] Memmesheimer | Third post-Newtonian accurate generalized quasi-Keplerian parametrization for compact binaries in eccentric orbits[END_REF].
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