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Czech Republic

E-mail: Jiri.Kovar@fpf.slu.cz

Abstract. Off-equatorial circular orbits with constant latitudes (halo orbits) of
electrically charged particles exist near compact objects. In the previous paper, we
discussed this kind of motion and demonstrated the existence of minima of the two-
dimensional effective potential which correspond to the stable halo orbits.

Here, we relax previous assumptions of the pseudo-Newtonian approach for the
gravitational field of the central body and study properties of the halo orbits in detail.
Within the general relativistic approach, we carry out our calculations in two cases.
Firstly, we examine the case of a rotating magnetic compact star. Assuming that
the magnetic field axis and the rotation axis are aligned with each other, we study
the orientation of motion along the stable halo orbits. In the poloidal plane, we
also discuss shapes of the related effective potential halo lobes where the general off-
equatorial motion can be bound. Then we focus on the halo orbits near a Kerr black
hole immersed in an asymptotically uniform magnetic field of external origin.

We demonstrate that, in both the cases considered, the lobes exhibit two different
regimes, namely, one where completely disjoint lobes occur symmetrically above and
below the equatorial plane, and another where the lobes are joined across the plane.
A possible application of the model concerns the structure of putative circumpulsar
discs consisting of dust particles. We suggest that the particles can acquire a small
(but non-zero) net electric charge, and this drives them to form the halo lobes.
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1. Introduction

Motion of matter near compact stars and black holes has been discussed thoroughly

in textbooks [1, 2]. In the test-particle approximation, the hydrodynamical terms are

neglected, as expected in circumstances when the medium is rarefied and the mean free

path is comparable with the typical length-scale of the system [3–5]. The interplay

between gravitational attraction and the electromagnetic attraction or repulsion is

essential for characteristics of the motion, namely, its stability properties. Motivation

for these studies arises from the problem of motion and acceleration of matter (charged

particles or dust grains) [6–10].

Compact stars can be imagined as being endowed with magnetic dipoles that are

anchored in the stars and co-rotate with them [6, 11, 12]. Rotation gives rise to the

electric component of the field, and we assume that the resulting structure dominates

over the small-scale turbulent fields. On the other hand, uncharged black holes do

not support their own intrinsic magnetic fields; they can only be embedded in external

fields [13,14]. In general, the gravitational and electromagnetic fields interact with each

other and the result is determined through the Einstein-Maxwell equations. To avoid

such a complex description, one can also consider a test electromagnetic field influenced

by the given gravitational field.

In both cases, magnetic compact stars as well as magnetized black holes‡, the

interplay of strong gravity, rotation and magnetic field is capable of accelerating

electrically charged particles and, possibly, it can also introduce new families of stable

motion. The latter will be the main subject of the present paper.

Recently, we have studied the existence of stable circular orbits with fixed latitudes

of charged particles moving off the equatorial plane (halo orbits) [15, 16]. We assumed

an axially symmetric (aligned) magnetic dipolar field and built our discussion on

classical studies [17, 18] derived in the context of weak (Newtonian) gravitational

fields, and designed for planetary studies. Particles on halo orbits are bound to the

central object by a combined effect of gravitational and electromagnetic forces and

they do not have to cross neither the equatorial plane nor the rotation axis. In

the poloidal plane, the halo orbits are located in a kind of lobes that are positioned

symmetrically above and below the equatorial plane. The lobes may be disjoint or

they may be interconnected, depending on the parameters. Our study [15], within the

pseudo-Newtonian approach [19–21], has shown that the stable halo orbits can indeed

emerge also near magnetic compact stars, where their structure is affected by strong

gravitational field. We have also examined the case of charged and rotating (Kerr-

Newman) black holes and naked singularities. Surprisingly, the stable halo orbits do not

exist above the horizon of Kerr-Newman black holes. This suggests that the structure

of the Kerr-Newman spacetime is in several aspects quite special one, while the generic

case of dipole-type field usually allows for the motion along stable halo orbits.

‡ We use the term magnetic compact stars (magnetic stars) to specify neutron stars, Q-stars and hybrid
stars as well, and the magnetized black holes for the black holes embedded in ordered magnetic fields.
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Here, we extend our investigation of the halo orbits to the case of magnetic compact

stars and magnetized black holes in general relativity. To this end, we study the existence

and orientation of stable halo orbits which surround the minima of two-dimensional

effective potential in the poloidal (r, θ)-plane. We also deal with qualitatively different

cases of the general, in the halo lobes bounded, off-equatorial motion (halo motion).

Namely, we point out to the motion in two separated halo lobes extending symmetrically

above and below the equatorial plane versus the motion in a single region arising from

the merged lobes across the equatorial plane. We also distinguish the cases when the

halo lobes admit outflow of particles to the outer space or they allow the inflow onto

the central body.

In the space environment, dust particles can carry small electrostatic charges [22].

An astrophysical motivation to study the halo motion of such weakly charged particles

is the search for circumpulsar debris that could be formed from a fall-back disc resulting

from the fraction of the explosion ejecta material that fails to escape [23–25]. The

anomalous X-ray pulsars [26] represent a category of magnetars around which the

infrared observation indicate the presence of debris dust discs, potentially relevant for

our deliberation. These are young neutron stars in the category of magnetars with slow

spin periods in a range ≈ 2–12 seconds. The minimum distance to which the dust can

reach is uncertain, however, part of it may enter the magnetosphere and influence the

current flows below the light cylinder, until the dust evaporates. The potential relevance

of the halo motion of dust particles is based on the fact that these orbits occupy areas

of the stable motion. The irradiated dust particles acquire a small net electric charge

and modulate the source radiation at their characteristic oscillation frequencies as they

move in the halo lobes.

The paper is organized as follows. In section 2, we combine the standard formulation

based on the construction of the super-Hamiltonian and the corresponding effective

potential, with perhaps a less frequent (in this context) formalism of forces in the

projected three-space [27–30]. We maintain the assumption about axial symmetry but

we generalise ref. [15] by considering the background of the magnetic compact star in

a more consistent framework, i.e. in the Schwarzschild geometry with a test dipole-

type rotating magnetic field [6] (section 3). Furthermore, as a qualitatively different

situation, we also consider a rotating black hole immersed in the uniform magnetic

field [14] (section 4). We discuss the astrophysical relevance in section 5 and then we

conclude the paper in section 6.

2. Formalism

According to the standard approach to a test particle motion, we start by construction

of the super-Hamiltonian [2]

H = 1
2

gij
(
πi − q̃Ai

) (
πj − q̃Aj

)
, (1)



Off-equatorial orbits in strong gravitational fields near compact objects – II 4

where m and q̃ are the rest mass and electric charge of the particle, πi is the canonical

momentum, and Ai denotes the vector potential related to the electromagnetic tensor

by Fij = Aj,i − Ai,j. The particle motion is governed by Hamilton’s equations

dxi

dλ
=

∂H
∂πi

,
dπi

dλ
= −∂H

∂xi
, (2)

where λ = τ/m is the affine parameter and τ is the proper time.§ The first Hamilton’s

equation of motion implies

pi ≡ dxi

dλ
= πi − q̃Ai. (3)

The second Hamilton’s equation ensures that the generalized momenta,

πt = pt + q̃At ≡ −Ẽ, πφ = pφ + q̃Aφ ≡ L̃, (4)

are constants of motion, reflecting the stationarity and axial symmetry of the system.

These are connected with Killing vector fields ηi = δi
t and ξi = δi

φ.

We start by writing the normalization condition, m2 = −gijpipj, and defining the

specific energy, angular momentum and charge, E = Ẽ/m, L = L̃/m and q = q̃/m,

respectively. We find the two-dimensional effective potential for the particle motion in

the form [2]

Veff =
−β + (β2 − 4αγ)1/2

2α
, (5)

where

α = −gtt, β = 2
[
gtφ

(
L − qAφ

)
− gttqAt

]
, (6)

γ = −gφφ
(
L − qAφ

)2

− gttq2A2
t + 2gtφqAt

(
L − qAφ

)
− 1, (7)

reflecting the motion properties.

Alternatively to the Hamilton’s equations (2), one can describe the motion by the

Lorentz equation

uk∇ku
i = q F i

ku
k. (8)

For our purposes, we find this equation particularly well suited, when being rewritten

in the formalism of forces [27]. The forces formalism is based on the projection

hik = gik + nink of the Lorentz equation (8) onto the three-dimensional hypersurface

orthogonal to the four-velocity field of the Locally Non-Rotating Frames (LNRF) [31],

ni = e−Φ(ηi + Ω
LNRF

ξi), e2Φ = −(ηi + Ω
LNRF

ξi)(ηi + Ω
LNRF

ξi), (9)

where the angular velocity Ω
LNRF

= −gtφ/gφφ. In the case of a static spacetime,

Ω
LNRF

= 0 and the LNRF become static ones.

§ We use the geometric system of units (c = G = 1) and a positive signature of the metric. In order to
reduce the number of parameters in our classification, we scale all quantities that have the dimension of
the power of length by the mass M∗ of the central object. In this way we adopt the scaled dimensionless
quantities. Thus, our formulae become completely dimensionless. Furthermore, our attention is paid
to the stationary and axially symmetric spacetimes, described by using the standard Boyer-Lindquist
coordinates xi = (t, φ, r, θ), and endowed with the magnetic fields which adopt the same symmetries.
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Let us consider an example of the halo motion – the circular motion at constant

latitude θ (outside the equatorial plane). The four-velocity field of particles uniformly

circling along the halo orbits can be decomposed as

ui
h = γ(ni + vhτ

i). (10)

Here, γ = (1 − v2
h)

−1/2 is the Lorentz factor, τ i = ξi g
−1/2
φφ is the unit spacelike vector

orthogonal to ni, along which the spatial velocity vi
h = vhτ

i is aligned. Both vectors

in the decomposition (10) correspond to the base vectors of the standard orthonormal

tetrad attached to LNRF: ni = ei
(t) and τ i = ei

(φ). Thus, vh is the orbital (azimuthal)

velocity measured with respect to LNRF.

Projection of the Lorentz equation, hk
ju

i∇iuk = qhi
jFiku

k, can be written in the

form

Gj + (γvh)
2Zj + γ2vhCj = −qγ(Ej + vhMj), (11)

where the so-called mass and velocity independent parts of the gravitational, centrifugal

and Coriolis inertial forces, and the charge and velocity independent parts of the electric

and magnetic forces can be expressed as

Gj = − ∂jΦ, (12)

Zj = 1
2
g−1

φφ e−2Φ
(
e2Φ ∂jgφφ − gφφ ∂je

2Φ
)
, (13)

Cj = g
−3/2
φφ e−Φ

(
gφφ ∂jgtφ − gtφ ∂jgφφ

)
, (14)

Ej = e−Φ
(
Ω

LNRF
∂jAφ + ∂jAt

)
, (15)

Mj = g
−1/2
φφ ∂jAφ, (16)

where only the radial and latitudinal components are nonzero.

Our investigation of the existence and orientation of the stable halo motion is based

on the following approach. First, we notice that loci of the halo orbits (stable as well

as unstable) correspond to the stationary points of the effective potential (5). We are

interested in the stable motion mainly, i.e. in those orbits which satisfy the conditions

for the local minima of the potential,

∂2
rVeff(r, θ; p, Lh, qh) > 0, (17)

det H(r, θ; p, Lh, qh) > 0. (18)

Here, H is the Hessian matrix, p is a parameter characterizing the compact object

(angular velocity Ω in the case of magnetic star, spin parameter a in the case of Kerr

black hole), and Lh and qh are the specific angular momentum and charge which are

characteristic for a certain halo orbit.

According to the forces formalism, we can determine Lh and qh from the balance

equations‖
Gr + (γvh)

2Zr + γ2vhCr = −qhγ(Er + vhMr), (19)

‖ Note that alternatively to equations (19)–(20), the specific angular momentum Lh and charge qh

can be determined also from the conditions ∂rVeff = 0 and ∂θVeff = 0. However, this routine is more
complicated, especially in our second case of the Kerr black hole in the uniform magnetic field.
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Gθ + (γvh)
2Zθ + γ2vhCθ = −qhγ(Eθ + vhMθ). (20)

Eliminating qh and assuming 0 < θ < π, θ 6= π/2, we get the cubic equation

Av3
h + Bv2

h + Cvh + D = 0, (21)

where

A = Mθ(Gr −Zr) + Mr(Zθ − Gθ), (22)

B = Er(Gr −Zr) + Er(Zθ − Gθ) + CθMr − CrMθ, (23)

C = CθEr − CrEθ + GθMr − GrMθ, (24)

D = ErGθ − EθGr. (25)

The cubic equation (21) has in general three complex solutions,

vh,i = vh,i(r, θ; p), (26)

where i ∈ {I, II, III}. These can represent values of orbital velocities of the charged

particles moving along the halo orbits. The corresponding specific charges can be derived

from one of the equations (19)–(20). We find

qh,i =
Gr(v

2
h,i − 1) − vh,i (Cr + vh,i Zr)

(Er + vh,i Mr)
(
1 − v2

h,i

)1/2
. (27)

Finally, the three values of the specific angular momentum are

Lh,i = γ vh,i g
1/2
φφ + qh,i Aφ. (28)

Searching systematically through the parameter space (r × θ × p), we can now

investigate the validity of conditions (17), (18) and vh,i ∈ R, |vh,i| < 1, necessary and

sufficient for the existence of the stable halo orbits.

3. Magnetic star

To a good approximation, the gravitational field outside a compact star is described by

Schwarzschild metric [2]

ds2 = −
(
1 − 2r−1

)
dt2 +

(
1 − 2r−1

)−1
dr2 + r2(dθ2 + sin2 θdφ2). (29)

Naturally, the gravitational field of rotating compact star differs from the Schwarzschild

metric (in the case of slow rotation it is well determined by the Hartle-Thorne

metric [32]). However, one does not need to consider this discrepancy, taking advantage

of the simple analytical form of the Schwarzschild metric element that captures the

essential properties of the motion not only near non-rotating black holes, but above the

surface of ultra-compact stars and farther away from slowly rotating black holes as well.

The test dipole magnetic field rotating with angular velocity Ω in the Schwarzschild

geometry can be expressed in terms of the vector potential [6]

At = 3
8
ΩMR sin2 θ, Aφ = −3

8
MR sin2 θ, (30)

where

R = 2 + 2r + r2 ln
(
1 − 2r−1

)
. (31)
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The related dipole magnetic moment is [33]

M =
4R3/2 (R − 2)1/2

6(R − 1) + 3R (R − 2) ln (1 − 2R−1)
B0. (32)

This configuration can be considered as a model of magnetic compact star (radius R

and angular velocity Ω) endowed with an aligned co-rotating magnetic field of strength

B0. The latter is measured with respect to the standard orthonormal tetrad of static

observers on the surface of the star in the equatorial plane. Rotation terms are neglected

in the metric and the frozen-in condition for the magnetic field is imposed, F i
j uj

MF = 0

(force-free approximation), where ui
MF = (ut

MF, uφ
MF, 0, 0), i.e. uφ

MF/ut
MF = Ω.

Employing equations (29) and (30), the effective potential (5) adopts the form

Veff = − 3
8
qMΩR sin2 θ

+
(
1 − 2r−1

)1/2

[
1 +

(
L

r sin θ
+

3qMR sin θ

8r

)2
]1/2

. (33)

The only restriction following from the potential formula is r > 2 (event horizon).

However, the effective potential is not meaningful outside the region between the

considered surface of the star and the light cylinder, arising due to the condition

giku
i
MFuk

MF < 0, thus being implicitly defined by the formula

Ω2r3
lc sin2 θlc − rlc + 2 = 0. (34)

Table 1. Signs of quantities characterizing the motion along stable halo orbits. Values
of r and Ω are taken from the specific regions corresponding to figure 1.

Reg. vh,I Qh,I Lh,I

A + − +
B + − +

Reg. vh,II Qh,II Lh,II

A′ − + −
B′ − + −

Reg. vh,III Qh,III Lh,III

C + + +
C′ − − −

3.1. Existence and orientation of halo orbits

The general analysis in section 2 demonstrated that the dipole magnetic field (30) in

the Schwarzschild geometry (29) allows for the existence of the stable halo orbits. We

took advantage of the fact that q appears in all formulae as a product with M, so we

could introduce the effective specific charge Q = qM instead of the usual specific charge

q. This decreases the number of parameters. Only the parameter p ≡ Ω remains in the

relations for vh,i (26), Lh,i (28) and Qh,i, being expressed by the same formula as qh,i

(27).

The following conclusions about the existence of stable halo orbits arise from figure

1. The stable halo orbits are possible for particles which co-rotate with the dipole

and whose charge satisfies either the condition QhΩ < 0 (regions A, B′) or QhΩ > 0

(regions C, C′). By co-rotation of particles we mean vhΩ > 0, i.e. sgn(vh) = sgn(Ω).

Particles can also counter-rotate with the dipole along stable halo orbits; in such case
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Figure 1. The range and orientation of particle motion along stable halo orbits
near a magnetic star. The star rotates with angular velocity Ω. This figure has
been constructed for the latitude θ = π/3 and it represents a typical result for the
effective potential Veff(r, θ; L, Q, Ω), based on the behaviour of three orbital velocities
vh,I(r, θ; Ω), vh,II(r, θ; Ω) and vh,III(r, θ; Ω) (roots of equation (21)). These correspond
to the specific angular momenta Lh,I(r, θ; Ω), Lh,II(r, θ; Ω), Lh,III(r, θ; Ω) and the
effective specific charges Qh,I(r, θ; Ω), Qh,II(r, θ; Ω), Qh,III(r, θ; Ω). The gray areas
correspond to the parameters for which the effective potentials Veff(r, θ; Lh,I, Qh,I, Ω)
(left panel), Veff(r, θ; Lh,II, Qh,II, Ω) (middle panel) and Veff(r, θ; Lh,III, Qh,III, Ω) (right
panel) develop local minima. Only the regions under the light cylinder are considered.
The thick vertical lines denote position of the event horizon at r = 2. Description of
the regions is summarized in table 1.

the charge must satisfy the condition QhΩ > 0 (regions A′, B). Thus, in the case of the

same orientation of the magnetic dipole and its rotation (MΩ > 0), negatively charged

particles moving along stable halo orbits can only co-rotate, whereas positively charged

particles can either co-rotate or counter-rotate with the dipole.

We point out that the above-mentioned results are general. Qualitatively the same

structure appears at any latitude, 0 < θ < π, θ 6= π/2 (the assumption of θ = π/3 in

the figure 1 is not crucial). Note that vhLh > 0 holds always for every stable halo orbit.

3.2. Effective potential and classification of halo motion

As we can conclude from equation (33), the effective potential is invariant under

combinations of simultaneous sign reversals maintaining

sgn(Q Ω) = const, sgn(ΩL) = const. (35)
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At the event horizon, the potential diverges as

lim
r→+2

Veff = sgn(Q Ω)∞. (36)

In the non-rotating case, the effective potential is invariant under the signs reversals

which satisfy

sgn(QL) = const. (37)

The effective potential (33) exhibits a rich spectrum of behaviour. Different

topology of the effective potential determines different possible regimes of charged

particles motion and yields the following classification. Note that locations of the surface

of the star and of the light cylinder must be incorporated into the classification as well.

For instance, with respect to the different positions of the light cylinder, we obtain an

additional type IIIa′ to the type IIIa (although the behaviour of the potential itself is

identical in both the cases). Similarly, different positions of the surface of the star bring

the additional type Ia′ to the type Ia, and the type IIb′ to the type IIb. On the other

hand, the different types of the potential behaviour itself do not have to enrich the

considered classification necessarily. For example, the different number of saddle points

that occur below the star surface or beyond the light cylinder does not influence the

topology between surface of the star and light cylinder, and is irrelevant for us.

The family of different types of the effective potential can be parameterized by

(conserved) energy of the moving particle. Starting at the energy corresponding to local

minima of the potential and rising gradually the energy level (and keeping the other

parameters constant), we first observe the gradually growing lobes of halo orbits, where

particles are trapped. The following classification emerges (see figures 2–3).¶

Type Ia. Halo lobes merge together once the energy level of the saddle point in the

equatorial plane is reached; particles moving within these merged lobes can cross the

equatorial plane. Later, when the energy is high enough, particles start falling onto the

surface of the magnetic star in the regions where the merged potential lobes open, and

the particles hit the surface of the star. Increasing the energy further, the merged lobes

open out also on the outer side, crossing the light cylinder. This way the particles can

scatter away from the system.

Type Ib. Halo lobes merge through saddle points out of the equatorial plane. When

the energy is high enough, the merged lobes open out through the surface of the star,

and then also through the light cylinder.

Type IIa. Halo lobes merge through the saddle point in the equatorial plane. Then

again, the merged halo lobes open out through the light cylinder and, finally, through

the surface of the star.

¶ Because of the complex spectrum of the different types, we present only the most representative cases
in the following list.
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Figure 2. Behaviour of effective potential Veff for charged particles moving near
magnetic star. Qualitatively different types of behaviour of the effective potential
occur, with two local minima in the poloidal plane. The lobes are limited by the
radius of the star and the light cylinder (thick curves limiting the gray areas). The
equipotential surfaces are shown by solid curves, whereas the dot-and-dashed and
dashed lines correspond to zeroes of ∂rVeff and ∂θVeff , respectively. The presented types
correspond to the following combinations of parameters: Ia: Q

.= −5.72, L
.= 0.876,

Ω .= 0.0115, R = 4 and θh = π/3, rh = 5 (parameters taken from region A in figure 1);
Ib: Q

.= −14.6, L
.= 0.343, Ω = 0.03, R = 4 and θh = π/9, rh = 5; IIa: Q

.= 5.77,
L

.= −2.30, Ω = 0.0505, R = 4 and θh = π/3, rh = 12 (parameters taken from region
B′ in figure 1); IIb: Q

.= 25.2, L
.= −0.788, Ω = 0.0505, R = 5 and θh = π/9, rh = 12.

Type IIb. Halo lobes open out through the light cylinder. When the energy is high

enough, the halo lobes merge through the saddle point located beyond the light cylinder.

Increasing the energy further, the opened and merged lobes open out through the surface

of the star.

Type IIIa. Halo lobes merge through the saddle point in the equatorial plane. Later,

when the energy is high enough, the merged lobes open out through another saddle



Off-equatorial orbits in strong gravitational fields near compact objects – II 11

0 20 40 60 80 100

-100

-50

0

50

100

r�sin Θ

r�
co

s
Θ

Type IIIa

0 5 10 15 20 25 30 35

-100

-50

0

50

100

r�sin Θ

r�
co

s
Θ

Type IIIb

0 20 40 60 80

-60

-40

-20

0

20

40

60

r�sin Θ

r�
co

s
Θ

Type IIIc

0 20 40 60 80

-50

0

50

r�sin Θ

r�
co

s
Θ

Type IIIa’

Figure 2. (Continued.) The presented types correspond to the following parameters:
IIIa: Q

.= 53.4, L
.= 6.58, Ω = 0.01, R = 4 and θh = π/3, rh = 70 (parameters

taken from region C in figure 1); IIIb: Q
.= 113, L

.= 2.43, Ω = 0.029, R = 4
and θh = π/9, rh = 60; IIIc: Q

.= 45.9, L
.= 6.25, Ω .= 0.0115, R = 4 and

θh = π/3, rh = 62.5 (parameters taken from region C in figure 1); IIIa′: Q
.= 44.5,

L
.= 6.50, Ω = 0.0115 and θh = π/3, rh = 70.

point in the equatorial plane. Finally, the lobes open through the light cylinder.

Type IIIb. Halo lobes open through saddle points out of the equatorial plane, and later,

when the energy is high enough, through the light cylinder as well. The opened halo

lobes merge through the saddle point in the equatorial plane hidden beyond the light

cylinder.

Type IIIc. Halo lobes open out through saddle points out of the equatorial plane and

merge this way with each other. Later, another corridor between the lobes emerges

through the saddle point in the equatorial plane. The potential barrier between the

saddle points can be overcome after increasing the energy further. Finally, the merged
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Figure 2. (Continued.) The presented types correspond to the following parameters:
Ia′: Q

.= −5.72, L
.= 0.876, Ω .= 0.0115, R = 4.85 and θh = π/3, rh = 5 (parameters

taken from region A in figure 1); IIb′: Q
.= 17.1, L

.= −0.617, Ω = 0.0505, R = 5.1
and θh = π/9, rh = 8.

and opened lobes open out through the light cylinder.

Type IIIa′. Halo lobes open out through the light cylinder. Later the opened lobes

merge through the saddle point in the equatorial plane. Finally, increasing the energy

more, the opened and merged lobes open out through the second saddle point in the

equatorial plane.

Type Ia′. Halo lobes open out through the surface of the star, then the halo lobes merge

through the saddle point in the equatorial plane, and, finally, by increasing the energy

the lobes open out through the light cylinder.

Type IIb′. Halo lobes open out through the surface of the star, and later, when the

energy is high enough, through the light cylinder. Increasing the energy further more,

the opened lobes merge through the saddle point in the equatorial plane hidden beyond

the light cylinder.

3.3. Features of the classification

In the case of parallel orientation of the rotation and the magnetic moment of the dipole,

the behaviour of the potential of the types Ia, Ib and Ia′ (serie I) determine the motion

of negatively charged particles which co-rotate along the stable halo orbits. At the event

horizon, the potential diverges as Veff → −∞, and there are two additional saddle points

of the potential near the event horizon (hidden under the surface of the star). In the

equatorial plane, the effective potential develops local maxima (also hidden under the

surface of the star) in addition to the saddle point. Note that the extent of halo lobes
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Figure 3. Three-dimensional trajectories of charged particles (upper panels) with
Q

.= −5.72 and the corresponding poloidal projection of the motion (lower panels),
moving in the separated and merged halo lobes in the vicinity of a magnetic star
with R = 4 and Ω .= 0.0115. The trajectories were calculated numerically by using
the Lorentz equation of motion (8) with the initial conditions L

.= 0.876, φ(0) = 0,
r(0) = 5, θ(0) = π/3, and E = 0.8481, uθ(0) = 7 × 10−4, ur(0) .= 0.021 (motion in
separated halo lobe), and E = 0.8485, uθ(0) = 7 × 10−3, ur(0) .= 0.020 (motion in
merged lobes).

can never be large (compared to the radius of the black hole horizon) and they cannot

be placed farther off the star surface.

Behaviour of the types IIa, IIb and IIb′ (serie II) determines the motion of positively

charged particles, counter-rotating along halo orbits. At the event horizon, the potential

diverges as Veff → ∞, and there are no other stationary points hidden under the surface

of the star, neither out of the equatorial plane nor within the plane. A relatively high

potential barrier develops between the halo lobes and the star. Now, the halo lobes can
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be of large extent and they can be placed farther away from the star surface.

Finally, the behaviour of types IIIa, IIIb, IIIc and IIIa′ (serie III) determines the

motion of positively charged particles, co-rotating along halo orbits. At the event

horizon, the potential diverges as Veff → ∞, and there are no other stationary points out

of the equatorial plane. However, in the equatorial plane, the behaviour of the potential

is more complicated. In some cases, there can be even more than four stationary points.

There is an infinite potential barrier at the event horizon in the types of series II

and III, and behaviour of the potential closer to the magnetic star can be complicated,

especially in types of the serie III. But having the sufficiently high energy, particles can

always fall onto the star surface, for the star surface always takes place above the event

horizon.

The types Ia, IIa, Ia′, IIIa and IIIa′ are characteristic for the ‘lower’ stable halo

orbits, taking place near the equatorial plane. On the other hand, the types Ib, IIb and

IIIb are characteristic for the ‘upper’ stable halo orbits which occur near the rotation

axis. Behaviour of the type IIIc represents an intermediate situation.

4. Kerr black hole in uniform magnetic field

In order to incorporate the large scale magnetic field in our considerations, we employ

Wald’s test-field solution [14]. The electromagnetic field is given in terms of the vector

potential

At = 1
2
B0

(
gtφ + 2a gtt

)
− 1

2
Q gtt − 1

2
Q, (38)

Aφ = 1
2
B0

(
gφφ + 2a gtφ

)
− 1

2
Q gtφ, (39)

in the background of Kerr metric

ds2 = − ∆

Σ

(
dt − a sin θ dφ

)2

+
sin2 θ

Σ

[ (
r2 + a2

)
dφ − a dt

]2

+
Σ

∆
dr2 + Σ dθ2, (40)

where ∆ = r2 − 2r + a2, Σ = r2 + a2 sin2 θ (a is the rotational parameter). Q
stands for the test charge of the black hole; the terms containing Q may be identified

with the components of vector potential of the Kerr-Newman solution [2]. Further,

the asymptotic behaviour of components (38)–(39) justifies the identification of the

parameter B0 with the strength of the uniform magnetic field into which the Kerr black

hole has been immersed. Wald [14] has shown that in the case of parallel orientation of

the spin and the magnetic field B0, the black hole selectively accretes positive charges

(negative for the antiparallel orientation) until it is charged to the equilibrium value

Q
W

= 2B0 a. (41)

We will adopt Q
W

as a preferred value of the charge in forthcoming examples.
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Figure 4. The range and orientation of particle motion along stable halo orbits near
a Kerr black hole (with the spin a) embedded in a uniform magnetic field. This figure
has been constructed for the latitude θ = π/3 and it represents a typical result for the
effective potential Veff (r, θ; L, Q, a) based on the investigation of the orbital velocity
vh,I(r, θ; a) (root of equation 21 with A = 0). The corresponding specific angular
momenta and charges are Lh,I(r, θ; a) and Qh,I(r, θ; a). The gray regions correspond
to the the local minima of the effective potential Veff(r, θ; Lh,I, Qh,I, a). The thick
solid curve shows the position of the event horizon at r = 1 + (1 − a2)1/2. Further
classification is given in table 2.

Table 2. Signs of quantities characterizing the motion along stable halo orbits. Values
of r and a are taken from the specific regions corresponding to figure 4.

Reg. vh,I Qh,I Lh,I

A − + +
A′ + − −

4.1. Existence and orientation of halo orbits

Our analysis was described in general in section 2. Its application to the case of Wald’s

test-field is shown in figure 4. Again, we take the advantage of the fact that q appears

only in the product with B0, which leads us to introduce the effective specific charge

Q = qB0. Then, the only parameter p ≡ a remains in the relations for vh,i (26), Lh,i

(28) and Qh,i being expressed by the same formula as qh,i (27). Note that due to the use

of Wald’s charge, the coefficient A in equation (21) vanishes. Moreover, having now the

quadratic equations, one of the two possible roots does not take the real values from the

interval (−1, 1) in the considered black hole region above the outer event horizon. Thus,

there is only one possible root vh,I(r, θ; a) and the related specific angular momentum

Lh,I(r, θ; a) and effective specific charge Qh,I(r, θ; a) involved in the classification routine.

In the region above the outer event horizon, the stable halo orbits are possible

only for particles which counter-rotate with respect to LNRF (vha < 0) and charge of

which satisfies the condition Qha > 0 (regions A, A′). The parallel orientation of the
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spin a and the magnetic field B0 (aB0 > 0) allows counter-rotation along stable halo

orbits only for positively charged particles. Moreover, in the potential minimum, there

is always vhLh < 0.

4.2. Effective potential and classification of halo motion

We can conclude from formulae (40), (5), (38) and (39) that the potential Veff allows

several combinations of simultaneous sign reversals which follow from its symmetries.

These have to satisfy the conditions

sgn(Qa) = const, sgn(aL) = const. (42)

The effective potential (5) does not reveal as many possibilities of stable halo motion

as we have seen in the previous case of a magnetic star in section 3.2. Moreover, here,

only the topology of the potential is crucial for the classification of the halo motion.

Starting at energy of the potential local minima and rising its level (keeping other

parameters constant), we still observe the growing halo lobes in which particles are

trapped. The system can be classified in the following way (see figure 5).
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Figure 5. Behaviour of the effective potential Veff for charged particles moving
near Kerr black hole in the uniform magnetic field. These are typical examples of
behaviour of the potential with two potential minima, again introduced in terms of the
equipotential surfaces. The dashed and dot-and-dashed curves correspond to zeros of
∂θVeff and ∂rVeff , respectively. The gray region corresponds to the interior of black hole,
limited by the outer event horizon. The presented types correspond to the following
parameters: Ia: Q

.= 1.37, L
.= 3.76, a = 0.6 and θh = π/3, rh = 2.6; Ib: Q

.= 4.79,
L

.= 2.76, a = 0.9 and θh = π/9, rh = 3; Ic: Q
.= 1.60, L

.= 4.02, a = 0.55 and
θh = π/3, rh = 2.5. The parameters of all the presented types are taken from the
region A in figure 4.
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Type Ia. Halo lobes merge with each other when the energy level is reached of the

saddle point in the equatorial plane. Particles moving in these merged lobes can cross

the equatorial plane. When the energy is increased high enough, particles can fall into

the black hole, passing the next saddle point in the equatorial plane, through which the

merged halo lobes open out.

Type Ib. Halo lobes open out through the saddle points out of the equatorial plane and

the trapped particles can fall into the black hole.

Type Ic. Halo lobes merge through two saddle points out of the equatorial plane and

they open out this way. Trapped particles can cross the equatorial plane or fall into the

black hole.

In the case of the parallel orientation of the spin and the magnetic field, the

behaviour of all the presented types determines the motion of positively charged particles

counter-rotating along the stable halo orbit. The behaviour of type Ia is characteristic

for potentials determining the ‘lower’ stable halo orbits. Type Ib is characteristic for the

potential determining the ‘upper’ stable halo orbits. Type Ic exhibits an intermediate

type.

In all the presented results here, we assume Q = 2B0a. But we checked that the

stable halo orbits are also possible in the uncharged case, Q = 0, finding no substantial

change in the topology of effective potential compared to the charged case.

5. Discussion: The astrophysical relevance of halo orbits

In this paper, we have concentrated ourselves on aspects of the off-equatorial motion

near magnetic compact stars and magnetized black holes. Namely, we discussed the

existence of halo orbits, classified them into several categories and investigated their

dependence on the parameters. Despite the obvious limitations of our approach, one

can recognize several astrophysically relevant features of the halo orbits.

We can list the main limitations of the present approach: (i) Test-particle

approximation was employed. This assumes that the medium is highly diluted and the

mean free path is comparable with the characteristic size of the system (gravitational

radius of the black hole). (ii) Schwarzschild metric was adopted for the external

gravitational field of the magnetic compact star and Kerr metric for the rotating black

hole, ignoring all other terms that could contribute to the gravitational field. Such

contributions could in principle originate from the internal structure of the star and

its rotation, or they could be caused by accreted matter outside the central body.

(iii) The rotating dipole or the asymptotically uniform structure has been imposed as

two examples of the magnetic field and the associated electric field. It was also assumed

that the electromagnetic field does not affect the spacetime metric, so it could be treated

in the test-field approximation.
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The assumptions (ii) and (iii) are less critical because they are well fulfilled under

the typical astrophysical conditions. We considered two different examples of the

magnetic and gravitational fields, we found that the halo orbits are possible in both.

The halo orbits are determined by their location in the poloidal (r,θ) plane, and by

values of other parameters, such as the magnetic field strength and the specific charge

of the particles. The assumption (i) is the crucial one and it imposes the main restriction

on the choice of the system which can be described.

As for the numerical values of the mass-scaled (dimensionless) parameters Ω, a

and Q, we can check the adequate choice by looking at the domain of the non-scaled

quantities Ω∗ = Ω/M∗, a∗ = aM∗, B∗
0 = B0/M

∗, q∗ = q, R∗ = RM∗ and M∗,

characterizing real objects.

5.1. Magnetic star

In the following analysis, we assume masses and radii of magnetic compact stars in the

ranges 1 M� ≤M∗≤ 3 M� and 3M∗≤ R∗ ≤ 10M∗ [34], and magnetic fields and rotation

frequencies reaching B∗
0 = 1010 T and f ∗ = 103 Hz (Ω∗ .

= 6283 rad/s) [35–37].+

The limits of the used scaled parameters can be determined from the figure 6, which

can be read in the following way. In the upper left plot, starting from the assumed

astrophysically relevant values of angular velocity Ω∗ ≤ 103.8, we can determine values

of Ω for a fixed mass M∗. For example, light magnetic compact stars with M∗ = 1 M�

can rotate with the scaled angular velocity up to Ω
.
= 0.031, while the heavy ones

with M∗ = 3 M� up to Ω
.
= 0.093. In the upper right plot, within the astrophysically

relevant values of magnetic field strength B0 ≤ 1010, we can determine values of B0 for

a fixed mass M∗.∗ We notice that light magnetic compact stars with M∗ = 1 M� can

be endowed with magnetic fields of the scaled strength up to B0
.
= 10−5.4, while the

heavy ones with M∗ = 3 M� up to B0
.
= 10−4.9. In the lower left plot, for the scaled

magnetic field strength B0 ≤ 10−4.9, we can determine values of M for a fixed scaled

radius R. We can also see that small magnetic compact stars with R = 3 allow scaled

magnetic dipole momenta up to M .
= 10−3.9, while the large ones with R = 10 up to

M .
= 10−2.0. In the lower right plot, for the specific charges q ≤ 1021, we can determine

values of Q for a fixed magnetic dipole moment M. Note that small scaled magnetic

dipole momenta of M = 10−15 allow effective specific charges up to Q = 106, while the

big ones of M = 10−2 can support values up to Q = 1019.

+ The precise determination of the mentioned limits is still of high interest, being very complex,
dependent on the considered equation of state, etc. Moreover, not all the theoretical calculated models
have their observable counterparts. For instance, as for the masses of neutron stars, the narrower range
1.4 M� .M∗. 2.5 M� is widely stated for the astrophysically relevant neutron stars. As for the radii,
most of the realistic equations of state imply the lower limit only R∗ ≈ 3.5M∗ [38]. On the other
hand, the existence of extremely compact stars with R∗ < 3M∗ is also discussed. Some models for
the so-called Q-stars allow the lower limit even R∗ ≈ 2.8M∗ [39–41]. In this paper, the limits are
considered only for order estimates of the used dimensionless parameters, thus their exact values are
of less importance here.
∗ The value of Ω∗ is in physical (SI) units, i.e. rad/s. Similarly, B∗

0 is expressed in units of Tesla.
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Figure 6. Relations between the physical parameters (magnetic field strength B∗
0

and angular velocity of rotation Ω∗) and the corresponding scaled (dimensionless)
parameters, characterizing a magnetic star and the charged particles moving around
it. The dashed lines denote the assumed limits and some representative values. The
gray regions are astrophysically irrelevant, within the assumed limitation.

For instance, a neutron star with the mass M∗ = 1.5 M� (corresponding to

the length-scale 2212 m), radius R∗ = 4M∗ .
= 8850 m and magnetic field strength

B∗
0 = 103 T

.
= 2.87 × 10−16 m−1 (M∗ .

= 1.03 × 10−4 m2), rotating with the angular

velocity Ω∗ = 6283 rad/s
.
= 2.1 × 10−5 m−1 (f ∗ .

= 103 Hz), is described by the scaled

parameters Ω
.
= 0.046 and B0

.
= 6.36 × 10−13 (M .

= 2.11 × 10−11). For particles with

the specific charge q = 1012 (charged dust grains), we have the effective specific charge

Q
.
= 21 (see figure 6).
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Figure 7. As in the previous figure, but for rotating black holes in the uniform
magnetic fields.

5.2. Kerr black hole in uniform magnetic field

While masses of astrophysical black holes are known with relatively good precision

and customarily categorized in three groups of stellar-mass black holes (M∗ . 30 M�),

intermediate mass black holes (102 M� .M∗. 105 M�), and supermassive black holes

(M∗ & 106 M�), much less is known about the intensity of cosmic magnetic fields

surrounding the black holes. We assume masses of the black holes in the interval

3 M� ≤M∗≤ 1010 M� [42,43] and the galactic magnetic field strength up to B∗
0 = 10−6 T.

Near supermassive black holes with jets the magnetic field is thought to be still

significantly stronger [44].

The limits of the used scaled parameters can be determined from the figure 7, which

can be read in the following way. In the left plot, within the assumed astrophysically

relevant values of the magnetic field strength B∗
0 ≤ 10−6, we can determine values of B0

for a fixed mass M∗. We can see that light black holes with M∗ = 3 M� allow values

of the scaled magnetic field strength up to B0
.
= 10−20.9, while the heavy ones with

M∗ = 1010 M� up to B0
.
= 10−11.4. In the lower right plot, within the astrophysically

relevant values of the specific charge q ≤ 1021, we can determine values of Q for a fixed

scaled magnetic dipole strength B0. We can see that weak magnetic field strengths of

B0 = 10−25 allow values of the effective charge up to Q = 10−4, while the strong ones

of B0 = 10−11.4 up to Q = 109.6.

For instance, a rotating black hole with the mass M∗ = 10 M�
.
= 14750 m in the

asymptotically uniform magnetic field of the strength B∗
0 = 10−8 T

.
= 2.87 × 10−27m−1

is described by the parameter B0
.
= 4.24 × 10−23. For particles with the specific charge

of magnitude q = 1021 (electrons), we have the scaled effective charge Q
.
= 0.042 (see

figure 7). Realistic values for the scaled spin a are limited by the value a = 1. For
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the greater values of the spin, the black-hole horizons disappear and the Kerr metric

describes the naked-singularity spacetime.

5.3. Possible applications

Two kinds of charged particles seem to be relevant with respect to the halo orbits.

Firstly, in the case of electrons and protons, the magnitude of specific charges has a large

value, and so the halo orbits can exist only very close to the black hole horizon or near

an ultra-compact magnetic star. This kind of motion has been recently explored in the

context of magnetospherical motion in stellar-mass black hole binaries [45]. Magnetically

driven oscillations of matter near black holes have recently been explored also in the

context of equatorial motion [33].

Another promising application of the halo motion concerns charged dust grains

which typically acquire the magnitude of specific charge much smaller than that of

elementary particles. Therefore, the gravitational effects influence the motion of dust

grains more efficiently, and so they can form the halo orbits at larger distances from

the star surface. Infrared observations are suitable to test the possible existence of

halo orbits of dust grains around magnetic compact stars [25]. The debris discs of such

particles could perturb the electromagnetic signal of the compact star and give rise to

quasi-periodic modulation.

It is also well known that the frequencies of epicyclic geodesic motion [46,47] have

a substantial role in the resonant (or other) models of high-frequency quasiperiodic

oscillation observed in the black hole [48–50] and neutron star [51] low mass X-ray

binaries, and their magnetic-field induced modification could be of high importance, as

shown in the case of equatorial motion [33].

6. Conclusions

Our calculations reveal the properties of halo motion of charged particles near magnetic

compact stars and black holes. These can be relevant e.g. for charged dust grains when

they acquire a small magnitude of electric charge and occur in the strong gravitational

field. Such particles can originate from supernova material which falls back and migrates

into the pulsar vicinity before evaporating.

The halo orbits can take place in axially symmetric systems: near a magnetic

compact star, which we modelled by the Schwarzschild geometry and a test rotating

dipole magnetic field, as well as near a Kerr black hole immersed in an asymptotically

uniform magnetic field.

In this paper, we concentrated ourselves on the methodological aspects of the halo

orbits and their systematic classification. Our main interest concerned the properties

of the halo orbits in situations when the motion takes place in a strong gravitational

field. We only briefly touched the astrophysical applications and will investigate them

further in the following work. Table 3 summarizes the basic characteristics of different
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examples of strongly gravitating systems which exhibit the halo orbits.

Table 3. Orientation of motion of electrically charged particles along stable halo orbits
and the corresponding sign of the charge. The results correspond to the configuration
where the magnetic field (characterized by the magnetic dipole moment M or magnetic
field strength in the equatorial plane B0) is oriented in the same direction as the
rotation vector, characterized by the signs of Ω or a.

Compact object Charge of particles Orientation of motion

Rotating magnetic star Positive Co-rotation
Positive Counter-rotation
Negative Co-rotation

Static magnetic star Positive Counter-rotation
Negative Co-rotation

Magnetized black hole Positive Counter-rotation
(Kerr metric) Negative No-orbits

As for the magnetic compact stars, results of our discussion of the stable halo orbits

orientation are qualitatively consistent with those obtained previously in Newtonian and

the pseudo-Newtonian investigations [15, 18]. We notice that the strong gravitational

field and the presence of event horizon affect the form of the effective potential and

introduce significant changes with respect to the Newtonian case. However, we also

notice that the pseudo-Newtonian approach can give surprisingly good information

on the loci of halo orbits in spherically symmetric gravitational fields of magnetic

stars, in which case the results qualitatively agree with the exact general relativistic

approach presented here. On the other hand, the pseudo-Newtonian modelling of Kerr

spacetimes [52,53] is much more complicated, and seems to be less fruitful for modelling

the phenomena in the Kerr geometry, which itself is relatively simple.

The effective potential of the halo motion exhibits a number of qualitatively different

types. Two basic categories can be distinguished. The first one allows particles, bounded

within the halo potential lobes, to commute across the equatorial plane. On the other

hand, the second category does not allow such an interconnection, as the two lobes are

entirely disjoint. The off-equatorial halo motion is an interesting phenomenon not only

because it has not yet been explored in full detail in the literature, but also because it

shows a variety of orbits, depending on orbital parameters: off-equatorial stable circular

motion which does not cross the equatorial plane; small oscillations in the radial and

vertical directions, with characteristic frequencies around the circular orbits; and the

motion that traverses between the lobes when the energy is increased to sufficiently high

levels. Recently, the off-equatorial motion of charged particles near Kerr black hole in

asymptoticaly uniform magnetic field has been discussed from a different point of view

in the ref. [54] as well.
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[30] Kovář J and Stuchĺık Z 2007 Classical and Quantum Gravity 24 565
[31] Bardeen J M, Press W H and Teukolsky S A 1972 The Astrophysical Journal 178 347
[32] Hartle J B, Thorne K S 1968 The Astrophysical Journal 153 807
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