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We study the asymptotic expansion of the {6j}-symbol using the Schulten-Gordon recursion rela-
tions. We focus on the particular case of the isosceles tetrahedron and we provide explicit formulas
for up to the third order corrections beyond the leading order. Moreover, in the framework of spin-
foam models for 3d quantum gravity, we show how these recursion relations can be used to derive
Ward-Takahashi-like identities between the expectation values of graviton-like spinfoam correlations.

I. INTRODUCTION: {6J}-SYMBOL AND THE RECURSION FORMULA

Spinfoam models present a proposal for a well-defined path integral formulation for quantum gravity. They define
the structure of the quantum space-time at the Planck scale. The current challenge is to study their semi-classical
behavior at large scale, show that we recover general relativity and a locally flat space-time as expected and then
to extract the perturbative quantum gravity correction to the classical gravitational dynamics. The main spinfoam
models for 4d quantum gravity are the Barrett-Crane model [1] and the more recent family of models [2-4] based on
coherent state techniques. These models are all derived from the reformulation of general relativity as a constrained
topological BF-theory and attempt to define a discretization of the path integral over space-time geometries.

A recent proposal, which is actively investigated, to probe the semi-classical behavior of the spinfoam amplitudes
is the test of the graviton propagator proposed by Rovelli and collaborators [5]. There have been several more or
less rigorous analytical computations [6], as well as numerical simulations [7], showing that the most recent spinfoam
models have the expected behavior reproducing at first order (and for the simplest space-time triangulation) Newton’s
law and the tensorial structure of the graviton. These rely on the computation of the leading order asymptotics
of some spinfoam amplitudes for large spin. The next step is to go beyond the leading order and compute the
quantum corrections which should correspond to the loop corrections of the standard perturbative quantum field
theory approach. This necessarily requires a better understanding of the structure of the asymptotics of the spinfoam
amplitudes. Here, we investigate this issue in the simplified framework of 3d quantum gravity.

In three space-time dimensions, gravity is a topological theory which can be exactly quantized as a spinfoam model,
the well-known Ponzano-Regge model [8]. Its basic building block is the {6j}-symbol. Its asymptotics have been
well-studied at leading order and been derived using various techniques: from the brute-force calculation based on
the explicit formula of the {6j}-symbol in terms of factorials [9] to more refined saddle point approximation based on
integral formulas [10]. Recently, these calculations have been pushed further in order to compute the corrections to
the asymptotic behavior using both the saddle point technique [11] and the brute-force method [12]. These results
apply to the computation of graviton-like correlations in 3d quantum gravity [11, 14]. This should lead to a better
understanding of the structure of the quantum corrections of the spinfoam graviton propagator, which should be
relevant to the four-dimensional case.

In the present paper, we are interested in the computation of the asymptotics of the {6j}-symbol through the use of
recursion relations. As was first shown in [13], the {6j}-symbol satisfies a recursion formula which is intimately related
to the topological invariance of the Ponzano-Regge spinfoam model. This formula turned out to be very useful: not
only can it be approximated in the large spin limit by a second order differential equation which one can use to derive
the leading order of the asymptotics through a WKB approximation, but it also allows fast numerical calculations of
the {6j}-symbol.

Here, we investigate two aspects of these recursion relations. First, we show how to extract the next-to-leading
and subsequent corrections to the {6j}-symbol. We focus on the case of the isosceles tetrahedron (since this is the
case relevant for the computation of graviton-like correlations [14]) and we compare our results with the previous
work [11, 12]. Second, we study the consequences of the existence of such a recursion relation on the behavior of
the graviton-like correlation functions in spinfoam models. We show that it leads to relations on these correlations
functions, which relate the expectation values of different observables. These relations are similar to the Ward-
Takahashi identities (and to the Schwinger-Dyson equation) in standard quantum field theory, which allow to relate
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different correlation functions of different orders. These equations play a key role in the study of the renormalization
of quantum field theories, so we expect these new recursion relations to be equally relevant to the study of the
renormalization/coarse-graining of spinfoam models.

II. THE RECURSION RELATION FOR THE ISOSCELES TETRAHEDRON
A. Exact and Approximate Recursion

We will focus on the isosceles tetrahedron, which is relevant for the computation of geometrical correlations in the
simplest non-trivial toy model in 3d quantum gravity [14]. Such a tetrahedron has four of its edges of equal length
with the two remaining opposite edges of arbitrary length. The corresponding isosceles {6j}-symbol is:

{a,b}J{Z i i},

where J € N/2 and a, b are integers smaller than 2J (to satisfy the triangular inequality). The associated tetrahedron
has edge lengths [; = d;/2 for j = a,b, J, where d; = 2j + 1 is the dimension of the SU(2) representation of spin j.
The volume V of the tetrahedron is given by the simple formula:

1 /
Vl(aa b) = Elalb 4l3 - (lg + ll%)a (1)

while the (exterior) dihedral angles 8; can also be written in term of the edge lengths (see e.g. [11] for more details):
_413 -2 - 2157 _413 -2 - 2l§7 cosfy — —lalp .
I3 -1 5 -1 VAR =12\ /42 - 12

The general recursion relation for the {6j}-symbol given by Schulten and Gordon in [13] simplifies in this specific
isosceles case:

(ot 30 [403 = oot 32| Gt 10)s =2, 5 = o) + 5| 1000+ o= 3) [183 = 0 = 5] fa 103 =0
)

In the asymptotic regime, we know (analytically and numerically) the behavior of the {6j}-symbol at the leading
order:

cosf, = cosf, = (2)

1

V127V

which is actually valid under the assumption that the tetrahedron with edge lengths 4,15, [ exists (else the generic
asymptotics can be expressed in term of Airy functions). The oscillatory phase is given by the Regge action Sp =
loba + U0y + 41,0 ;. Using the obvious trigonometric identity cos((n + 1)¢) + cos((n — 1)¢) = 2cos ¢ cosng, we can
write an exact recursion relation for the leading order of the {6j}-symbol:

VVia+1,b){a+1,0}5° — 2cos8, /Vi(a,b) {a,b}° + /Vi(a — 1,b) {a — 1,b}5° = 0. (5)

A similar recursion relation holds for b-shifts and also J-shifts.

The most natural idea is to compare this recursion relation for the leading order to the previous equation on the
exact {6j}-symbol to see how to use them to extract the next-to-leading correction to the asymptotic behavior. We
can first find the link between the leading order of equation (3) and the leading order of equation (5). Both equations
can be written in the same form at the leading order:

{a+1,b}; —2cosb,{a,b};+ {a—1,b}; =0, (6)

which turns into a simple second order differential equation in the large spin limit. Then the next-to-leading order of
the exact recursion relation given in equation (3) is easily computed,

2
Vi(@0) (14 50 (1- 532z ) ) {a+1,6bs — 2c0s00/Vi(a,b){a, b}y
+y/Vi () (1 - 30— g3%5) ) {a — 1,0}y ~0,

{a,b}; ~ {a,b}go =

05 (Lo + 1o + 4110 + 7 ) (4)

(7)

and will have to be compared to a recursion relation for the next-to-leading order approximation of the {6j}-symbol.
Here, we have kept the extra-factor \/Vj(a,b) to underline the similarity of this relation with the leading order
recursion relation (5).



B. Pushing to the Next-to-Leading Order

We are interested in the asymptotic expansion of the {6j}-symbol. It was shown in previous works [11, 12] that I;
seems to be the right parameter to consider when studying the semi-classical behavior of the {6j}-symbol. So from

now we write:
a J J
{ b J J } = {lajlb}lJ'

Notice that shifting a by %1 is equivalent to shifting the edge length I, = a4+ 1/2 by £1. We rescale now I; by A,
and we replace the exact {6j}-symbol by a series in 1/X alternating cosines and sines of the Regge action (shifted by
m/4) in the previous equation (3). The fact that there is no mixing up of cosines and sines at any order was show in
[11]. More precisely, we write the {6j}-symbol asymptotic expansion in the form:

1

Mas Abbri, = S5m0 77
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cos(ASg + 7/4) (8)

G(n) (Za; Zb7 lJ) c

4
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where the pre-factor denominator D(l,, I, 1) is given by the square-root of the tetrahedron volume as in equation (4).
To study the asymptotics, it is convenient to factorize the whole equation (3) by A\3/2. We then write {I, & 1/\, Iy},
for {Mq £ 1, Mp}rn,. We also factorize the coefficients of the recursion relation. We start by defining C(l;) =

(4% = 12) = M where A(a,b,c) = +\/(a+b+c)(a+b—c)(a—b+c)(—a+b+c) is the area of the
triangle of edge 1engths given by a, b and ¢. The coefficient which appears in front of {l, = 1/X,l;};, becomes

Cla£1/2N),lp,15) = (lo £ 1/(2)\))(412 (Io£1/(2X))), where we underline that the shift is £1/(2)) and not simply
+1/X. We expand C(l, £1/(2X),1p, 1) in term of derivatives:

1 1 o*C
Clla +1/(2N),1p,15) = Y YNGR

with

C =1,(41% - 12)
% =413 — 312
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Then to express {l, + 1/, Iy}, we need to expand D(l, &+ 1/\), F@ (I, £1/X), and GO (I, £ 1/X\): (i € {1---4})

2 3 4
Dl £1/3) = D 182 + e 3R = s 5P + 7
7 4—3 k (i)
Ft )(la +1/A) = Zk 0( ) kll)\k 88171@ (10)
i 4— k ()
G )(la * 1/)‘) = Zk B( )kkll)\k aa?k

F(l)(lj) was computed in a previous paper [11, 12]. It was also suggested that the asymptotic expansion of the
{6j}-symbol in terms of the length scale A is given by a series alternating in cosines and sines at each order, so we
expect that G (l;) = 0 for Vi > 1. Finally, we also need to expand the Regge action ASg(l, + %), remembering that
9]‘ = Hj (Za) :

1 1)k+1 ake
ASr(la £ 5) = /\SR+Z T (11)
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with
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We can now write an asymptotic recursion equation from equations (3), (9), (8), (10) and (11) in terms of A neglecting
terms of order O(A~*) and smaller, assuming that ) is large. This leads to a couple of equations at each order, one
for the cos-oscillations and one for the term in sin:

e The first equation is given by the terms of order A\° and it is trivially satisfied (0 = 0) since we have already written

the leading order of the {6j}-symbol proportional to cos(Sr + %) (the Ponzano-Regge asymptotic formulae).
The second equation is given by the terms of order A~ !:

19C¢ 19D ~(9)+109a
scal, Do, ) MY Ty

which can be rewritten as a differential equation for D:

8lnD71 00, cosl, OlnC
ol, 2 |0l, sinb, ol, |-

cos(f,) =0 (12)

(13)

This allows to determine D: In D = % In(C'sin(6,)) + K, which simplifies into D = K\/lalb\/éllg — 12 — 12 where
K is a constant factor. Thus this second equation shows that D is as expected proportional to the square-root
of the volume V of the isosceles tetrahedron. To determine the normalization constant K (as well as G(1)), the
orthonormality property of {6j}-coeflicients can be employed: Y, 4l,v/Iply {a, b} ;{a,b'}; = &y and we get the
K = \/127. The details are given in the next section.

The third equation is given by the terms of order A=2? and which are proportional to cos(Sg + o)
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where we used the fact that (%% - %STD) sin(6,) + %‘?,‘}’a cos(f,) = 0 (eqn. (13)) to remove all the terms

proportional to F(1) itself. The first term of the right-hand side of the equation (14) comes from the variation
of the coefficient in front of {a, b} in the recursion equation (3). The terms with a derivative of C' with respect
to I, come from the coefficients in front of {a+1,b}; and {a, b} ;. The variation of C' with respect to I, is given
by the variation of the areas of the triangles of the tetrahedron. From eqn.(13), we relate it to the variations

of D (the volume) and to the variations of the dihedral angle 6,: %% = %% — %%. The terms with a
derivative of D with respect to [, come from the variation of the leading order of the asymptotic of the {6j}-
symbol and the terms with a derivative of the dihedral angle 6, come from the variations of the Regge action
Sk. We can now compute the derivative of F(!) with respect of I, (equation (14)) in terms of l,, I, and I the

edge lengths of the tetrahedron:

(14)

S

cosby, (1 O
+ sin 0, <2D ol
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(1)
oL = — BECEEEaE ey (325l + 100l + 961515 — 9601515 + 15151, + 400151,13 — 100131515
4681?,1513 — 1664151212 + 201812 + 576151212 + 30721517 — 3072110 + 481418 + 23041812 — 576151%)
(15)

and then easily integrate this equation over [,:

FO(1y) =
76815 (13 =12 —12)+ 7361512 17+2401% (12 +13) — 176121217 (12 +13) — 2413 (1S +15)+1012 17 (12 +13) +2512 1} ¥ Z(ly, 1) (16)
24(a12 —12) (212 —12) (412 —12—12)* 2141 o




The integration constant Z(l;,1;) can be determined using the symmetry properties of the {6j}-symbol: sym-
metry of the isosceles {6]j}-symbol with respect to I, and l;, coupling of l,, I, and I ; by this isosceles {6]}-symbol
and homogeneity of F(1) ([F(V)] = l;l) imply that Z(lp,1;) = 0. Then this gives us the same result as in the
previous paper [12]. Moreover, using the definitions of the tetrahedron volume (1) and of the dihedral angles
(2), we can express FM) in terms of some geometrical characteristics of the tetrahedron:

cosfy (3(12V)8 — (12V) 214 (3(12 — 1p)* + 20217) — 122112) + 612212

O = _
48(12V)31813

(17)

e The fourth equation is given by the terms of order A~2 and which are proportional to sin(Sg + §). It is the

same equation as the previous one for G(!) but the right-hand side is now equal to zero (homogenous equation).
That is we simply get that

oa

ol (18)

so G = Z(l,,1;) is just a constant of integration. Once again the symmetry properties of the {6j}-symbol
implies that G = 0.

e The next equation is given by the terms of order A= and which are proportional to sin(Sg + 7). We get an
equation for the first derivative of F(2) with respect to I,

OF (1)) _ cosf, 9PFD L 90s | p(1) oFM
Olg T 2sinf, 012 sinZ 0, al Olg

2 2
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3
+

)
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We recall that D is proportional to the square root of the tetrahedron volume, C' can be expressed in terms of
the volume V' and the sinus of the dihedral angle 6, (see equation (13)). To integrate this equation, we first
express it explicitly 'in terms of l,, I and I, and then deduce F(?):

@)1y — —1 _ 271074 _ 67674 1274 4712 878
FEI(;) = 4608((453—13)2(4l?,—l§)2(4l?,—lg—l§)3zgz§)( 235929611571, — 2245121151, 4 1001,°l, + 576151, ° + 11289615
+272793612112 + 530841611° + 21211018 — 58982401211* — 1152012005 + 94105612151} + 3158415141}

—2416121101% — 79872181512 — 4801121212 — 7040131513 — 2416110131 + 10012112 + 21211018
+27279361171; — 70041611°18 — 589824014412 — 115201511° — 70041618110 + 6091515 + 1128961315
+5761121% — 2359296121012 + 528384151512 + 5849088121212 — 79872121315 + 31584151314 — 7040181313
—224512121816 + 58816151519 + 8640101512 + 864011°1412 — 4801121217 + 528384121517)

(20)
which is the only result with the required symmetries®. The geometrical meaning of this functlon does not seem
obvious. Nevertheless, we can give a more compact expression for the denominator of F(2):

2 2\2 2 2\2 2 2 2137272 (12V)6
(4ZJ - Za) (4ZJ - lb) (4ZJ - Za - lb) Zalb = 4 . (21)
cos? 0
' aglf) () = " 2304((43 - 12>l3<412il2)3<412 12+12)412)( 1604181812 + 1250816141818 — 207104181515 + 31904110141} — 169344121815 —

39201511912 + 24992181314 — 468481101612 712908812 1101% + 1770496181813 4 168320211014 + 34368131418 — 68161121412 — 27891218151} +
14524416l 2+ 486144121818 - 5601121413 437761211013 33177601a21J1016 W 222412801411212 + 79411216 6‘955>00816110]l26 +
28016641121 + 6721141212 2654208014114 — 45158411018 + 460801510 — 2304112l?, 21233664118 + 3715891212l16 + 1072128l8l8l%
1528la12l4l 1091174411414 - 35979264l2114l2 + 17381 21412 + 9953280l6112 + 22809611018 — 10368[12l6 2073600121},0 + 2711‘5 g
2359296011 12 + 40018110 — 8811414 81441101513 + 1001} 16)

If the result is not symmetrlc after 1ntegrat10n anon- null integration constant has to be added and its determination can be done using the

V]

symmetry properties of the {6j}-symbol. Indeed, we have E’F(j) = H(la,lp, 1) so by integration over lq, F(®)(1;) = h(la,ly,17)+Z (s, L)

ol
(2) . . . .
Moreover by symmetry, we must have aglb = H(lqg = lp,ly = la,ly) and then integrating over l;, we obtain a second expression for

F@; F(Q)(lj) = h(la = lp,lp =la,ly) + Z(la,l;) which implies that the constant of integration satisfies Z(lp,15) — Z(la,l;) = h(la =
lp, lp = la,ly) — h(la,lp,1ly). This equation allows to determine Z and to get (20).




e The next equation comes from the terms of order A=3 which are proportional to cos(Sg + )

0G2)
ol,

() =0 (22)

which implies once again that G?) = Z(ly,1;) is a constant of integration. Then the symmetry properties of
the {6j}-symbol implies G (1;) = 0.

We can now give the asymptotic expansion of an isosceles {6j}-symbol until the next to next to leading order
(NNLO):
1

la,l NNLO
{la: bo}i, 127V1, U 1a)

[COS(SR + 4) + F(l)(l i) sin(Sg + 4) + F(Q)(lj) cos(Sg + %)} (23)

where the expression for F() and F(®) are given by equations (17) and (20). This result seems to confirm that the
expansion of the {6j}-symbol is a series alternating in cosines and sines of the Regge action (shift by 7). In the case of

an equilateral tetrahedron, all the edges have the same length, that isl, =, =1y =1l and V = %Z?’. Then equation
(23) reduces to:

31 s 45673 1

1 m m
NNLO _ Kl
{67} equi = cos(Sg + 4) YT n(Sg + 4) 20736 21191 cos(Sg + 4) (24)

where the Regge action is given by S = 6160 and § = 6, = 0, = 0; = arccos(—1/3). This result is confirmed by
numerical simulations. The plot figure 1 represents numerical simulations of the equilateral {6j}-symbol minus its
approximation (24). Moreover, to enhance the comparison, we have multiplied by 17/2 t0 see how the coefficient of the
NNLO is approached and we have divided by sin(Sg + %) (oscillations of the next to next to next to leading order)

to suppress the oscillations. This gives an error that decreases as expected as [~!.
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FIG. 1: Difference between the equilateral {6j}-symbol and the analytical result (24). The x-axis stands for | = d/2 and d goes
from 100 to 5000. The error decreases as expected as [~ confirming our asymptotic formula.

e The next two equations come from the terms of order A=*. The equation for G3) is the same as the one for G1)

and G, that is: 85’;(3) = 0. Using the same arguments of symmetry we deduce that G = 0. This confirms

our expectation of a series alternating in cosines and sines in the asymptotic of the {6j}-symbol:

1 a, lb, ™
{)\la, Alb}kl_] = m COS )\SR + + Z COS()\SR + 4 + €(k) 2) y (25)
where €(k) = —1 when k is odd and €(k) = 0 when k is even. We already have an expression for F(1) and F(%),

The equation for F®) is the second equation of order A=* and gives its first derivative with respect to I, in
terms of I, Iy and [;. It is straightforward (though lengthy) to integrate it over I, and get the expression®of
F®) in terms of la, Ip and 1;. In the equilateral case (I, = I, =1; =), the formula reduces to:

(3) _ 28833535 1
17915904 29/221/4]3

(26)



Therefore, we have the expression of the asymptotic expansion of the equilateral {6j}-symbol up to the next-
to-next-to-next to leading order (NNNLO):

. le) ™ 3]. . T
(67keau™” = vz |cos(Sn+ ) = gygay (S + )
45673 m 28833535 m
- S )+ —————sin(S =) . 27
20736222 R+ ) T Trgrsg0a 0072 MR+ ) 27)
We check this result numerically by computing it using Mathematica for two values of spins j = 50 and
. 16 ANNNLOy;9/2
j = 100. More precisely, we computed the renormalized error ({Gj}eqlzosggi}fg“) 7 and we got the expected
4

1/A-behavior. However for [ > 100, Mathematica is not accurate enough and the numerical errors are too
important to get exploitable results. In the general isosceles case, the expression of F(®) is quite complicated
and its geometrical interpretation remains to be understood. Nevertheless, we can again give as before a more
compact formula for the denominator of F®):

3 (12V;(a.b))°

denominatorpe) = 3317760(415 — 12 — 17)*/ 21313 (412 — 12)% (415 — 13)® = 30(48) ey

(28)

From this equation, the equation giving the denominator of F? and remembering that the denominator of F()

. . .. . 12V)3
can be written in a similar form: denominatorpa) = 4812V)

cosZp, 0 e can conjecture that:

(12Vy(a, b))k

(cos 0 y)2k (29)

denominator gy o

where F(*) are the terms appearing in the asymptotic expansion of the {6j}-symbol (25). And consequently,
the numerator of F*) is a polynomial in l; of degree 8k.

So, using the recursion relation for the isosceles {6j}-symbol as well as its symmetry properties, we have computed
explicitly the asymptotic expansion of the isosceles {6j}-symbol to the fourth order up to an overall factor K (this
integration constant K comes from the integration of the first equation (13)). The well-known value K = /127 which
already appears in the Ponzano-Regge formula can be obtained easily using the unitary property of the {6j}-symbol,
as we show in the next section. The equilateral case has been checked against numerical calculations. This method
using the recursion relation is fairly easy to implement. It requires integrating a rational fraction at each level and
involves neither a Riemann sum nor a saddle point analysis. Moreover, since the coefficient C' of the recursion relation
(3) is a polynomial of degree 3; % = 0 for n > 4. Therefore, we expect to get a stable relation for the first derivative
of F(¥) and G® with respect to I, for ¥ > 3. On the one hand, this allows one to prove that G*) always vanishes;
and on the other hand, it should provide a systematic method to extract F(¥) for arbitrary order k.

We conclude this section with a general remark on the asymptotic expansion of the {6j}-symbol. In the context
of 3d quantum gravity, it is often argued that the leading order of the {6j}-symbol is a cos(S) instead of a complex
phase exp(+iS5), thus reflecting that the path integral is invariant under a change of (local) orientation (see e.g.[15]).
This obviously neglects the +7/4 shifts, which can be considered as a quantum effect (like an ordering ambiguity).
However, in the light of the present expansion, it is clear that we have terms of the type sin(S) beyond the leading
order and such terms are not invariant under the change S — —S. This means that the role of this symmetry in the
spinfoam path integral should be more subtle than originally thought.

3 n(3)(1.) — _ 1 o 671078 671672 167672 _
F®(1y) = 331776O(lg(la_%)(laJrzlJ)(MgJ_lg)g(%_lg_lz)(g/g)lg(41‘2]_%)2)( 696574156815 11013 + 10697281811612 + 282700801161512

7430400412118 +175050326016012° 1212 +379404800112151$ + 7887052801 101101 — 3354720015 1}414, — 9857860811211 — 8103297024018 11412 +
37940480012bl;216 —38921472015121}4 — 32381337600018 118 — 15603615116 — 221761214118 — 3824640115141} — 2840811818 — 311040001}16155) -
12622705459200 181214 — 12622705459201181212 + 461814497280l11,6l§lg + 1069728101218 + 74144841728(51%218 + 824520278016115111; +
46181449728018 11612 4+ 78870528011012110 — 26754121728015 1141 + 1151746561514114 — 99953280008 141]2 + 68611276800(511° —
382464014 12116 —124207872011018 1542827008016 12116+ 384834723841 121218 421570969601 1211012 — 124207872018 11918 +5096079360001%* —
335472000141014 + 1222041600117 12110 + 11119152(1211012 — 9995328001 .2(8 1} + 783522201600(2° 14 + 2157096960l1615l;2 - 284081215’8 -
3892147201141812 — 78360192018 (818 — 9857860815 14112 — 696574156815 11015 — 3238133760001 1818 + 1222041600110 11212+ 115174656114 15 1 —
7430400181412 — 22176118121} — 8103297024001 1218 + 72013681141812 — 11401161611°11°1% — 9852420096001%212 + 5685657601101515 —
140175>:36001f2112 —2675412172801 141215 +56856576015 1510 +111191521101}212 +783522201600!2 01} — 3425231} l;B+38483472384l,§l?2l4—
39813120001.°114 — 15603611618 —51160211°114+3442176001} 4110 — 14017536001} 2112 +10368001}°16 43442176001 1% 110+ 686112768001 Jﬁl%—
3981312000114110 — 511602114110 — 311040001615 — 98524200960012212 + 103680011815 + 720136815 1}1412)



C. Consequences of the unitary property of the {6j}-symbols

The orthogonality property of the {6j}-symbols states that:

> Ao Il {las iy {las b Yoy = 61y, (30)
la

This relation corresponds to the unitarity of the evolution in the Ponzano-Regge 3d quantum gravity. We want to

use this property to determine the constant of the leading order of the {6j}-symbol. From the recursion relation we
LO __ K . . . . . ~ ,

have shown that {l.,ls};” = Tm cos(Sg + 7); but K is still undetermined. For large spin and for I, ~ Iy, we

can approximate the unitary property at the leading order in (I, — l/) by:
/OodzauzLQ (Salla ) + =) cos(Srllasly) + =) ~ 51y — ly) (31)
) a abV](a,b)COS R\la, b 4 COS(OR\la, lb 4 ~ b b )-
The product of the cosines can be simplified at leading order:

1
co8(Sg(la, Iy) + g) cos(Sr(las lyy) + g) = [cos(sR(za, Iy) + Sp(la, ly) + g) + cos(Sp(la,1y) — Sr(la, zb/))}

1
~ 3 [COS(ZSR(la,lb)Jrg)Jrcos((lb—lb/)Gb) :

2 2 2
where the dihedral angle 6, = arccos (—ﬂéu%l%) is considered as a function of the length [,. We do a saddle point
J b

approximation. The first term oscillates and its integral is exponentially suppressed. And we are left with the second
term, which should satisfy the following equation:

o] K2
alalb 5——< — Ly ~ — Ly 2
/_OO dl,l lb V](a, b) COS((lb lb )95) 5(15 lb ) (3 )

We recall that:
1 o0
% [m dla COS(Za(lb — lb/)) = 5(15 — lb/)

therefore we can conclude that

K? 1
lop— = —
by 2w

09,
dlg

0y and [, are conjugate variables and K comes from the Jacobian of the change of variables between [, and 6.
Computing the derivative of the dihedral angle gives:

0 -2 —1,l 1
a0, b I

Ola — JAZ—12—12 6Vs(a,b) Nivea
Moreover, pushing the approximation of the unitary property to the next to leading order in (I — lp) and using the
next to leading order of the {6j}-symbol shows that G = 0. This was already shown in the previous part using the
recursion relation and the symmetry properties of the {6j}-symbol and comes as a confirmation.

: (33)

(34)

III. “WARD-TAKAHASHI IDENTITIES” FOR THE SPINFOAM GRAVITON PROPAGATOR

We are interested in the two-point function in 3d quantum gravity for the simplest triangulation given by a single
tetrahedron. This provides the first order of the “spinfoam graviton propagator” in 3d quantum gravity.
Considering the isosceles tetrahedron, we focus on the correlations between the two representations a and b:

(O(@O®)y, = % D (@) (0)0(@O®)fa, bty Z=Y Wsla)ys(b){a, b}y, (35)
a,b a,b

where 1 ;(j) is the boundary state, which depends also on the bulk length scale J, and O, O are the observables whose
correlation we are studying.

Now, inserting a recursion relation with shifts on a, b or J in the sum over the representation labels )" _, leads to
equations relating the expectation values of different observables. We distinguish two cases: when the state 1 does
not change or when the length scale J also varies.



A. Relating Observables

Inserting the recursion relation on a-shifts in the definition of the correlation function, we obtain the following exact
identity:

(HE20(a—1)O0)(la — 5) (A3 = (la = 5)))w —(O(a)O(b)21a(2 cos b (413 — 12) + 1))y

oo Pg(at+l) A 1 2 112 (36)
H5w b (@) O(a+1)O(b)(la + 5)(4l5 = (la + 3)°))yp = 0.

We call this a Ward identity for our spinfoam correlation. If the observable diverges at a = 0, more precisely if
it contains terms in 1/a or in 1/(a + 1), then we need to take into account extra boundary terms in this equation
corresponding to contributions at a = 0. But all observables usually considered are regular in this sense.

Then one can choose different sets of observables O and O and one gets different identities on the correlation
functions of the spinfoam model. For example, taking O(a) = l,, we get:

(OOl = D)l = 1/2)(415 = (e = 1/2)°))y —(O(b)(2 08013413 17) +12/2))y

Pg(a)
D B(b) (1o + 1) (Lo + 1/2)(A13 — (la +1/2)2)) = 0.

We recall that the area of the triangle of edge lengths given by la, l;, I is equal to A(ly,l;) = fla\/41% — 12; then

(la £ 1)(la £1/2)(41% — (I, £ 1/2)%) = 16[4A%(l, £ 1/2,1;) £ %], therefore we can rewrite the previous

equation as an equation between correlation functions of the observable (5(1)) and different observables proportional
to the square of the triangle area A(l,,1,):

(Ll (421, = 1/2,1) — AF2500))w (20080242 (la, L) + 12/2)O(B))

Y (a) 2(1,—1/2)
a A2 @ , ~
+<¢J)S(;r)1) [AQ(Z" + 1/27 lJ) + 2((llat-11//22§1)]0(b)>w =0.

The standard choice of boundary is a phased Gaussian [5, 14, 16]:

(lj*lj)z

Vi (j) ~ Ve 2T (37)

where ¥ is a fixed angle defining a posteriori the external curvature of the boundary and « is an arbitrary real positive
number (which can be fixed by the requirement of a physical state [16]). In this case, we can compute explicitly the
ratio ¢¥(a £ 1)/¢(a) entering the Ward identity:

Yyla£1) _ iz, Fdale —2a

wJ() lJ e s

Of course, this ratios does not depend on b; therefore if the observable 6(()) = 1, then the dependence on b only
appears in one correlatlon functlon through the cosine of the dihedral angle 6,. As another example, we consider

O(a) =17 and O(b) = (21 )4 , then:

Yrla—1) lo—1/2 4%—(1,—1/2)% 4%-1? 40512 41213 1 4313
(@ ot az i )y —2{cosby iz Tz 1612 412 )
+<wJ(a+1) la +1/2 (42 —(1.+1/2)% 412 —z2> —0
vila) latl 417 4z /Y=

which can be approximated by:

(720 T Al 1/2)2)AIR)) 2675 {08 0 A2V AR) 4~y AR +ee T A((Lat1/2)) AW ~ 0

1612

2—al3
2
4LJ

where A(I%) =

B. Rescaling the Tetrahedron

We can now vary also the length scale [;. First let’s notice that in the same way we wrote an exact recursion
relation for the leading order of the isosceles {6j}-symbol shifting the representation a (equation (5)), we can write a
similar exact recursion relation for the leading order of the {6j}-symbol shifting the label J; that is

VVii1(a,b){a,b}5, — 2 cos(40.1)/Vi(a,b){a,b}5° + /Vs_1(a,b){a,b}5°, = 0 (38)
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Inserting this recursion relation on J—shifts in the definition correlation function, we obtain the following identity:

l/} a ) A J A
(v/Viz1(a,b) mma)oa)m +(/Vi1(a, b)%oi a)O(b))y
—2(cos(40.7)1/Vi(a,b)O(a)O(b))y =0 (39)

The correlation functions appearing in this equation are in fact approximations. We are allowed to use the leading
order of the {6j}-symbol because the boundary state used picks the function on large jo. And for the same reason,

we can expand +/Vyi1(a,b) and the ratios %:

a(?l]—gla+lb))[ 31y —2(
J

Vet ) O(a)O(8))y — 2{cos(46,)/V5 (@ B)Oa

) 4o Blr=latly)) [y 3Ly —20atly,
Ly

(Vi) (1 - ) e

(40)
+< VJ(av b) (1 + 4[33%_[%

2,3, — la*lb)]O(a)O(b»w ~ 0.

We hope that such equations will turn out useful to study the asymptotic properties of the correlations function as
the length scale J grows large, but we leave this for future investigation.

Conclusion

We have used the recursion relation satisfied by the {6j}-symbol to study the structure of its asymptotical expansion
for large spins. The exact recursion relation allowed us to compute explicit the asymptotical approximation of the
isosceles {6j}-symbol up to fourth order. This confirms previous results [11, 12] and introduces techniques allowing
further systematic analytical calculations of the corrections to the behavior of the{6j}-symbol at large spins. A clear
and simple geometrical interpretation of the polynomials appearing in this expansion is still missing. The differential
equations that we provide for these coefficients are nevertheless a first step in this direction.

This work is useful in particular for the study of large scale correlations in the spinfoam model for 3d quantum
gravity. In this context, the recursion relation allowed us to write equations satisfied by the spinfoam correlations
similar to the Ward identities of standard quantum field theory. We hope that such recursion techniques can be
further applied to the study of 4d spinfoam amplitudes and the resulting spinfoam graviton propagator [17].
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