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We study the asymptotic expansion of the {6j}-symbol using the Schulten-Gordon recursion relations. We focus on the particular case of the isosceles tetrahedron and we provide explicit formulas for up to the third order corrections beyond the leading order. Moreover, in the framework of spinfoam models for 3d quantum gravity, we show how these recursion relations can be used to derive Ward-Takahashi-like identities between the expectation values of graviton-like spinfoam correlations.

I.

different correlation functions of different orders. These equations play a key role in the study of the renormalization of quantum field theories, so we expect these new recursion relations to be equally relevant to the study of the renormalization/coarse-graining of spinfoam models.

II. THE RECURSION RELATION FOR THE ISOSCELES TETRAHEDRON

A. Exact and Approximate Recursion

We will focus on the isosceles tetrahedron, which is relevant for the computation of geometrical correlations in the simplest non-trivial toy model in 3d quantum gravity [START_REF] Speziale | Towards the graviton from spinfoams: the 3d toy model[END_REF]. Such a tetrahedron has four of its edges of equal length with the two remaining opposite edges of arbitrary length. The corresponding isosceles {6j}-symbol is:

{a, b} J ≡ a J J b J J ,
where J ∈ N/2 and a, b are integers smaller than 2J (to satisfy the triangular inequality). The associated tetrahedron has edge lengths l j = d j /2 for j = a, b, J, where d j = 2j + 1 is the dimension of the SU(2) representation of spin j.

The volume V of the tetrahedron is given by the simple formula:

V J (a, b) = 1 12 l a l b 4l 2 J -(l 2 a + l 2 b ), (1) 
while the (exterior) dihedral angles θ j can also be written in term of the edge lengths (see e.g. [START_REF] Bonzom | Towards the graviton from spinfoams: the complete perturbative expansion of the 3d toy model[END_REF] for more details):

cos θ a = - 4l 2 J -l 2 a -2l 2 b 4l 2 J -l 2 a , cos θ b = - 4l 2 J -l 2 b -2l 2 a 4l 2 J -l 2 b , cos θ J = -l a l b 4l 2 J -l 2 a 4l 2 J -l 2 b . (2) 
The general recursion relation for the {6j}-symbol given by Schulten and Gordon in [START_REF] Schulten | Exact Recursive Evaluation of 3J and 6J Coefficients for Quantum Mechanical Coupling of Angular Momenta[END_REF] simplifies in this specific isosceles case:

(l a + 1 2 ) 4l 2 J -(l a + 1 2 ) 2 {a + 1, b} J -2l a (4l 2 J -l 2 a ) cos(θ a ) + 1 4 {a, b} J + (l a - 1 2 ) 4l 2 J -(l a - 1 2 
) 2 {a -1, b} J = 0

(3) In the asymptotic regime, we know (analytically and numerically) the behavior of the {6j}-symbol at the leading order:

{a, b} J ∼ {a, b} LO J ≡ 1 √ 12πV cos l a θ a + l b θ b + 4l J θ J + π 4 , (4) 
which is actually valid under the assumption that the tetrahedron with edge lengths l a , l b , l J exists (else the generic asymptotics can be expressed in term of Airy functions). The oscillatory phase is given by the Regge action S R = l a θ a + l b θ b + 4l J θ J . Using the obvious trigonometric identity cos((n + 1)φ) + cos((n -1)φ) = 2 cos φ cos nφ, we can write an exact recursion relation for the leading order of the {6j}-symbol:

V J (a + 1, b) {a + 1, b} LO J -2 cos θ a V J (a, b) {a, b} LO J + V J (a -1, b) {a -1, b} LO J = 0. (5) 
A similar recursion relation holds for b-shifts and also J-shifts.

The most natural idea is to compare this recursion relation for the leading order to the previous equation on the exact {6j}-symbol to see how to use them to extract the next-to-leading correction to the asymptotic behavior. We can first find the link between the leading order of equation [START_REF] Freidel | A New Spin Foam Model for 4d Gravity[END_REF] and the leading order of equation [START_REF] Rovelli | Graviton propagator from background-independent quantum gravity[END_REF]. Both equations can be written in the same form at the leading order:

{a + 1, b} J -2 cos θ a {a, b} J + {a -1, b} J ≈ 0, (6) 
which turns into a simple second order differential equation in the large spin limit. Then the next-to-leading order of the exact recursion relation given in equation ( 3) is easily computed,

V J (a, b) 1 + 1 2la 1 - 2l 2 a 4l 2 J -l 2 a {a + 1, b} J -2 cos θ a V J (a, b){a, b} J + V J (a, b) 1 -1 2la (1 - 2l 2 a 4l 2 J -l 2 a ) {a -1, b} J ≈ 0, (7) 
and will have to be compared to a recursion relation for the next-to-leading order approximation of the {6j}-symbol.

Here, we have kept the extra-factor V J (a, b) to underline the similarity of this relation with the leading order recursion relation [START_REF] Rovelli | Graviton propagator from background-independent quantum gravity[END_REF].

B. Pushing to the Next-to-Leading Order

We are interested in the asymptotic expansion of the {6j}-symbol. It was shown in previous works [START_REF] Bonzom | Towards the graviton from spinfoams: the complete perturbative expansion of the 3d toy model[END_REF][START_REF] Dupuis | Pushing Further the Asymptotics of the 6j-symbol[END_REF] that l j seems to be the right parameter to consider when studying the semi-classical behavior of the {6j}-symbol. So from now we write:

a J J b J J ≡ {l a , l b } lJ .
Notice that shifting a by ±1 is equivalent to shifting the edge length l a = a + 1/2 by ±1. We rescale now l j by λl j and we replace the exact {6j}-symbol by a series in 1/λ alternating cosines and sines of the Regge action (shifted by π/4) in the previous equation [START_REF] Freidel | A New Spin Foam Model for 4d Gravity[END_REF]. The fact that there is no mixing up of cosines and sines at any order was show in [START_REF] Bonzom | Towards the graviton from spinfoams: the complete perturbative expansion of the 3d toy model[END_REF]. More precisely, we write the {6j}-symbol asymptotic expansion in the form:

{λl a , λl b } λlJ = 1 λ 3/2 D(l a , l b , l J ) cos(λS R + π/4) (8) 
+ 4 n=1 F (n) (l a , l b , l J ) λ n sin(λS R + π/4) + G (n) (l a , l b , l J ) λ cos(λS R + π/4)) + O(λ -5 ) ,
where the pre-factor denominator D(l a , l b , l J ) is given by the square-root of the tetrahedron volume as in equation ( 4).

To study the asymptotics, it is convenient to factorize the whole equation ( 3) by λ 3/2 . We then write {l a ± 1/λ, l b } lJ for {λl a ± 1, λl b } λlJ . We also factorize the coefficients of the recursion relation. We start by defining

C(l j ) = l a (4l 2 J -l 2 a ) = 16(A(la,lJ ,lJ )) 2 la where A(a, b, c) = 1 4 (a + b + c)(a + b -c)(a -b + c)(-a + b + c
) is the area of the triangle of edge lengths given by a, b and c. The coefficient which appears in front of

{l a ± 1/λ, l b } lJ becomes C(l a ± 1/(2λ), l b , l J ) = (l a ± 1/(2λ))(4l 2 J -(l a ± 1/(2λ)))
, where we underline that the shift is ±1/(2λ) and not simply ±1/λ. We expand C(l a ± 1/(2λ), l b , l J ) in term of derivatives:

C(l a ± 1/(2λ), l b , l J ) = n 1 n! 1 (2λ) n ∂ n C ∂l n a with              C = l a (4l 2 J -l 2 a ) ∂C ∂la = 4l 2 J -3l 2 a ∂ 2 C ∂l 2 a = -6l 2 a ∂ 3 C ∂l 3 a = -6 ∂ n C ∂l n a = 0 for n ≥ 4 (9)
Then to express {l a ± 1/λ, l b } lJ we need to expand D(l a ± 1/λ), F (i) (l a ± 1/λ), and

G (i) (l a ± 1/λ): (i ∈ {1 • • • 4})        D(l a ± 1/λ) = D ± 1 λ ∂D ∂la + 1 2λ 2 ∂ 2 D ∂l 2 a ± 1 3!λ 3 ∂ 3 D ∂l 3 a + 1 4!λ 4 ∂ 4 D ∂l 4 a F (i) (l a ± 1/λ) = 4-i k=0 (-1) k 1 k!λ k ∂ k F (i) ∂l k a G (i) (l a ± 1/λ) = 4-i k=0 (-1) k 1 k!λ k ∂ k G (i) ∂l k a (10) 
F (1) (l j ) was computed in a previous paper [START_REF] Bonzom | Towards the graviton from spinfoams: the complete perturbative expansion of the 3d toy model[END_REF][START_REF] Dupuis | Pushing Further the Asymptotics of the 6j-symbol[END_REF]. It was also suggested that the asymptotic expansion of the {6j}-symbol in terms of the length scale λ is given by a series alternating in cosines and sines at each order, so we expect that G (i) (l j ) = 0 for ∀i ≥ 1. Finally, we also need to expand the Regge action λS R (l a ± 1 λ ), remembering that

θ j = θ j (l a ) : λS R (l a ± 1 λ ) = λS R + 4 k=0 (-1) k+1 (k + 1)!λ k ∂ k θ a ∂l k a (11) with                              ∂θa ∂la = -2lal b (4l 2 J -l 2 a ) √ 4l 2 J -l 2 a -l 2 b ∂ 2 θa ∂l 2 a = - 2l b (4l 2 J l 2 a -2l 4 a -l 2 a l 2 b +16l 4 J -4l 2 b l 2 J ) (4l 2 J -l 2 a ) 2 [4l 2 J -l 2 a -l 2 b ] 3/2 ∂ 3 θa ∂l 3 a = - 2lal b (24l 4 b l 2 J +40l 2 J l 2 a l 2 b -12l 2 J l 4 a +5l 4 a l 2 b -192l 4 J l 2 a -240l 4 J l 2 b +2l 2 a l 4 b +6l 6 a +576l 6 J ) (4l 2 J -l 2 a ) 3 [4l 2 J -l 2 a -l 2 b ] 5/2 ∂ 4 θa ∂l 4 a = 1 (4l 2 J -la 2 ) 4 (4l 2 J -l 2 a -l 2 b ) 7/2 (6(8l 10 a + 8l 8 a l 2 b + 152l 2 J l 6 a l 2 b -720l 4 J l 6 a + 7l 6 a l 4 b + 3520l 6 J l 4 a -1472l 4 J l 4 a l 2 b + 2l 4 a l 6 b +140l 4 a l 4 b l 2 J -560l 2 a l 4 b l 4 J -3840l 8 J l 2 a + 2432l 6 J l 2 a l 2 b + 48l 2 a l 2 J l 6 b + 2048l 8 J l 2 b -448l 6 J l 4 b -3072l 10 J + 32l 6 b l 4 J )l b )
We can now write an asymptotic recursion equation from equations (3), ( 9), ( 8), [START_REF] Roberts | Classical 6j-symbols and the tetrahedron[END_REF] and [START_REF] Bonzom | Towards the graviton from spinfoams: the complete perturbative expansion of the 3d toy model[END_REF] in terms of λ neglecting terms of order O(λ -4 ) and smaller, assuming that λ is large. This leads to a couple of equations at each order, one for the cos-oscillations and one for the term in sin:

• The first equation is given by the terms of order λ 0 and it is trivially satisfied (0 = 0) since we have already written the leading order of the {6j}-symbol proportional to cos(S R + π 4 ) (the Ponzano-Regge asymptotic formulae). • The second equation is given by the terms of order λ -1 :

1 2C ∂C ∂l a - 1 D ∂D ∂l a sin(θ a ) + 1 2 ∂θ a ∂l a cos(θ a ) = 0 (12) 
which can be rewritten as a differential equation for D:

∂ ln D ∂l a = 1 2 ∂θ a ∂l a cos θ a sin θ a + ∂ ln C ∂l a . (13) 
This allows to determine D: ln D = 1 2 ln(C sin(θ a )) + K, which simplifies into D = K l a l b 4l 2 J -l 2 a -l 2 b where K is a constant factor. Thus this second equation shows that D is as expected proportional to the square-root of the volume V of the isosceles tetrahedron. To determine the normalization constant K (as well as G (1) ), the orthonormality property of {6j}-coefficients can be employed: a 4l a √ l b l b {a, b} J {a, b } J = δ bb and we get the K =

√

12π. The details are given in the next section.

• The third equation is given by the terms of order λ -2 and which are proportional to cos(S R + π 4 )

∂F (1) ∂la = la

4C sin θa + 1 2C ∂C ∂la -1 D ∂D ∂la 1 2 ∂θa ∂la + 1 6 ∂ 2 θa ∂l 2 a + cos θa sin θa 1 2D ∂ 2 D ∂l 2 a -1 8C ∂ 2 C ∂l 2 a + 1 D ∂D ∂la 1 2C ∂C ∂la -1 D ∂D ∂la + ( 1 2 ∂θa ∂la ) 2 (14) 
where we used the fact that

1 2C ∂C ∂la -1 D ∂D ∂la sin(θ a ) + 1 2 ∂θa ∂la cos(θ a ) = 0 (eqn. ( 13 
)
) to remove all the terms proportional to F (1) itself. The first term of the right-hand side of the equation ( 14) comes from the variation of the coefficient in front of {a, b} J in the recursion equation ( 3). The terms with a derivative of C with respect to l a come from the coefficients in front of {a ± 1, b} J and {a, b} J . The variation of C with respect to l a is given by the variation of the areas of the triangles of the tetrahedron. From eqn.( 13), we relate it to the variations of D (the volume) and to the variations of the dihedral angle θ a : 1

C ∂C ∂la = 2 D ∂D ∂la -cos θa sin θa ∂θa ∂la .
The terms with a derivative of D with respect to l a come from the variation of the leading order of the asymptotic of the {6j}symbol and the terms with a derivative of the dihedral angle θ a come from the variations of the Regge action S R . We can now compute the derivative of F (1) with respect of l a (equation ( 14)) in terms of l a , l b and l J the edge lengths of the tetrahedron:

∂F (1) ∂la = - 1 48(l 2 a (-4l 2 J +l 2 a ) 2 (4l 2 J -l 2 a -l 2 b ) (5/2) l b ) (-32l 6 b l 2 J l 2 a + 10l 6 b l 4 a + 96l 6 b l 4 J -960l 6 J l 4 b + 15l 6 a l 4 b + 400l 4 J l 4 b l 2 a -100l 2 J l 4 b l 4 a -168l 2 J l 6 a l 2 b -1664l 6 J l 2 b l 2 a + 20l 8 a l 2 b + 576l 4 J l 2 b l 4 a + 3072l 8 J l 2 b -3072l 10 J + 48l 4 J l 6 a + 2304l 8 J l 2 a -576l 6 J l 4 a ) (15 
) and then easily integrate this equation over l a :

F (1) (l j ) = - 768l 6 J (l 2 J -l 2 a -l 2 b )+736l 4 J l 2 a l 2 b +240l 4 J (l 4 a +l 4 b )-176l 2 J l 2 a l 2 b (l 2 a +l 2 b )-24l 2 J (l 6 a +l 6 b )+10l 2 a l 2 b (l 4 a +l 4 b )+25l 4 a l 4 b 24(4l 2 J -l 2 b )(2l 2 J -l 2 a )(4l 2 J -l 2 b -l 2 a ) 3/2 lal b + Z(l b , l J ) (16)
The integration constant Z(l b , l J ) can be determined using the symmetry properties of the {6j}-symbol: symmetry of the isosceles {6j}-symbol with respect to l a and l b , coupling of l a , l b and l J by this isosceles {6j}-symbol and homogeneity of F (1) ([F (1) ] = l -1 j ) imply that Z(l b , l J ) = 0. Then this gives us the same result as in the previous paper [START_REF] Dupuis | Pushing Further the Asymptotics of the 6j-symbol[END_REF]. Moreover, using the definitions of the tetrahedron volume (1) and of the dihedral angles (2), we can express F (1) in terms of some geometrical characteristics of the tetrahedron:

F (1) = - cos θ J 3(12V ) 8 -(12V ) 4 l 4 a l 4 b 3(l 2 a -l b ) 2 + 2l 2 a l 2 b -l 12 a l 12 b + 6l 12 a l 12 b 48(12V ) 3 l 8 a l 8 b (17) 
• The fourth equation is given by the terms of order λ -2 and which are proportional to sin(S R + π 4 ). It is the same equation as the previous one for G (1) but the right-hand side is now equal to zero (homogenous equation). That is we simply get that ∂G (1) ∂l a = 0 (18) so G (1) = Z(l b , l J ) is just a constant of integration. Once again the symmetry properties of the {6j}-symbol implies that G (1) = 0.

• The next equation is given by the terms of order λ -3 and which are proportional to sin(S R + π 4 ). We get an equation for the first derivative of F (2) with respect to l a ∂F (2) (lj ) ∂la

= cos θa 2 sin θa ∂ 2 F (1) ∂l 2 a - 1 sin 2 θa ∂θa ∂la + F (1) ∂F (1) ∂la + cos θa sin θa -1 4! ∂ 3 θa ∂l 3 a + 1 D ∂D ∂la 1 2C ∂C ∂la + 1 2D ∂ 2 D ∂l 2 a -1 D ∂D ∂la 2 -1 8C ∂ 2 C ∂l 2 a + 1 3! 1 2 ∂θa ∂la 2 1 2 ∂θa ∂la + 1 D ∂D ∂la -1 2C ∂C ∂la 1 3! ∂ 2 θa ∂l 2 a + 1 2C ∂C ∂la 1 2D ∂ 2 D ∂l 2 a + 1 8C ∂ 2 C ∂l 2 a 1 D ∂D ∂la + 1 2C ∂C ∂la -1 D ∂D ∂la 1 2 1 2 ∂θa ∂la 2 + 1 3! ∂ 2 θa ∂l 2 a 1 2 ∂θa ∂la + 1 D ∂D ∂la 3 -1 D ∂D ∂la 1 D ∂ 2 D ∂l 2 a + 1 3!D ∂ 3 D ∂l 3 a -1 8•3!C ∂ 3 C ∂l 3 a -1 2C ∂C ∂la 1 D ∂D ∂la 2 (19)
We recall that D is proportional to the square root of the tetrahedron volume, C can be expressed in terms of the volume V and the sinus of the dihedral angle θ a (see equation ( 13)). To integrate this equation, we first express it explicitly 1 in terms of l a , l b and l J , and then deduce F (2) :

F (2) (l j ) = -1 4608((4l 2 J -l 2 a ) 2 (4l 2 J -l 2 b ) 2 (4l 2 J -l 2 a -l 2 b ) 3 l 2 a l 2 b ) (-2359296l 2 a l 10 J l 4 b -224512l 6 a l 6 J l 4 b + 100l 12 a l 4 b + 576l 4 J l 12 b + 112896l 8 J l 8 b +2727936l 4 a l 12 J + 5308416l 16 J + 212l 10 b l 6 a -5898240l 2 a l 14 J -11520l 10 a l 6 J + 941056l 4 a l 8 J l 4 b + 31584l 8 a l 4 J l 4 b -2416l 4 a l 10 b l 2 J -79872l 8 a l 6 J l 2 b -480l 12 b l 2 J l 2 a -7040l 8 a l 6 b l 2 J -2416l 10 a l 2 J l 4 b + 100l 4 a l 12 b + 212l 10 a l 6 b +2727936l 12 J l 4 b -700416l 10 J l 6 b -5898240l 14 J l 2 b -11520l 6 J l 10 b -700416l 6 a l 10 J + 609l 8 a l 8 b + 112896l 8 a l 8 J +576l 12 a l 4 J -2359296l 4 a l 10 J l 2 b + 528384l 6 a l 8 J l 2 b + 5849088l 2 a l 12 J l 2 b -79872l 2 a l 8 b l 6 J + 31584l 4 a l 8 b l 4 J -7040l 6 a l 8 b l 2 J -224512l 4 a l 6 b l 6 J + 58816l 6 a l 6 b l 4 J + 8640l 10 a l 4 J l 2 b + 8640l 10 b l 4 J l 2 a -480l 12 a l 2 J l 2 b + 528384l 2 a l 8 J l 6 b ) (20 
) which is the only result with the required symmetries 2 . The geometrical meaning of this function does not seem obvious. Nevertheless, we can give a more compact expression for the denominator of F (2) :

(4l 2 J -l 2 a ) 2 (4l 2 J -l 2 b ) 2 (4l 2 J -l 2 a -l 2 b ) 3 l 2 a l 2 b = (12V ) 6 cos 4 θ J . ( 21 
)
1 ∂F (2) ∂la (l j ) = -

1 2304((4l 2 J -l 2 b )l 3 a (4l 2 J -l 2 a ) 3 (4l 2 J -l 2 a +l 2 b ) 4 l 2 b ) (-1604l 8 a l 8 b l 2 J + 1250816l 4 a l 8 J l 6 b -207104l 6 a l 6 b l 6 J + 31904l 10 a l 4 J l 4 b -169344l 4 a l 8 b l 6 J - 3920l 6 a l 10 b l 2 J + 24992l 6 a l 8 b l 4 J -46848l 10 a l 6 J l 2 b -7129088l 4 a l 10 J l 4 b + 1770496l 6 a l 8 J l 4 b + 16832l 4 a l 10 b l 4 J + 34368l 8 a l 4 J l 6 b -6816l 12 a l 4 J l 2 b -278912l 8 a l 6 J l 4 b + 14524416l 2 a l 12 J l 4 b + 486144l 2 a l 8 J l 8 b -560l 12 b l 4 a l 2 J -43776l 2 a l 10 b l 6 J -3317760la 2 lJ 10 l 6 b + 22241280l 4 a l 12 J l 2 b + 794l 12 a l 6 b -6955008l 6 a l 10 J l 2 b + 2801664l 12 J l 6 b + 672l 14 a l 2 b l 2 J -26542080l 4 a l 14 J -451584l 10 J l 8 b + 46080l 8 J l 10 b -2304l 12 b l 6 J -21233664l 18 J + 37158912l 2 a l 16 J + 1072128l 8 a l 8 J l 2 b - 1528la 12 l 4 b l 2 J -10911744l 14 J l 4 b -35979264l 2 a l 14 J l 2 b + 1728l 12 b l 4 J l 2 a + 9953280l 6 a l 12 J + 228096l 10 a l 8 J -10368l 12 a l 6 J -2073600l 8 a l 1 J 0 + 27l 10 a l 8 b + 23592960l 16 J l 2 b + 400l 8 a l 10 b -88l 14 a l 4 b -8144l 10 a l 6 b l 2 J + 100l 12 b l 6 a )
2 If the result is not symmetric after integration, a non-null integration constant has to be added and its determination can be done using the symmetry properties of the {6j}-symbol. Indeed, we have ∂F (2) ∂la = H(la, l b , l J ) so by integration over la, F (2) (l j ) = h(la, l b , l J )+Z(l b , l J ). Moreover by symmetry, we must have ∂F (2) ∂l b = H(la = l b , l b = la, l J ) and then integrating over l b , we obtain a second expression for F (2) : F (2) (l j ) = h(la = l b , l b = la, l J ) + Z(la, l J ) which implies that the constant of integration satisfies Z(l b , l J ) -Z(la, l J ) = h(la = l b , l b = la, l J ) -h(la, l b , l J ). This equation allows to determine Z and to get (20).

• The next equation comes from the terms of order λ -3 which are proportional to cos(S R + π 4 ):

∂G (2) ∂l a (l j ) = 0 (22)
which implies once again that G (2) = Z(l b , l J ) is a constant of integration. Then the symmetry properties of the {6j}-symbol implies G (2) (l j ) = 0.

We can now give the asymptotic expansion of an isosceles {6j}-symbol until the next to next to leading order (NNLO):

{l a , l b } NNLO lJ = 1 12πV lJ (l a , l a ) cos(S R + π 4 ) + F (1) (l j ) sin(S R + π 4 ) + F (2) (l j ) cos(S R + π 4 ) ( 23 
)
where the expression for F (1) and F (2) are given by equations ( 17) and (20). This result seems to confirm that the expansion of the {6j}-symbol is a series alternating in cosines and sines of the Regge action (shift by π 4 ). In the case of an equilateral tetrahedron, all the edges have the same length, that is l a = l b = l J = l and V = √ 2 12 l 3 . Then equation (23) reduces to:

{6j} NNLO equi = 1 πl 3 √ 2 cos(S R + π 4 ) - 31 72 2 1/4 2 5/2 √ πl 5 sin(S R + π 4 ) - 45673 20736 1 2 1/4 2 4 √ πl 7 cos(S R + π 4 ) ( 24 
)
where the Regge action is given by S R = 6lθ and θ = θ a = θ b = θ J = arccos(-1/3). This result is confirmed by numerical simulations. The plot figure 1 represents numerical simulations of the equilateral {6j}-symbol minus its approximation (24). Moreover, to enhance the comparison, we have multiplied by l 7/2 to see how the coefficient of the NNLO is approached and we have divided by sin(S R + π 4 ) (oscillations of the next to next to next to leading order) to suppress the oscillations. This gives an error that decreases as expected as l -1 .

FIG. 1: Difference between the equilateral {6j}-symbol and the analytical result (24). The x-axis stands for l = d/2 and d goes from 100 to 5000. The error decreases as expected as l -1 confirming our asymptotic formula.

• The next two equations come from the terms of order λ -4 . The equation for G (3) is the same as the one for G (1) and G (2) , that is: ∂G (3) ∂la = 0. Using the same arguments of symmetry we deduce that G (3) = 0. This confirms our expectation of a series alternating in cosines and sines in the asymptotic of the {6j}-symbol:

{λl a , λl b } λlJ = 1 λ 3/2 D(l a , l b , l J ) cos(λS R + π 4 ) + ∞ k=1 F (k) (l a , l b , l J ) λ k cos(λS R + π 4 + (k) π 2 ) , (25) 
where (k) = -1 when k is odd and (k) = 0 when k is even. We already have an expression for F (1) and F (2) . The equation for F (3) is the second equation of order λ -4 and gives its first derivative with respect to l a in terms of l a , l b and l J . It is straightforward (though lengthy) to integrate it over l a and get the expression 3 of F (3) in terms of l a , l b and l J . In the equilateral case (l a = l b = l J = l), the formula reduces to:

F (3) = 28833535 17915904 1 2 9/2 2 1/4 l 3 (26) 
Therefore, we have the expression of the asymptotic expansion of the equilateral {6j}-symbol up to the nextto-next-to-next to leading order (NNNLO):

{6j} NNNLO equi = 1 2 1/4 √ πl 3 cos(S R + π 4 ) - 31 72 2 5/2 l sin(S R + π 4 ) - 45673 20736 2 4 l 2 cos(S R + π 4
) + 28833535 17915904 2 9/2 l 3 sin(S R + π 4

) .

We check this result numerically by computing it using Mathematica for two values of spins j = 50 and j = 100. More precisely, we computed the renormalized error

({6j}equi-{6j} NNNLO equi )l 9/2 cos(SR+ π 4 )
and we got the expected 1/λ-behavior. However for l > 100, Mathematica is not accurate enough and the numerical errors are too important to get exploitable results. In the general isosceles case, the expression of F (3) is quite complicated and its geometrical interpretation remains to be understood. Nevertheless, we can again give as before a more compact formula for the denominator of F (3) :

denominator F (3) = 3317760(4l 2 J -l 2 a -l 2 b ) 9/2 l 3 a l 3 b (4l 2 j -l 2 a ) 3 (4l 2 J -l 2 b ) 3 = 30(48) 3 (12V J (a, b)) 9 cos 6 θ J ( 28 
)
From this equation, the equation giving the denominator of F (2) and remembering that the denominator of F (1) can be written in a similar form: denominator F (1) = 48 (12V ) 3 cos 2 θJ , we can conjecture that:

denominator

F (k) ∝ (12V J (a, b)) 3k (cos θ J ) 2k (29) 
where F (k) are the terms appearing in the asymptotic expansion of the {6j}-symbol (25). And consequently, the numerator of F (k) is a polynomial in l j of degree 8k.

So, using the recursion relation for the isosceles {6j}-symbol as well as its symmetry properties, we have computed explicitly the asymptotic expansion of the isosceles {6j}-symbol to the fourth order up to an overall factor K (this integration constant K comes from the integration of the first equation ( 13)). The well-known value K = √ 12π which already appears in the Ponzano-Regge formula can be obtained easily using the unitary property of the {6j}-symbol, as we show in the next section. The equilateral case has been checked against numerical calculations. This method using the recursion relation is fairly easy to implement. It requires integrating a rational fraction at each level and involves neither a Riemann sum nor a saddle point analysis. Moreover, since the coefficient C of the recursion relation ( 3) is a polynomial of degree 3; ∂ n C ∂l n a = 0 for n ≥ 4. Therefore, we expect to get a stable relation for the first derivative of F (k) and G (k) with respect to l a for k ≥ 3. On the one hand, this allows one to prove that G (k) always vanishes; and on the other hand, it should provide a systematic method to extract F (k) for arbitrary order k.

We conclude this section with a general remark on the asymptotic expansion of the {6j}-symbol. In the context of 3d quantum gravity, it is often argued that the leading order of the {6j}-symbol is a cos(S) instead of a complex phase exp(+iS), thus reflecting that the path integral is invariant under a change of (local) orientation (see e.g. [START_REF] Freidel | Discrete Space-Time Volume for 3-Dimensional BF Theory and Quantum Gravity[END_REF]). This obviously neglects the +π/4 shifts, which can be considered as a quantum effect (like an ordering ambiguity). However, in the light of the present expansion, it is clear that we have terms of the type sin(S) beyond the leading order and such terms are not invariant under the change S → -S. This means that the role of this symmetry in the spinfoam path integral should be more subtle than originally thought.

3 F (3) (l j ) = - 1 3317760(l 3 a (la-2l J )(la+2l J )(4l 2 J -l 2 b ) 3 (4l 2 J -l 2 a -l 2 b ) ( 9/2)l 3 b (4l 2 J -l 2 a ) 2 ) (-6965741568l 6 a l 10 J l 8 b + 1069728l 6 a l 16 b l 2 J + 28270080l 16 a l 6 J l 2 b - 743040l 4 J l 2 a l 18 b +1750503260160l 20 J l 2 a l 2 b +379404800l 12 a l 6 J l 6 b +788705280l 10 a l 10 J l 4 b -33547200l 6 a l 14 b l 4 J -98578608l 12 a l 8 b l 4 J -81032970240l 8 a l 14 J l 2 b + 379404800l 6 a l 12 b l 6 J -389214720l 8 J l 2 a l 14 b -323813376000l 6 a l 18 J -156036l 8 a l 16 b -22176l 2 J l 4 a l 18 b -3824640l 16 a l 4 J l 4 b -28408l 18 a l 6 b -31104000l 16 a l 8 J - 1262270545920l 18 J l 2 a l 4 b -1262270545920l 18 J l 4 a l 2 b + 461814497280l 16 J l 2 a l 6 b + 1069728l 16 a l 2 J l 6 b + 74144841728l 6 a l 12 J l 6 b + 824520278016l 16 J l 4 a l 4 b + 461814497280l 6 a l 16 J l 2 b + 788705280l 10 J l 4 a l 10 b -267541217280l 6 a l 14 J l 4 b + 115174656l 6 J l 4 a l 14 b -999532800l 8 J l 4 a l 12 b + 68611276800l 8 a l 16 J - 3824640l 4 J l 4 a l 16 b -1242078720l 10 a l 8 J l 6 b +28270080l 6 J l 2 a l 16 b +38483472384l 12 J l 4 a l 8 b +2157096960l 12 a l 10 J l 2 b -1242078720l 6 a l 10 b l 8 J +509607936000l 24 J - 33547200l 14 a l 6 b l 4 J + 1222041600l 12 J l 2 a l 10 b + 11119152l 12 a l 10 b l 2 J -999532800l 12 a l 8 J l 4 b + 783522201600l 20 J l 4 a + 2157096960l 10 J l 2 a l 12 b -28408l 6 a l 18 b - 389214720l 14 a l 8 J l 2 b -783601920l 8 a l 8 J l 8 b -98578608l 8 a l 4 J l 12 b -6965741568l 8 a l 10 J l 6 b -323813376000l 18 J l 6 b +1222041600l 10 a l 12 J l 2 b +115174656l 14 a l 6 J l 4 b - 743040l 18 a l 4 J l 2 b -22176l 18 a l 2 J l 4 b -81032970240l 14 J l 2 a l 8 b + 7201368l 14 a l 8 b l 2 J -114011616l 10 a l 10 b l 4 J -985242009600l 22 J l 2 b + 568565760l 10 a l 8 b l 6 J - 1401753600l 12 a l 12 J -267541217280l 14 J l 4 a l 6 b +568565760l 8 a l 6 J l 10 b +11119152l 10 a l 12 b l 2 J +783522201600l 2 J 0l 4 b -342523l 12 a l 12 b +38483472384l 8 a l 12 J l 4 b - 3981312000l 10 a l 14 J -156036l 16 a l 8 b -511602l 10 a l 14 b +344217600l 14 b l 10 J -1401753600l 12 b l 12 J +1036800l 18 b l 6 J +344217600l 14 a l 10 J +68611276800l 16 J l 8 b - 3981312000l 14 J l 10 b -511602l 14 a l 10 b -31104000l 16 b l 8 J -985242009600l 22 J l 2 a + 1036800l 18 a l 6 J + 7201368l 8 a l 14 b l 2 J )

C. Consequences of the unitary property of the {6j}-symbols

The orthogonality property of the {6j}-symbols states that:

la 4l a l b l b {l a , l b } lJ {l a , l b } lJ = δ l b l b (30) 
This relation corresponds to the unitarity of the evolution in the Ponzano-Regge 3d quantum gravity. We want to use this property to determine the constant of the leading order of the {6j}-symbol. cos(S R + π 4 ); but K is still undetermined. For large spin and for l b ≈ l b , we can approximate the unitary property at the leading order in (l b -l b ) by:

∞ 0 dl a 4l a l b K 2 V J (a, b) cos(S R (l a , l b ) + π 4 ) cos(S R (l a , l b ) + π 4 ) ≈ δ(l b -l b ). ( 31 
)
The product of the cosines can be simplified at leading order:

cos(S R (l a , l b ) + π 4 ) cos(S R (l a , l b ) + π 4 ) = 1 2 cos(S R (l a , l b ) + S R (l a , l b ) + π 2 ) + cos(S R (l a , l b ) -S R (l a , l b )) ∼ 1 2 cos(2S R (l a , l b ) + π 2 ) + cos((l b -l b )θ b ) ,
where the dihedral angle θ b = arccos -

4l 2 J -l 2 b -2l 2 a 4l 2 J -l 2 b
is considered as a function of the length l a . We do a saddle point approximation. The first term oscillates and its integral is exponentially suppressed. And we are left with the second term, which should satisfy the following equation:

∞ -∞ dl a l a l b K 2 V J (a, b) cos((l b -l b )θ b ) ≈ δ(l b -l b ) ( 3 2 ) 
We recall that:

1 2π ∞ -∞ dl a cos(l a (l b -l b )) = δ(l b -l b )
therefore we can conclude that

l a l b K 2 V = 1 2π ∂θ b ∂l a . ( 33 
)
θ b and l b are conjugate variables and K comes from the Jacobian of the change of variables between l a and θ b .

Computing the derivative of the dihedral angle gives:

∂θ b ∂l a = -2 4l 2 J -l 2 a -l 2 b = -l a l b 6V J (a, b) ⇒ K = 1 √ 12π . (34) 
Moreover, pushing the approximation of the unitary property to the next to leading order in (l b -l b ) and using the next to leading order of the {6j}-symbol shows that G (1) = 0. This was already shown in the previous part using the recursion relation and the symmetry properties of the {6j}-symbol and comes as a confirmation.

III. "WARD-TAKAHASHI IDENTITIES" FOR THE SPINFOAM GRAVITON PROPAGATOR

We are interested in the two-point function in 3d quantum gravity for the simplest triangulation given by a single tetrahedron. This provides the first order of the "spinfoam graviton propagator" in 3d quantum gravity.

Considering the isosceles tetrahedron, we focus on the correlations between the two representations a and b:

O(a) O(b) ψJ = 1 Z a,b ψ J (a)ψ J (b)O(a) O(b){a, b} J , Z ≡ a,b ψ J (a)ψ J (b){a, b} J , (35) 
where ψ J (j) is the boundary state, which depends also on the bulk length scale J, and O, O are the observables whose correlation we are studying. Now, inserting a recursion relation with shifts on a, b or J in the sum over the representation labels a,b leads to equations relating the expectation values of different observables. We distinguish two cases: when the state ψ J does not change or when the length scale J also varies.

A. Relating Observables

Inserting the recursion relation on a-shifts in the definition of the correlation function, we obtain the following exact identity:

ψJ (a-1) ψJ (a) O(a -1) O(b)(l a -1 2 )(4l 2 J -(l a -1 2 ) 2 ) ψ -O(a) O(b)2l a (2 cos θ a (4l 2 J -l 2 a ) + 1 4 ) ψ + ψJ (a+1) ψJ (a) O(a + 1) O(b)(l a + 1 2 )(4l 2 J -(l a + 1 2 ) 2 ) ψ = 0. (36) 
We call this a Ward identity for our spinfoam correlation. If the observable diverges at a = 0, more precisely if it contains terms in 1/a or in 1/(a + 1), then we need to take into account extra boundary terms in this equation corresponding to contributions at a = 0. But all observables usually considered are regular in this sense.

Then one can choose different sets of observables O and O and one gets different identities on the correlation functions of the spinfoam model. For example, taking O(a) = l a , we get:

ψJ (a-1) ψJ (a) O(b)(l a -1)(l a -1/2)(4l 2 J -(l a -1/2) 2 ) ψ -O(b)(2 cos θ a l 2 a (4l 2 J -l 2 a ) + l 2 a /2) ψ + ψJ (a+1) ψJ (a) O(b)(l a + 1)(l a + 1/2)(4l 2 J -(l a + 1/2) 2 ) ψ = 0.
We recall that the area of the triangle of edge lengths given by l a , l J , l J is equal to

A(l a , l J ) = 1 4 l a 4l 2 J -l 2 a ; then (l a ± 1)(l a ± 1/2)(4l 2 J -(l a ± 1/2) 2 ) = 16[A 2 (l a ± 1/2, l J ) ± A 2 (la±1/2,lJ ) 2(la±1/2)
], therefore we can rewrite the previous equation as an equation between correlation functions of the observable O(b) and different observables proportional to the square of the triangle area A(l a , l J ):

ψJ (a-1) ψJ (a) [A 2 (l a -1/2, l J ) -A 2 (la-1/2,lJ ) 2(la-1/2) ] O(b) ψ -(2 cos θ a A 2 (l a , l J ) + l 2 a /2) O(b) ψ + ψJ (a+1) ψJ (a) [A 2 (l a + 1/2, l J ) + A 2 (la+1/2,lJ ) 2(la+1/2) ] O(b) ψ = 0.
The standard choice of boundary is a phased Gaussian [START_REF] Rovelli | Graviton propagator from background-independent quantum gravity[END_REF][START_REF] Speziale | Towards the graviton from spinfoams: the 3d toy model[END_REF][START_REF] Livine | Physical boundary state for the quantum tetrahedron[END_REF]:

ψ J (j) ∼ e i2lj ϑ e -2α (l j -l J ) 2 l J , ( 37 
)
where ϑ is a fixed angle defining a posteriori the external curvature of the boundary and α is an arbitrary real positive number (which can be fixed by the requirement of a physical state [START_REF] Livine | Physical boundary state for the quantum tetrahedron[END_REF]). In this case, we can compute explicitly the ratio ψ(a ± 1)/ψ(a) entering the Ward identity:

ψ J (a ± 1) ψ J (a) = e ±i2ϑ e ∓4α la -l J l J e -2α l J
Of course, this ratios does not depend on b; therefore if the observable O(b) = 1, then the dependence on b only appears in one correlation function through the cosine of the dihedral angle θ a . As another example, we consider

O(a) = l -1 a and O(b) = 4l 2 J -l 2 b (2lJ ) 4 , then: ψJ (a-1) ψJ (a) la-1/2 la-1 4l 2 J -(la-1/2) 2 4l 2 J 4l 2 J -l 2 b 4l 2 J ψ -2 cos θ a 4l 2 J -l 2 a 4l 2 J 4l 2 J -l 2 b 4l 2 J + 1 16l 2 J 4l 2 J -l 2 b 4l 2 J ψ + ψJ (a+1) ψJ (la) la+1/2 la+1 (4l 2 J -(la+1/2) 2 4l 2 J 4l 2 J -l 2 b 4l 2 J ψ = 0
which can be approximated by: 

e -i2ϑ e 4α la-l J l J ∆((l a -1/2) 2 )∆(l 2 b ) ψ -2e 2α 

B. Rescaling the Tetrahedron

We can now vary also the length scale l J . First let's notice that in the same way we wrote an exact recursion relation for the leading order of the isosceles {6j}-symbol shifting the representation a (equation ( 5)), we can write a similar exact recursion relation for the leading order of the {6j}-symbol shifting the label J; that is (40)

We hope that such equations will turn out useful to study the asymptotic properties of the correlations function as the length scale J grows large, but we leave this for future investigation.

Conclusion

We have used the recursion relation satisfied by the {6j}-symbol to study the structure of its asymptotical expansion for large spins. The exact recursion relation allowed us to compute explicit the asymptotical approximation of the isosceles {6j}-symbol up to fourth order. This confirms previous results [START_REF] Bonzom | Towards the graviton from spinfoams: the complete perturbative expansion of the 3d toy model[END_REF][START_REF] Dupuis | Pushing Further the Asymptotics of the 6j-symbol[END_REF] and introduces techniques allowing further systematic analytical calculations of the corrections to the behavior of the{6j}-symbol at large spins. A clear and simple geometrical interpretation of the polynomials appearing in this expansion is still missing. The differential equations that we provide for these coefficients are nevertheless a first step in this direction.

This work is useful in particular for the study of large scale correlations in the spinfoam model for 3d quantum gravity. In this context, the recursion relation allowed us to write equations satisfied by the spinfoam correlations similar to the Ward identities of standard quantum field theory. We hope that such recursion techniques can be further applied to the study of 4d spinfoam amplitudes and the resulting spinfoam graviton propagator [START_REF] Bonzom | Recursion relations for spinfoam amplitudes[END_REF].

  From the recursion relation we have shown that {l a , l b } LO lJ = K √ VJ (a,b)

l J cos θ a ∆(l 2 a

 2 

V3l J - 2 (3l J - 2 (

 22 J+1 (a, b){a, b} LO J+1 -2 cos(4θ J ) V J (a, b){a, b} LO J + V J-1 (a, b){a, b} LO J-1 = 0 (38)Inserting this recursion relation on J-shifts in the definition correlation function, we obtain the following identity:V J+1 (a, b) ψ J (a)ψ J (b) ψ J+1 (a)ψ J+1 (b) O(a) O(b) ψ + V J-1 (a, b) ψJ (a)ψJ (b) ψJ-1(a)ψJ-1(b) O(a) O(b) ψ -2 cos(4θ J ) V J (a, b)O(a) O(b) ψ = 0 (39)The correlation functions appearing in this equation are in fact approximations. We are allowed to use the leading order of the {6j}-symbol because the boundary state used picks the function on large j 0 . And for the same reason, we can expand V J±1 (a, b) and the ratios ψJ (a)ψJ (b) ψJ±1(a)ψJ±1(b) :V J (a, b) 1 -la +l b ) 2l J (2l J -la-l b ) ] O(a) O(b) ψ -2 cos(4θ J ) V J (a, b)O(a) O(b) ψ + V J (a, b) la +l b ) 2l J (2l J -la -l b ) ] O(a) O(b) ψ ≈ 0.
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