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Emergent Geometry and Gravity from Matrix Models: an Introduction

A introductory review to emergent noncommutative gravity within Yang-Mills Matrix models is presented. Space-time is described as a noncommutative brane solution of the matrix model, i.e. as submanifold of R D . Fields and matter on the brane arise as fluctuations of the bosonic resp. fermionic matrices around such a background, and couple to an effective metric interpreted in terms of gravity. Suitable tools are provided for the description of the effective geometry in the semi-classical limit. The relation to noncommutative gauge theory and the role of UV/IR mixing is explained. Several types of geometries are identified, in particular "harmonic" and "Einstein" type of solutions. The physics of the harmonic branch is discussed in some detail, emphasizing the non-standard role of vacuum energy. This may provide new approach to some of the big puzzles in this context. The IKKT model with D = 10 and close relatives are singled out as promising candidates for a quantum theory of fundamental interactions including gravity.

Introduction

This article is intended as a pedagogical and mostly self-contained introduction to emergent geometry and gravity within Yang-Mills matrix models. The aim of this line of research is to describe the physics and the geometry of general noncommutative (NC) spaces in these matrix-models, and to assess their viability as a quantum theory of space-time including 1 matter, gauge fields and gravity. We hope that the present review provides a useful basis for further research in this direction.

Our starting point is the identification of a gravity sector within noncommutative gauge theory. NC gauge theory has been considered previously as a deformation of Yang-Mills gauge theory, living on NC space. From that point of view, it is well-known that the U (1) sector of U (n) gauge theory on the Moyal-Weyl quantum plane R n θ (which is the simplest example of a NC space) plays a special role: it does not decouple from the remaining SU(n) degrees of freedom, and its quantum effective action is drastically different from its commutative counterpart due to UV/IR mixing. These and other "strange" features have been viewed as obstacles for the physical application of NC gauge theory, and a relation to gravity has been widely conjectured. This conjecture is corroborated further through string-theoretical matrix models such as the IKKT model [START_REF] Ishibashi | A large-N reduced model as superstring[END_REF], the description of gravitons in the BFSS matrix model and related models [START_REF] Banks | M theory as a matrix model: A conjecture[END_REF][START_REF] Kabat | Linearized supergravity from matrix theory[END_REF][START_REF] Kitazawa | Graviton propagators in supergravity and noncommutative gauge theory[END_REF][START_REF] Ishibashi | String scale in noncommutative Yang-Mills[END_REF][START_REF] Taylor | M(atrix) theory: Matrix quantum mechanics as a fundamental theory[END_REF], and matrix-models describing curved or "fuzzy" quantum spaces [START_REF] Alekseev | Brane dynamics in background fluxes and non-commutative geometry[END_REF][START_REF] Behr | Gauge theory on fuzzy S**2 x S**2 and regularization on noncommutative R**4[END_REF][START_REF] Azuma | Perturbative versus nonperturbative dynamics of the fuzzy S**2 x S**2[END_REF][START_REF] Grosse | Finite gauge theory on fuzzy CP**2[END_REF][START_REF] Delgadillo-Blando | Matrix Models, Gauge Theory and Emergent Geometry[END_REF][START_REF] Azuma | Dynamical aspects of the fuzzy CP(2) in the large N reduced model with a cubic term[END_REF].

More recently, Rivelles observed [START_REF] Rivelles | Noncommutative field theories and gravity[END_REF] that the coupling of matter to NC U (1) gauge fields can be rewritten in terms of an effective metric, thus pointing out a direct relation between NC gauge theory with geometry and gravity. Such a relation was also advocated in [START_REF] Yang | Exact Seiberg-Witten map and induced gravity from noncommutativity[END_REF][START_REF] Yang | Instantons and emergent geometry[END_REF], in particular a relation between self-dual gauge fields and gravitational instantons. This motivated a series of papers [START_REF] Steinacker | Emergent Gravity from Noncommutative Gauge Theory[END_REF][START_REF] Steinacker | Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix Models[END_REF][START_REF] Grosse | Emergent Gravity, Matrix Models and UV/IR Mixing[END_REF][START_REF] Klammer | Fermions and Emergent Noncommutative Gravity[END_REF][START_REF] Steinacker | Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models[END_REF][START_REF] Steinacker | On the Newtonian limit of emergent NC gravity and long-distance corrections[END_REF] studying the effective geometry of general NC branes of Yang-Mills matrix models, which provide a non-perturbative formulation of NC gauge theories. The central point in these works is that NC gauge theory is in fact a theory of noncommutative spaces and their fluctuations. The geometry and the effective metric is not a fundamental degree of freedom which is put in by hand, rather it arises effectively in the low-energy or semi-classical description of the model. That is the reason for calling it "emergent NC gravity".

In order to have a well-defined framework, we will focus on matrix models of Yang-Mills type. These models have non-commutative spaces or space-time as solutions, i.e. quantized Poisson manifold. Thus space-time and geometry are dynamical rather than put in by hand, and the models should be considered as background independent. U (1) fluctuations of the matrices around NC space-time describe geometrical deformations such as gravitons, while SU(n) fluctuations describe nonabelian gauge fields. The kinetic terms of these fields arises from the commutators in the matrix model, and encodes an effective metric which is essentially universal for all fields and matter. Since this metric is dynamical, it must be interpreted in terms of gravity. This leads to an intrinsically non-commutative mechanism for gravity, combining the metric and the Poisson structure in a specific way. It provides a natural role for non-commutative or quantized space-time in physics.

Let us describe some results in more detail. Space-time is described as a 3+1-dimensional NC brane M θ ⊂ R D (possibly with compactified extra dimensions), which carries a Poisson tensor θ µν (x). All matter and gauge fields live on this space-time brane, and there are no physical fields propagating in the ambient D-dimensional space unlike in other braneworld scenarios such as [START_REF] Arkani-Hamed | The hierarchy problem and new dimensions at a millimeter[END_REF]. An effective metric G µν ∼ θ µµ θ νν g µ ν arises on this space-time brane, which governs the kinetic term of all fields more-or-less as in general relativity (GR). This metric is dynamical, however it is not a fundamental degree of freedom: it is determined by the embedding M θ ⊂ R D , and the Poisson tensor θ µν describing noncommutativity. Hence the fundamental degrees of freedom are different from GR, and can be interpreted alternatively in terms of NC gauge theory. This makes the dynamics of emergent NC gravity somewhat difficult to disentangle, and the effective metric is not governed in general by the Einstein equations.

We will identify 2 classes of solutions: in the "Einstein branch", solutions of the Einstein equations can be realized as embedded submanifolds for D ≥ 10. Since the Einstein-Hilbert action arises upon quantization and is not part of the bare matrix model, the model must be free of UV/IR mixing above a scale Λ identified as Planck scale. This singles out the IKKT model [START_REF] Ishibashi | A large-N reduced model as superstring[END_REF] or close relatives, with D = 10 and maximal supersymmetry above Λ. In contrast, the solutions in the "harmonic branch" are governed by the brane tension rather than the induced Einstein-Hilbert term. That branch is interesting because the physics of vacuum energy is different from GR, providing a new perspective notably for the cosmological constant. For example, a cosmological solution is discussed which requires far less fine-tuning than the ΛCDM concordance model, featuring a big bounce. Newtonian gravity arises in this branch through an interesting mechanism, with long-distance modifications which may be relevant for the issue of dark matter. Even though the solar system precision tests appear to be violated in the present ansatz, it seems conceivable that some of these features carry over into a modified Einstein branch.

Apart from possible deviations from GR and its intrinsic appeal, the main motivation for the matrix model approach is that notably the IKKT model promises to provide an accessible quantum theory of gravity as well as the other fundamental interactions. The reason is that it can be equivalently interpreted as N = 4 NC SYM on R 4 θ . Thus it is (expected to be) UV finite, and free of pathological UV/IR mixing [START_REF] Jack | Ultra-violet finiteness in noncommutative supersymmetric theories[END_REF][START_REF] Matusis | The IR/UV connection in the noncommutative gauge theories[END_REF]. The remaining mild UV/IR mixing below the N = 4 SUSY breaking scale is nothing but induced gravity and therefore welcome. In particular, the quantization amounts to the quantization of non-commutative Yang-Mills action, rather than the Einstein-Hilbert action. This elegantly circumvents many of the technical problems in quantizing GR. Hence these models under consideration define some accessible quantum theory of gravity, which is at least not too far from real gravity.

Studying the geometrical properties of the matrix models, we will obtain structures and features which are familiar from string theory. For example, the effective metric on the brane is very similar to the open-string metric on branes in analogous string theory considerations. This is to be expected in view of the relation with string theory. However, the matrix model is taken as a starting point here, because it is intrinsically non-perturbative and extremely simple. Hence we cannot just use results from string theory, rather everything will be derived in a self-contained manner starting from the matrix model. Some words on the "philosophy" of emergent NC gravity are in order here 1 . Rather than trying to carry over some formulation of GR into the context of quantized spaces 2 , one starts with a model whose fundamental degrees of freedom are different from GR, but which provides a physically viable description of geometry and gravity in some geometrical phase or limit. Matrix models are not only very natural in the context of quantum spaces, they appear to realize the idea of emergent gravity, and moreover -most importantly -promise to define a good quantum theory.

In order to provide a coherent picture, we focus on the matrix model approach following [START_REF] Steinacker | Emergent Gravity from Noncommutative Gauge Theory[END_REF][START_REF] Steinacker | Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix Models[END_REF][START_REF] Grosse | Emergent Gravity, Matrix Models and UV/IR Mixing[END_REF][START_REF] Klammer | Fermions and Emergent Noncommutative Gravity[END_REF] and provide the necessary background, rather than attempting a survey of related work and other points of view. In particular, the relation with string theory is discussed only briefly in section 3. This allows to keep the presentation simple and accessible, but does not imply any disregard of other results which are not covered. The reader is assumed to have a basic background in high-energy theory, gauge theory and general relativity, but no previous knowledge in noncommutative field theory is required.

The structure of this review is as follows: in sections 2 and 3 the basic geometrical properties of noncommutative branes are derived. In section 4 a special class of geometries is discussed which appears to be most relevant for physical applications. The quantization (focusing on one-loop) is discussed in section 5. The equations of motion for gravity coupled to matter are then discussed in section 6. Section 7 is more speculative in nature, exploring the physics of the "harmonic branch" of solutions which is somewhat different from GR; section 7.4 contains some new material. The exploration of the more conventional "Einstein branch" and possible other scenarios is left for future work.

Yang-Mills matrix models and quantum spaces

We consider the following type of Yang-Mills matrix models

S = - Λ 4 0 4g 2 Tr [X a , X b ][X a , X b ]η aa η bb (1) 
where η aa = diag(-1, 1, ..., 1);

the Euclidean version of the model is obtained by replacing

η aa → δ aa . (3) 
The degrees of freedom of this model are hermitian3 matrices X a ∈ Mat(∞, C) for a = 0, 1, 2, ..., D -1. We introduced also an energy scale Λ 0 which gives the matrices X a the dimension of length. The action is invariant under the fundamental gauge symmetry

X µ → UX µ U -1 , U ∈ U (∞) ( 4 ) 
as well as a global rotational and translational symmetry, where rotations act as

X a → Λ a b X b for Λ a b ∈ SO(D -1, 1) resp. SO(D)
, and translations X a → X a + c a 1l for c a ∈ R. However there is no space-time or geometry to start with; space and geometry only emerge on a given solution of the model, and are therefore dynamical. The only geometrical input is the constant metric η ab resp. δ ab for the "embedding space" R D . This space is however unphysical and only serves to "suspend" the physical space-time brane and its emergent geometry, as we will see. Fermionic matter will be added in section 3.4.

This class of models can be obtained as dimensional reduction of Yang-Mills gauge theory to a point. In particular, the IKKT model with D = 10 is singled out by an extended matrix supersymmetry [START_REF] Ishibashi | A large-N reduced model as superstring[END_REF]. This is probably essential to obtain a well-defined quantum theory. Some modifications of these models are conceivable, such as a "mass" term T r(m 2 η ab X a X b ), or cubic terms T r(Q abc X a [X b , X c ]). These "soft" terms will have mild impact on the quantization properties on a 4-dimensional space-time brane, and allow to obtain interesting compactification scenarios.

The equations of motion corresponding to the action ( 1) is obtained by varying the entries of the matrices X a , which gives

[X b , [X a , X b ]] η bb = 0 . (5) 
This equation has various types of solutions. An obvious solution is given by any commuting set of matrices [X a , X b ] = 0. These "commutative" configurations do not support propagating fields in this model and are in some sense singular; we will not pursue them any further here. The prototype of the class of solutions which is important here is given by4 

X a ≡ X µ φ i = Xµ 0 , µ= 0, ..., 2n -1, i = 1, ..., D -2n (6) 
where Xµ are generators of the Moyal-Weyl quantum plane

R 2n θ , [ Xµ , Xν ] = i θµν 1l, µ,ν = 0, ..., 2n -1. ( 7 
)
Here θµν is a constant antisymmetric numerical tensor. This solution should be interpreted as quantization of flat R 2n ⊂ R D with Poisson structure {x µ , x ν } = θµν . From a mathematical point of view this is very similar to quantum mechanics, where phase space is quantized using the same commutation relations. The matrices X µ should thus be interpreted as quantized coordinate functions on R 2n . The matrices φ i can similarly be interpreted as quantized functions resp. scalar fields on R 2n , which happen to vanish in this particular solution.

As in quantum mechanics, the above commutation relations imply space-time coordinate uncertainty relations

∆x µ ∆x ν ≥ 1 2 | θµν |. (8) 
This means that space-time becomes "fuzzy" at the noncommutative scale defined by

Λ 2n NC = (det θab ) -1/2 . ( 9 
)
Such uncertainty relations can be motivated by standard arguments combining quantum gravity with mechanics [START_REF] Doplicher | The Quantum structure of spacetime at the Planck scale and quantum fields[END_REF].

The important message is that space-time arises as a solution of the matrix model, it is not a fixed background. This suggests some relation with gravity.

Quantized Poisson manifolds.

To proceed, we recall the concept of the quantization of a Poisson manifold (M, {., .}), referring e.g. to [START_REF] Bordemann | Toeplitz quantization of Kahler manifolds and gl(N), N → infinity limits[END_REF] and references therein for more mathematical background. A Poisson structure is an anti-symmetric bracket {., .} :

C(M) × C(M) → C(M) which satisfies {f g, h} = f {g, h} + g{f, h}. (10) 
It is sometimes useful to introduce an expansion parameter of dimension length 2 and write

{x µ , x ν } = θ µν = θ θ µν 0 (x) ( 1 1 ) 
where θ µν 0 (x) is some fixed Poisson structure. Given a Poisson manifold, we denote as quantization map an isomorphism of vector spaces

I : C(M) → M θ ⊂ Mat(∞, C) f (x) → F (12) 
which depends on the Poisson structure I ≡ I θ , and satisfies5 

1 θ I(i{f, g}) -[I(f ), I(g)] → 0 as θ → 0. ( 13 
)
Here C(M) denotes some space of functions on M, and M θ is interpreted as quantized algebra of functions6 on M. Such a quantization map I is not unique, i.e. the higher-order terms in [START_REF] Rivelles | Noncommutative field theories and gravity[END_REF] are not unique. For example, the Moyal-Weyl quantum plane R 2n θ (7) is a quantization of R 2n with constant Poisson tensor θµν , and a natural ("Weyl") quantization map is given by

I : C(R 2n ) → R 2n θ ⊂ Mat(∞, C) e ikµx µ → e ikµ Xµ . (14) 
The map I allows to define a "star" product on C(M) as the pull-back of the algebra resp. matrix product in M θ , f g := I -1 (I(f )I(g)) [START_REF] Yang | Instantons and emergent geometry[END_REF] which allows to work with classical functions, hiding θ in the star product. In the example of R 2n θ , it leads to the well-known Groenewald-Moyal star product on R 2n . The compatibility [START_REF] Rivelles | Noncommutative field theories and gravity[END_REF] with the Poisson structure is encoded by the requirement

f g = f g + 1 2 {f, g} + O(θ 2 ). ( 16 
)
Kontsevich has shown [START_REF] Kontsevich | Deformation quantization of Poisson manifolds, I[END_REF] that such a quantization always exists in the sense of formal power series in θ. This is a bit too weak for the present context since we deal with operator resp. matrix quantizations. However we will assume that θ µν is non-degenerate defining a symplectic structure

ω = 1 2 θ -1 µν dx µ ∧ dx ν , (17) 
for which stronger mathematical results are available.

De-quantization and semi-classical limit. Since the matrix model provides directly quantum spaces such as R 2n θ , we are actually faced with the opposite problem of "dequantization", i.e. the semi-classical limit of a quantum space. The above concepts can be used as a tool to understand solutions of the matrix model in the language of ordinary spaces and effective actions. Denoting the inverse of the quantization map as f θ := I -1 θ (F ), we can replace [F, G] by [f θ , g θ ] with I being understood. Now we can define the "semi-classical limit" as the leading non-vanishing term in an expansion in θ, dropping all higher-order terms in θ; this semi-classical limit will be indicated by ∼. In particular,

[F, G] ∼ i{f, g} (+O(θ 2 )) (18) 
which will be used throughout. Thus one can simply replace commutators with Poisson brackets in the semi-classical limit, and any ambiguity in I θ would show up only in higherorder corrections; this is familiar from quantum mechanics. In particular, if some generators X µ generate the entire operator resp. matrix algebra, we can at least formally write every "smooth function" on M θ as F = F (X µ ). Then

X µ ∼ x µ (19) 
can be interpreted as quantized coordinate function on M, and we can write

[X µ , F ] ∼ iθ µν (x) ∂ ∂x ν f (x). (20) 
The important point is that matrices F ∈ Mat(∞, C) should be interpreted as quantizations of functions on M, and their non-commutative product encodes an energy scale Λ NC . It is also helpful to recall the concept of coherent states or optimally localized states, which saturate the uncertainty relations [START_REF] Behr | Gauge theory on fuzzy S**2 x S**2 and regularization on noncommutative R**4[END_REF]. They make explicit the fact that on length scales larger than L NC = Λ -1 NC , the quantized spaces M θ essentially look and behave like their (semi-) classical limit M. In much of this paper we will restrict ourselves to the semi-classical limit of the matrix model and its geometrical solutions.

Finally, under favorable assumptions the integral on M is related to the trace as follows (cf. [START_REF] Bordemann | Toeplitz quantization of Kahler manifolds and gl(N), N → infinity limits[END_REF])

ω n n! f = d 2n x θ(x) n f (x) ∼ (2π) n Tr I(f ), (21) 
θ(x) := Pfaff(θ µν (x))

1 n = |θ µν (x)| 1 2n =: L 2 NC (x). ( 22 
)
The symplectic volume form is singled out by the compatibility condition

Tr[I(f ), I(g)] ∼ ω n n! {f, g} = 0. ( 23 
)
It is instructive to recall here the Darboux theorem, which states that every symplectic 2form is locally constant in suitable coordinates. This means that in suitable coordinates, any quantum space (with non-degenerate θ µν ) locally looks like R 2n θ . It also provides an intuitive justification for [START_REF] Steinacker | On the Newtonian limit of emergent NC gravity and long-distance corrections[END_REF], which then reduces to the Bohr-Sommerfeld quantization rule.

Moyal-Weyl solution and noncommutative gauge theory I

Let us start with the Moyal-Weyl solution [START_REF] Alekseev | Brane dynamics in background fluxes and non-commutative geometry[END_REF], and recall that translations on R 2n θ are realized as inner automorphisms,

Uf ( Xν )U -1 = f ( Xν -θµν k µ ), U = e ikµ Xµ . (24) 
This justifies to define a partial derivative operator on R 2n θ in terms of a commutator

∂ ∂ Xµ f = -i θ-1 µν [ Xν , f], (25) 
consistent 7 with the semi-classical limit [START_REF] Steinacker | Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models[END_REF]. The fact that derivatives are inner derivations constitutes the basic difference between the commutative and the non-commutative framework. This is compatible with the definition of the integral over R 4 θ as

R 4 θ f := (2π) 2 θ2 Trf, θ2 = | θµν (x)| = Λ -4 NC ( 26 
)
which has the correct classical limit [START_REF] Steinacker | On the Newtonian limit of emergent NC gravity and long-distance corrections[END_REF], and satisfies R 4 θ ∂ µ f = 0 up to "boundary terms". Now consider fluctuations of the above solution R 4 θ ⊂ R D (6), ( 7) of the matrix model, focusing on the 4-dimensional case to be specific. Such fluctuations can be parametrized as

X µ φ i = Xµ 0 + A µ φ i (27) 
where A µ and φ i are "small" hermitian matrices. As explained above, they can be interpreted as smooth functions on R 4 θ , i.e. A µ = A µ ( X) ∼ A µ (x) and φ i = φ i ( X) ∼ φ i (x). Consider now the change of variables

A µ = -θµν A ν ( 28 
)
where A ν is hermitian. Using (25) one finds

[X µ , f] = [ Xµ + A µ , f] = i θµν ( ∂ ∂ Xν f + i[A ν , f]) ≡ i θµν D ν f, [X µ , X ν ] = -i θµµ θνν ( θ-1 µ ν + F µ ν ) ( 2 9 ) 
where

F µν = ∂ µ A ν -∂ µ A ν + i[A µ , A ν ] is the U (1) field strength on R 4 θ .
The symmetry (4) of the matrix model now acts on the fluctuation fields as

A µ → UA µ U -1 + U∂ µ U -1 , φ i → Uφ i U -1 . (30) 
This clearly has the structure of gauge transformations of Yang-Mills gauge fields 8 . Moreover, the action (1) can now be rewritten as

S = S[A] + S[φ] = 1 (2π) 2 R 4 θ d 4 x Λ 4 0 θ2 g 2 Ḡµµ Ḡνν F µν F µ ν + Ḡµν η µν + 2 θ2 Ḡµν D µ φ i D ν φ j δ ij + 1 θ4 [φ i , φ j ][φ i , φ j ]δ ii δ jj ( 31 
)
7 the Poisson structure is always assumed to be non-degenerate. 8 The X µ can be interpreted as "covariant coordinates" [START_REF] Madore | Gauge theory on noncommutative spaces[END_REF].

dropping surface terms, where

Ḡµν = 1 θ2 θµµ θνν η µ ν , | Ḡµν | = 1. ( 32 
)
These formulas are exact (up to boundary terms) and define some noncommutative field theory [START_REF] Douglas | Noncommutative Field Theory[END_REF]. Thus the matrix model (1) on the solution R 4 θ can be viewed as a noncommutative gauge theory coupled to scalar fields φ i in the adjoint, with effective flat metric Ḡµν . Redefining φi = θ-1 φ i gives the scalar fields the usual dimension of mass.

Nonabelian gauge fields. Nonabelian gauge fields arise very naturally in the matrix model. Observe first that for every solution X a of (5),

X a ⊗ 1l n ( 33 
)
is also a solution, naturally interpreted as n coincident branes. The fluctuations around such a background can be parametrized as

X µ φ i = Xµ ⊗ 1l n 0 + A µ φ i , (34) 
considering R 4 θ to be specific. In analogy to the above considerations, it is easy to see that

A µ = -θ µν A ν,α ( X)λ α , φ i = φ i α ( X)λ a (35) 
describe u(n)valued gauge resp. scalar fields on R 4 θ , denoting with λ α a basis of u(n). The matrix model action for the fluctuations then takes the form

S = 1 (2π) 2 R 4 θ d 4 x Λ 4 0 θ2 g 2 tr Ḡµµ Ḡνν F µν F µ ν + Ḡµν η µν 1l n + 2 θ2 Ḡµν D µ φ i D ν φ j δ ij + 1 θ4 [φ i , φ j ][φ i , φ j ]δ ii δ jj (36) 
where tr() denotes the trace over the u(n) matrices, and F µν is the u(n) field strength. This mechanism is very remarkable: It shows that gauge theory arises "automatically" in the matrix model, there is no need to define sophisticated mathematical structures such as principal fiber bundles and connections. This is one of the reasons why these models are so interesting. On the other hand, even though the derivation and interpretation in terms of gauge theory on R 4 θ seems impeccable, it is nevertheless misleading and physically "wrong" for the U (1) sector, for a number or reasons:

• While U (n) gauge fields arise naturally on R 4 θ , there seems to be no way to separate them into U (1) and SU(n) gauge fields. This is fundamentally tied to the noncommutativity of space. For example, if we were to impose the constraint that A µ is traceless trA µ = 0, then a gauge transformation δA µ = ∂ µ Λ + [A µ , Λ] will re-introduce a trace-U (1) component ∼ 1l n . Indeed the trace-U (1) components of gauge fields and scalar fields are in-separably entangled with all other fields. We will see later that this is nothing but a gravitational coupling, and the U (1) components will be understood as geometrical degrees of freedom. Only the SU(n) components of the gauge field turn out to be physical gauge fields, while the trace-U (1) components turn into gravitational waves. The latter will be denoted as "would-be U (1) gauge fields" henceforth.

• We will see in section 5 that upon quantization, the one-loop effective action contains "strange" UV/IR mixing terms for the trace-U (1) component, but not for the SU(n) terms. This indicates that the would-be U (1) gauge fields should not be interpreted as photons. These "strange" terms will be understood as induced gravitational terms. A notable exception is the N = 4 SUSY case, which contains no such terms [START_REF] Matusis | The IR/UV connection in the noncommutative gauge theories[END_REF].

• Eq. ( 24) says that translations on R 4 θ are nothing but particular gauge transformations. Thus the U (1) gauge transformations on noncommutative space contain space-time transformations, which can be interpreted as symplectomorphisms which form a subgroup of the volume-preserving diffeomorphisms. In the same vein, there are no local observables in noncommutative gauge theory: for example, the U (1) field strength F µν is not invariant under U (1), but transforms as a scalar field under these symplectomorphisms. Gauge invariant observables such as Tr(e ikµX µ ) involve an integral over space. All these are signatures of gravity.

• Slightly modified versions of the matrix model have quantum spaces with non-trivial geometries such as fuzzy spheres as solutions, cf. [START_REF] Alekseev | Brane dynamics in background fluxes and non-commutative geometry[END_REF][START_REF] Grosse | Finite gauge theory on fuzzy CP**2[END_REF][START_REF] Madore | The fuzzy sphere[END_REF]. It is then obvious that fluctuations of these solutions, i.e. fluctuations of the matrices, should correspond to fluctuations of the geometry rather than U (1) gauge resp. scalar fields.

The resolution of this puzzle is the key for identifying emergent gravity in the matrix model. In the geometrical interpretation explained below, the trace-U (1) components of A µ (x) and φ i will completely absorbed in the effective metric G µν (x), leaving only physical SU(n) gauge fields and scalars as well as fermionic matter coupled to gravity.

Euclidean versus Minkowski signature.

Let us take a closer look at the effective metric Ḡµν for gauge fields on R 4 θ , focusing first on the Euclidean case. Using a SO(4) rotation, we can assume that θ µν has the canonical form

θ µν = θ     0 0 0 -α 0 0 ±α -1 0 0 ∓α -1 0 0 α 0 0 0     . ( 37 
)
Clearly the corresponding symplectic 2-form ω = θ -1 µν dx µ ∧ dx ν is (anti-) self-dual ω = ±ω if and only if α 2 = 1, where denotes the Hodge star defined by ε µνρσ and δ µν on R 4 . On the other hand, [START_REF] Aschieri | Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking[END_REF] gives

Ḡµν = 1 θ 2 θ µµ θ νν δ µ ν = diag(α 2 , α -2 , α -2 , α 2 ). ( 38 
)
Therefore Ḡµν = δ µν if and only if ω is (anti-)self-dual, otherwise Ḡµν differs from the embedding metric δ µν via a volume-preserving linear transformation. Now consider the physical case of Minkowski signature with embedding metric η µν = (-1, 1, 1, 1). The standard point of view in NC field theory is that θ µν is real-valued. Using suitable Lorentz transformations, we can again assume that it has the above form [START_REF] Chepelev | Properties of D-branes in matrix model of IIB superstring[END_REF], so that Ḡµν = 1

θ 2 θ µµ θ νν η µ ν = diag(α 2 , α -2 , α -2 , -α 2 ). ( 39 
)
This indeed has Minkowski signature, but the role of time has switched from the first to the last coordinate. In particular there is no way that the effective metric Ḡµν agrees with the embedding metric η µν . This is a priori not a problem since only Ḡµν couples to the physical fields. However it is quite counterintuitive, and becomes more problematic at the one-loop level as we will see. To gain some insight consider again the Euclidean case and write

[X µ , X ν ] = iθ µν E ( 40 
)
with real θ µν E . Having in mind a Wick rotation of the matrices

X 0 → iT (41) 
such that the coordinate functions are related as usual via x 0 → it, the above commutator becomes [T,

X i ] = θ 0i E =: iθ 0i M , [X i , X j ] = iθ ij E =: iθ ij M . (42) 
This leads to a generalized Poisson tensor θ ij M with imaginary time-like components, which we can again assume to have the form

θ µν M = θ     0 0 0 -iα 0 0 ±α -1 0 0 ∓α -1 0 0 iα 0 0 0     . ( 43 
)
Now the effective metric [START_REF] Aschieri | Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking[END_REF] has the form

Ḡµν = 1 θ 2 θ µµ M θ νν M η µ ν = diag(-α 2 , α -2 , α -2 , α 2 ), (44) 
and the time coordinate is in the expected slot. Moreover, ω = ±ω if and only if α 2 = 1, where denotes the Hodge star defined by η µν on R 4 ; here we adopt the convention that the Wick-rotated epsilon-tensor is given by ε 0123 = i. Thus we again have Ḡµν = η µν if and only if ω is (anti-) self-dual ω = ±ω, as in the Euclidean case. This seems to be the appropriate concept of Wick rotation in the matrix model framework, which will generalize to the case of non-trivial geometries and gravity.

Geometry and gravity from matrix models

We have seen that NC space-time is obtained as a solution of the matrix model. Hence spacetime is dynamical, which strongly points at gravity. On the other hand, the fluctuations of space-time were identified as gauge fields on R 4 θ . The key observation of emergent NC gravity is that these apparently different interpretations are two ways of looking at the same thing. This leads to an intrinsically non-commutative and compelling mechanism for gravity, realizing ideas in [START_REF] Rivelles | Noncommutative field theories and gravity[END_REF][START_REF] Yang | Exact Seiberg-Witten map and induced gravity from noncommutativity[END_REF]. Here we follow a systematic approach and derive everything from the framework of matrix models.

We consider configurations X a of the matrix model which can be interpreted as quantized embedding functions

X a ∼ x a : M 2n θ → R D (45) 
determining some 2n-dimensional submanifold ("brane") of R D . Here ∼ denotes the semiclassical limit as discussed in section 2.1. The intuitive picture is that there are sufficiently localized ("coherent") states such that X a spans the manifold M 2n ⊂ R D . We can then split (at least "locally") the set of matrices as in ( 6),

X a = X µ φ i , µ= 0, ..., 2n -1, i = 1, ..., D -2n (46) 
such that the 2n generators X µ generate the full matrix algebra9 Mat(∞, C), and therefore

φ i = φ i (X µ ) ∼ φ i (x µ
). Since the commutators [X µ , X ν ] always satisfy the Jacobi identity, they can be interpreted as quantizations of a Poisson structure on M,

[X µ , X ν ] =: θ µν (X µ ) ∼ iθ µν (x), µ,ν = 1, ..., 2n (47) 
Thus Mat(∞, C) ∼ = C θ (M) is interpreted as quantized algebra of functions on a manifold M with Poisson structure θ µν (x). In particular, the X µ ∼ x µ define quantized (local) coordinate functions on M, which we will denote as "matrix coordinates". The difference to the discussion in section 2.2 is that the "would-be U (1) gauge fields A µ are absorbed in X µ , avoiding the unphysical splitting of the Poisson tensor θ -1 µν in [START_REF] Madore | Gauge theory on noncommutative spaces[END_REF]. Note that all physical fields in this framework arise from fluctuations of the matrices around such a background (leading to nonabelian gauge fields and scalars), and from the fermionic matrices Ψ. Since Mat(∞, C) ∼ = C θ (M), it follows that they all live only on the brane M, hence there is no physical higher-dimensional "bulk" which could carry any propagating degrees of freedom 10 . Moreover all fields propagate according to an effective metric, which we now identify.

Emergent geometry.

To understand the effective geometry of M 2n , consider a test-particle on M 2n , modeled by a scalar field ϕ for simplicity (this could be e.g. an su(k) component of φ i ). In order to preserve gauge invariance, the kinetic term must have the form

S[ϕ] ≡ -Tr[X a , ϕ][X b , ϕ]η ab ∼ 1 (2π) n d 2n x 1 θ n e a (ϕ)e a (ϕ)η ab = 1 (2π) n d 2n x 1 θ n θ µµ (x)θ νν (x)g µν ∂ µ ϕ∂ ν ϕ = 1 (2π) n d 2n x |G µν | G µν (x)∂ µ ϕ∂ ν ϕ , (48) 
denoting the D natural vector fields on M defined by the matrix model as

e a (f ) := -i[X a , f] ∼ θ µν ∂ µ x a ∂ ν f (49) 
where [START_REF] Steinacker | Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix Models[END_REF] G µν (x) := e -σ θ µµ (x)θ νν (x)g µ ν (x) ( 5 0 )

g µν (x) := ∂ µ x a ∂ ν x b η ab = η µν (x) + ∂ µ φ i ∂ ν φ j δ ij , (51) 
e -(n-1)σ := 1

θ n |g µν (x)| -1 2 , θ n = |θ µν | 1/2 . ( 52 
)
Here g µν (x) is the metric induced on M ⊂ R D via pull-back of η ab . The normalization factor e -σ is determined uniquely such that

1 θ n = |G µν | e -σ , (53) 
except for n = 1 which we exclude for simplicity. Therefore the kinetic term for ϕ on M is governed by the metric G µν (x), which depends on the Poisson tensor θ µν (x) and the embedding metric g µν (x). We will see below that the same metric also governs nonabelian gauge fields and fermions in the matrix model (up to possible conformal factors), so that G µν must be interpreted as gravitational metric. There is no need and no room for invoking any "principles". Here dim θ = dim θ µν = L 2 , hence e -σ has the dimension L -2n set by the noncommutativity scale. We finally note that

|G µν (x)| = |g µν (x)|, 2n=4 (54) 
which means that in the 4-dimensional case, the Poisson tensor θ µν does not enter the Riemannian volume at all. This is important for stabilizing flat space as we will see, and is one of several reasons why 4 dimensions are special in this framework.

Covariant derivatives and equations of motion.

To understand the meaning of the matrix equations ( 5), we note that the double commutator [X a , [X b , ϕ]]η ab in the semi-classical limit reduces to the covariant Laplacian corresponding to the effective metric G µν . This is based on the following facts:

Lemma 1 Using the above definitions for the metrics g µν , G µν and the (non-degenerate) Poisson structure θ µν on M ⊂ R D with Cartesian embedding coordinates x a : M → R, a = 1, ..., D, the following identities hold:

{x a , {x b , ϕ}}η ab = e σ G ϕ (55) ∇ η G (e σ θ -1 ην ) = G ρν θ ρµ e -σ ∂ µ η + ∂ µ x a G x b η ab ( 56 
)
Here ϕ is a scalar field on M ⊂ R D , ∇ G resp. G denotes the covariant derivative resp. Laplacian corresponding to G µν , and

η(x) := 1 4 e σ G µν (x)g µν (x). ( 57 
)
Proof We first note the following useful identities for the metric G µν :

0 = ∂ µ ( 1 θ n θ µν ) = ∂ µ (e -σ |G| θ µν ) = |G| ∇ µ (e -σ θ µν ) ( 5 8 
)

Γ µ = -θ n e -σ ∂ ν (e σ G νµ 1 θ n ) = -e -σ θ νν ∂ ν (θ µη g ην (x)). ( 59 
)
The first is a consequence of the Jacobi identity; for the short proof see Appendix A. [START_REF] Das | On the energy-momentum tensor in non-commutative gauge theories[END_REF] follows from ( 50) and ( 58). Now we compute

{X a , {X b , ϕ}}η ab = {X µ , {X ν , ϕ}}η µν + {φ i , {φ j , ϕ}} δ ij = {x µ , θ νη ∂ η ϕ}η µν + {φ i , θ νη ∂ ν φ j ∂ η ϕ} δ ij = θ µρ ∂ ρ (θ νη ∂ η ϕ)η µν + θ µρ ∂ µ φ i ∂ ρ (θ νη ∂ ν φ j ∂ η ϕ) δ ij = θ µρ ∂ ρ (θ νη ∂ η ϕ)η µν + θ µρ ∂ ρ (θ νη δg µν ∂ η ϕ) = θ µρ ∂ ρ (θ νη g µν (x))∂ η ϕ + e σ G ρη ∂ ρ ∂ η ϕ = e σ (G ρη ∂ ρ ∂ η ϕ -Γ η ∂ η ϕ) = e σ G ϕ, (60) 
using ( 58), ( 59) and denoting

δg µν ≡ ∂ µ φ i ∂ ν φ j δ ij . (61) 
Finally, ( 56) is shown in Appendix B (226), based on a result in [START_REF] Steinacker | Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models[END_REF].

Using these identities, the matrix equations of motion [X b , [X a , X b ]]η bb = 0 in the semiclassical limit become

G φ i = 0, (62) 
G x µ = 0 (63)
independent of the splitting X a = (X µ , φ i ) into coordinates and scalar fields. Note that x µ is viewed as scalar field on M here. Together with ( 63), ( 56) can be written as

∇ η G (e σ θ -1 ην ) = G ρν θ ρµ e -σ ∂ µ η. (64) 
These constitute the covariant equations of motion of the bare matrix model without matter.

It is remarkable that (64) is completely "intrinsic", i.e. the embedding of M plays no role. It provides the relation between the noncommutativity θ µν (x) and the metric G µν . Since [START_REF] Austing | Convergent Yang-Mills matrix theories[END_REF] has essentially the form of covariant Maxwell equations, it should have a unique solution for a given "boundary condition" such as

θ µν (x) → θµν = const for |x| → ∞ (65) 
up to radiational contributions, which will be identified as gravitational waves. We will see that ( 64) is in fact a consequence of a conservation law resp. Dyson-Schwinger equation, and is therefore protected from quantum corrections [START_REF] Steinacker | Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models[END_REF].

In general, any 2n of the matrices X a ∼ x a can be considered as coordinate functions x µ on M; hence the matrices define preferred "matrix coordinates". [START_REF] Bigatti | Magnetic fields, branes and noncommutative geometry[END_REF] implies that these matrix coordinates satisfy the harmonic gauge condition

Γ µ e.o.m. = 0. ( 66 
)
From the point of view of GR, (66) would be interpreted as gauge fixing condition, disposing of diffeomorphism invariance which does not make sense in the matrix model. Since gaugedependent objects are always unphysical, this has no implications on the physical content of the model. The equations of motion in these matrix coordinates are given in [START_REF] Steinacker | Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix Models[END_REF]. Finally a comment on Lorentz invariance is in order. Even though θ µν explicitly breaks Lorentz invariance (just like any other background field), the physical fields of the model do not couple directly to θ µν , and the effective actions such as ( 48), ( 83) are (locally) Lorentzinvariant with respect to G µν . There is no field in the model which is charged under the trace-U (1) gauge field whose flux corresponds to θ -1 µν . Therefore Lorentz-breaking effects can arise only through higher-order corrections11 in θ µν or through quantum effects, both of which are expected to be suppressed by powers of Λ -2 NC , or probably Λ -4 NC .

Effective action, degrees of freedom and variational principle

We now show how to obtain the above geometrical equations of motion directly from the semi-classical limit of the matrix model action (1), which using ( 53), ( 57) can be written as

S = - Λ 4 0 4g 2 Tr[X a , X b ][X a , X b ]η aa η bb ∼ Λ 4 0 (2π) n g 2 d 2n x |G| e -σ η. (67) 
Before applying the variational principle, we should first clarify the independent degrees of freedom.

Geometrical degrees of freedom. The semi-classical action (67) depends on the Poisson tensor θ µν (x) and the embedding metric g µν = η µν + ∂ µ φ i ∂ ν φ j δ ij , which in turn depends on the embedding functions φ i (x µ ). On the other hand, the fundamental degrees of freedom are the D matrices resp. functions X a , which can be varied independently. Semi-classically, these variations δX a can be decomposed into tangential and normal fluctuations w.r.t. the background brane M. This is most transparent in normal embedding coordinates (99), where δφ i ∈ T M ⊥ resp. δX µ ∈ T M correspond to transversal resp. tangential variations of the brane. Clearly the variations of the scalar fields φ i (x) change the embedding M ⊂ R D and the embedding metric g µν , while tangential variations

X µ → (X µ ) = X µ + A µ = X µ -θ µν (x)A ν , x µ → (x µ ) = x µ + A µ (68) 
lead to a variation of the Poisson tensor on M according to

θ µν ∼ -i[X µ , X ν ] → -i[(X µ ) , (X ν ) ] ∼ θ µν + θ µρ ∂ ρ A ν -θ νρ ∂ ρ A µ -i[A µ , A ν ] = (1 + A • ∂)θ µν -θ µµ θ νν F µ ν = (θ µν ) ( 69 
)
using the Jacobi identity, where

F µ ν = ∂ µ A ν -∂ ν A µ and A • ∂ ≡ A ρ ∂ ρ . For the symplectic 2-form, this amounts to (θ -1 µν ) = θ -1 µν -θ -1 µµ θ -1 νν δθ µν = (1 + A • ∂)θ -1 µν + F µν . (70) 
Note that these horizontal variation determine a vector field A = A µ ∂ µ and thus an (infinitesimal) diffeomorphism M → M. In particular, the U (∞) gauge symmetry (4) resp. its infinitesimal version X a → (X a ) = X a -i[λ, X a ] and

φ i → φ i -i[λ, φ i ] corresponds to δX µ = A µ ∼ -θ µν ∂ ν λ(x), δφ i ∼ -θ µν ∂ µ φ i ∂ ν λ(x). (71) 
This defines an exact symmetry of the matrix model corresponding to (infinitesimal

) sym- plectomorphisms Symp θ {λ, .} = (∂ ν λ)θ νµ ∂ µ . (72) 
By definition, symplectomorphisms leave θ µν (x) invariant L A λ ω = 0, and form a subgroup 12of the group of volume-preserving diffeomorphisms due to Liouvilles theorem. From the point of view of U (1) gauge theory on R 4 θ , they correspond to gauge transformations A µ → A µ + ∂ µ λ(x), thus providing a connection between gauge theory and (emergent) gravity. However there is a subtle point: These gauge transformations (4) (and more generally the transformations (68)) do not act as Lie derivatives on tensors, but treat everything as a scalar in the preferred matrix coordinates; for example, [START_REF] Minwalla | Noncommutative perturbative dynamics[END_REF] is not the Lie derivative of a 2-form along the vector field A which would be L A ω = F µν dx µ ∧ dx µ . The reason is that from the matrix model point of view, all x a behave as scalar fields on M and are on equal footing. The matrix model action and its semi-classical limit are invariant under this symmetry, because the symplectic volume resp. the trace is preserved. To recover the usual action of Symp θ one has to extend the group action "by hand" to act also on the indices of the tensors which emerge in the semi-classical limit.

The bottom line is that the 4 tangential degrees of freedom A µ are transmuted into the 3 physical degrees of freedom of ω = 1 2 θ -1 µν dx µ ∧ dx ν resp. the U (1) field strength F µν , plus one gauge degree of freedom corresponding to symplectomorphisms. This means that one can consider the embedding φ i and θ µν as independent geometrical degrees of freedom, and use a semi-classical variational principle for the actions of the type

S = d 2n x ρL(φ i (x), θ µν (x)) (73) 
as illustrated below. Even though this gives the correct equations of motion, one should keep in mind that the fundamental degrees of freedom are the matrices X a . Their variation does not simply separate into δθ µν and δφ i but involves also a change of coordinates.

Semi-classical derivation of the equations of motion.

Once the classical degrees of freedom are understood, one can work with the effective action ( 67) for the matrix model in terms of a sub-manifold M ⊂ R D , and derive covariant equations of motion for the embedding and the Poisson structure. As we just explained, the most general variations of the latter can be parametrized in terms of a U (1) gauge field as

δθ -1 µν = ∇ µ δA ν -∇ ν δA µ , (74) 
and the variation of the embedding can be captured by δφ i . Thus the variation of the effective action ( 67) is 58) and ( 53) in the last steps. This gives precisely the equations of motion ( 64) and [START_REF] Sheikh-Jabbari | Open strings in a B-field background as electric dipoles[END_REF]. Comparing with [START_REF] Witten | A Simple Proof Of The Positive Energy Theorem[END_REF], it may seem puzzling that G x µ = 0 must be assumed as well in order to get [START_REF] Austing | Convergent Yang-Mills matrix theories[END_REF]. This can be understood as follows: Since the x a are Cartesian coordinates on R D , G x µ = 0 is actually a consequence of G φ i = 0 , expressing the fact that M ⊂ R D is a minimal surface. Thus x µ is essentially gauge fixed, and the physical degrees of freedom in X µ are transmuted into θ µν , which does satisfy an independent equation of motion.

δS = 2 d 2n x δη(x) det θ -1 µν + η(x) 1 2 det θ -1 µν det θ -1 µν (θ µν δθ -1 νµ ) = d 2n x |θ -1 µν | g µν θ µµ δθ νν g µ ν + g µν θ µµ θ νν δg µ ν + η(x) (θ µν δθ -1 νµ ) = d 2n x |θ -1 µν | e 2σ G ηµ θ -1 µν G νρ δθ -1 ρη + e σ G µν δg µν + η(x) (θ µν δθ -1 νµ ) = 2 d 2n x |G| G ηµ G νρ e σ θ -1 µν ∇ ρ δA η -e -σ η θ ρη ∇ ρ δA η + G µν ∂ µ φ i ∂ ν δφ i δ ij using (53). Using partial integration d 2n x |G| ∇ µ V µ = 0 and G = 0 we obtain δS = -2 d 2n x |G| δA η G ηµ G νρ ∇ ρ (e σ θ -1 µν ) -∇ ρ (e -σ η θ ρη ) + δφ i δ ij ∂ ν |G| G µν ∂ µ φ i = -2 d 2n x |G| δA η G ηµ G νρ ∇ ρ (e σ θ -1 µν ) -|G| -1/2 ∂ ρ (|G| 1/2 e -σ ηθ ρη ) + δφ i δ ij G φ i = -2 d 2n x |G| δA η G ηµ G νρ ∇ ρ (e σ θ -1 µν ) -e -σ θ ρη ∂ ρ η + δφ i δ ij G φ i using (
Finally the propagation of the U (1) degrees of freedom contained in θ µν resp. δA µ is governed by a Maxwell-like action, which for flat embeddings is precisely the U (1) gauge theory discussed above, and for nontrivial backgrounds takes the same form 13 as for the nonabelian components discussed in section 3.3.

Remark on extra dimensions. The discussion so far applies to noncommutative spaces M d with arbitrary even dimension d = 2n. Even though the primary interest is on 4dimensional space-time, this is important because any realistic scenario is likely to involve extra dimension, such as 10 where K 2m is some small compact space. We will see that the nonabelian gauge fields obtained on M d are a priori always su(N )valued, which must be broken spontaneously to obtain some more realistic gauge group. A natural way to achieve this is through (fuzzy) extra dimensions, cf. [START_REF] Aschieri | Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking[END_REF][START_REF] Chatzistavrakidis | Orbifolds, fuzzy spheres and chiral fermions[END_REF][START_REF] Grosse | Noncommutative gauge theory and symmetry breaking in matrix models[END_REF]. Such extra dimensions may also play an important role in the quantization and will affect the scaling of various parameters such as the effective gravity scale. These are topics for further research.

M d = M 4 × K 2m ⊂ R
Relation with string theory. The IKKT matrix model was proposed originally as a non-perturbative definition of type IIB string theory on R 10 . Our results are indeed very reminiscent of D-branes in a B-field background [START_REF] Seiberg | String theory and noncommutative geometry[END_REF]: M θ could be interpreted as a brane in R 10 with open string metric ∼ G µν , while g µν corresponds to the closed string metric, and θ -1 µν is essentially the B field (more precisely B + F , absorbing the U (1) gauge field). There are also other solutions of the matrix model consistent with this interpretation, such as superpositions of branes. Graviton scattering has been studied from this point of view in matrix models, and a relation with supergravity has been conjectured; for an incomplete list of references see [START_REF] Ishibashi | A large-N reduced model as superstring[END_REF][START_REF] Banks | M theory as a matrix model: A conjecture[END_REF][START_REF] Kitazawa | Graviton propagators in supergravity and noncommutative gauge theory[END_REF][START_REF] Taylor | M(atrix) theory: Matrix quantum mechanics as a fundamental theory[END_REF][START_REF] Banks | Branes from matrices[END_REF][START_REF] Chepelev | Properties of D-branes in matrix model of IIB superstring[END_REF][START_REF] Nair | On brane solutions in M(atrix) theory[END_REF][START_REF] Aoki | Space-time structures from IIB matrix model[END_REF][START_REF] Aoki | Noncommutative Yang-Mills in IIB matrix model[END_REF][START_REF] Nishimura | Dynamical generation of four-dimensional space-time in the IIB matrix model[END_REF] and references therein. However, most of this work was based on a different type of block-matrix background, and NC branes have been considered only for geometries with a high degree of symmetry. The essential new point here is to consider general NC brane configurations and their effective gravity in the matrix model, without physical 10D bulk. This is indeed possible, and it opens the possibility to address full 4-dimensional gravity through this simple type of matrix model. Thus the strength of string theory (notably the good behavior under quantization) seems preserved while the main problems (lack of predictivity) are avoided. In particular, the matrix model should be viewed as background-independent, since physical space-time emerges dynamically.

Related aspects and results. The topic of membranes in matrix models has a long history, cf. [START_REF] De Wit | On the quantum mechanics of supermembranes[END_REF][START_REF] Nicolai | Supermembranes and M(atrix) theory[END_REF][START_REF] Hoppe | Membranes and matrix models[END_REF]. There has been extensive recent work on the noncommutative geometry and physics of such "special" NC branes, starting with the fuzzy sphere [START_REF] Madore | The fuzzy sphere[END_REF], which generalizes to fuzzy CP n [START_REF] Grosse | Finite gauge theory on fuzzy CP**2[END_REF] and to arbitrary quantized coadjoint orbits, q-deformed versions [START_REF] Grosse | Field theory on the q-deformed fuzzy sphere. I[END_REF], etc.. Other examples include the fuzzy torus [START_REF] Ambjorn | Lattice gauge fields and discrete noncommutative Yang-Mills theory[END_REF], and various examples with less or no symmetry, cf. [START_REF] Arnlind | Fuzzy Riemann surfaces[END_REF][START_REF] Cornalba | Holomorphic curves from matrices[END_REF] and references therein. These and similar spaces may play a physical role as compactified extra dimension. Matrix models with additional (quadratic or cubic) terms are known to admit such homogeneous spaces as solutions, cf. [7, 10-12, 38, 49, 50].

The present framework can be seen as a realization of the ideas in [START_REF] Rivelles | Noncommutative field theories and gravity[END_REF], where NC U (1) gauge fields were interpreted as gravitons; this will be explained in section 4.2. A relation between noncommutative gauge theory and geometry resp. emergent gravity has also been advocated in [START_REF] Yang | Exact Seiberg-Witten map and induced gravity from noncommutativity[END_REF][START_REF] Yang | Instantons and emergent geometry[END_REF][START_REF] Yang | Emergent Spacetime and The Origin of Gravity[END_REF], relating in particular self-dual NC Maxwell theory with self-dual gravity. These general ideas are clearly similar in spirit and related to the results presented here, although the precise relation is not always clear to the author. Here we restrict ourselves to the case of matrix models, which shows the need to consider nontrivially embedded branes as well as quantum effects. For other related work see e.g. [START_REF] Muthukumar | U(1) gauge invariant noncommutative Schroedinger theory and gravity[END_REF][START_REF] Banerjee | Exact Seiberg-Witten map, induced gravity and topological invariants in noncommutative field theories[END_REF], and [START_REF] Chaichian | Riemannian geometry of noncommutative surfaces[END_REF] for a different approach to NC surfaces.

SU(n) gauge fields coupled to gravity

To avoid notational conflicts, we denote the basic matrices with Y a in this section, governed by the same matrix model as above

S Y M = - Λ 4 0 4g 2 T r[Y a , Y b ][Y a , Y b ]η aa η bb . (75) 
However we now consider a matrix background corresponding to n coinciding branes

Y a = Y µ Y i = X µ ⊗ 1l n , a = µ = 1, 2, ..., 2n, φ i ⊗ 1l n , a= 2n + i, i = 1, ..., D -2n. ( 76 
)
We want to understand general fluctuations around this background. Since the U (1) components describe the geometry, we expect to find su(n)-valued gauge fields as well as scalar fields in the adjoint. It turns out that the following gives a useful parametrization of these general fluctuations:

Y µ Y i = X µ ⊗ 1l n + A µ (1 + A ν ∂ ν )φ i ⊗ 1l n + Φ i ∼ (1 + A ν ∂ ν ) Y µ Y i + 0 Φ i (77) 
where14 

A µ = A µ α ⊗ λ α = -θ µν A ν,α ⊗ λ α , Φ i = Φ i α ⊗ λ α (78) 
parametrize the su(n)-valued gauge fields resp. scalar fields, and λ α denotes the generators of su(n). This amounts to the leading term in a Seiberg-Witten (SW) map [START_REF] Seiberg | String theory and noncommutative geometry[END_REF], which relates noncommutative and commutative gauge theories with the appropriate gauge transformations. This SW parametrization can be characterized by requiring that the noncommutative gauge transformation δ nc Y a = i[Y a , Λ] induces for the su(n) components A µ = A µ,α λ α and Φ i the ordinary gauge transformations

δ cl A µ = i[A µ , Λ] su(n) + ∂ µ Λ(x) + O(θ) δ cl Φ i = i[Φ i , Λ] su(n) + O(θ 2 ), (79) 
cf. [START_REF] Jurco | Noncommutative Yang-Mills from equivalence of star products[END_REF]. Here the subscript [Φ i , Λ] su(n) indicates that only the commutator of the explicit su(n) generators is to be taken, but not the O(θ) contributions from the Poisson bracket. This strongly suggests that the matrix model action expressed in terms of these A µ should reduce to a conventional gauge theory in the semi-classical limit; this was verified in [START_REF] Steinacker | Emergent Gravity from Noncommutative Gauge Theory[END_REF].

In our context, the SW map (77) can be understood geometrically in a very simple way. Recall that the U (1) sector (i.e. the components proportional to 1l n ) describes the geometrical degrees of freedom: in the geometrical limit, X a = (X µ , φ i ) become functions

x a = (x µ , φ i (x)) (80) 
on M which describe the embedding of the 2n-dimensional brane M ⊂ R D . Then the one-form A µ dx µ together with the Poisson tensor determines a tangential vector field

A µ e µ = A µ θ µν ∂ ν = A ν ∂ ν ∈ T p M ⊗ su(n), (81) 
whose push-forward in the ambient space

R D A ν ∂ ν x a ∼ = A ν (δ µ ν , ∂ ν φ i ) ( 8 2 ) 
coincides with the fluctuations δX a = Y a -X a of the dynamical matrices in (77) (for vanishing Φ i ). This provides the link between gauge fields and "covariant coordinates" X a . The nonabelian scalar fields Φ i can be thought of as coordinate functions of M embedded in further extra dimensions corresponding to su(n). They behave as scalar fields, but might contribute to the background geometry if they acquire a non-trivial VEV, completely analogous to the U (1) components φ i . After this preparation, we can write down the effective action for su(n)-valued gauge fields A µ on general M 2n θ ⊂ R D in the matrix model ( 75) in the semi-classical limit:

S Y M [A] ∼ Λ 4 0 4g 2 d 2n x |G µν |e σ G µµ G νν tr(F µν F µ ν ) -S NC (83) 
where

F µν = ∂ µ A ν -∂ ν A µ + i[A µ , A ν ]
is the su(n)-valued field strength, and

S NC = Λ 4 0 4g 2 d 2n x |θ -1 µν | F µ ν F µν θµ ν θ µν + 2F µ µ F ν ν θµ ν θ νµ - 1 2 ηθ µν θ µ ν (F µν F µ ν + 2F µν F νµ ) n=2 = - Λ 4 0 2g 2 η(x) trF ∧ F . (84) 
The last line holds for 4-dimensional branes, and can be seen using

1 2 (F ∧ F ) µνρσ θµν θ ρσ = (F µν θµν )(F ρσ θ ρσ ) + 2F µσ F νρ θµν θ ρσ (85) 
and θ ∧ θ = ηe -σ θ ∧ θ, see [START_REF] Steinacker | Emergent Gravity from Noncommutative Gauge Theory[END_REF]. Note that g µν enters the "would-be topological term" S NC through η resp. the antisymmetric matrix θνη = G νρ g ρµ (y)

θ µη = -e σ G νρ θ -1 ρµ G µη = -θην . ( 86 
)
This result is non-trivial; for the 4-dimensional matrix model it was first obtained through a direct but rather non-transparent computation of the action [START_REF] Steinacker | Emergent Gravity from Noncommutative Gauge Theory[END_REF], which requires the 2nd order Seiberg Witten map. For the general case a proof based on the conservation law (102) was given [START_REF] Steinacker | Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models[END_REF], which is not only much simpler but also establishes the corresponding Yang-Mills equations of motion at the quantum level.

It follows that the (bare) su(n) Yang-Mills coupling constant is given by

g 2 Y M = e -σ Λ 4 0 g 2 . ( 87 
)
The factor e σ is reminiscent of a dilaton, however it is not an independent field here but determined by the geometry. This implies that e -σ must be nearly constant in any realistic solution, which in turn implies that e -σ ∼ Λ 2 NC must be nearly constant. In the case of a (nearly-) self-dual symplectic form as discussed in section 4.1, we have η = e σ and

S Y M [A] = Λ 4 0 4g 2 e σ tr d 4 x |G µν | 1/2 G µµ G νν F µν F µ ν + 2F ∧ F . (88) 
which is essentially a selfdual combination. Recall also that the A µ are su(n) gauge fields, hence any realistic gauge theory must descend via some symmetry breaking mechanism such as in [START_REF] Chatzistavrakidis | Orbifolds, fuzzy spheres and chiral fermions[END_REF] before phenomenological conclusions can be drawn.

Nonabelian scalars. It follows easily along the lines of section 3.1 that the geometrical action for the su(n) -valued scalars Φ i α in the matrix model at leading order is

S Y M [Φ] ∼ Λ 4 0 2(2π) n g 2 d 2n x |G| G µν tr(D µ Φ i D ν Φ i + 1 2 e -σ [Φ i , Φ j ][Φ i , Φ j ]δ ii δ jj ), (89) 
where

D µ Φ i = ∂ µ Φ i + i[A µ , Φ i ].
It is worth pointing out that in the case D = 10 and upon adding suitable fermions as in the IKKT model [START_REF] Ishibashi | A large-N reduced model as superstring[END_REF], this will lead to the analog of N = 4 SYM theory on R 4 , or on a more general geometry. The SUSY transformations in general act non-trivially on the geometry, as indicated below [START_REF] Klammer | Fermions and Emergent Noncommutative Gravity[END_REF].

One might question why only the U (1) components should be considered as geometrical degrees of freedom, in contrast to the SU(n) components. The special role of the trace-U (1) components lies in the fact that they couple universally via commutators to all other fields. This universal coupling is responsible for gravity, as shown explicitly. In contrast, the SU(n) components of nonabelian gauge fields couple primarily through their nonabelian nature.

Fermions

The most obvious (perhaps the only reasonable) action for a spinor which can be written down in the matrix model framework 15 is

S[Ψ] = Tr ΨΓ a [X a , Ψ] ∼ 1 (2π) n d 2n x ρ(x) Ψi(Γ µ + Γ 2n+i ∂ µ φ i )θ µν (x)D ν Ψ = 1 (2π) n d 2n x ρ(x)e σ/2 Ψ iγ µ D µ Ψ, (90) 
dropping the nonabelian scalars Φ i for simplicity (see below). This should be added to the bosonic action [START_REF] Ishibashi | A large-N reduced model as superstring[END_REF]. The Euclidean version involves the obvious replacement Ψ → Ψ † . Here Γ a defines the D-dimensional Clifford algebra. We defined the "local Clifford generators"

γ µ = Γ µ + Γ 2n+i ∂ µ φ i , γµ = e -σ/2 γ ν θ νµ , (91) 
which satisfy the Clifford algebra associated with the metrics g µν (x) and G µν (x) on M,

{γ µ , γ ν } = 2η µν + 2∂ µ φ i ∂ ν φ j δ ij = 2g µν (x) , {γ µ , γν } = 2 G µν (x) . ( 92 
)
Thus the (matrix) Dirac operator can be written as

/ DΨ = Γ a [X a , Ψ] ∼ iγ µ D µ Ψ. (93) 
As pointed out in [START_REF] Klammer | Fermions and Emergent Noncommutative Gravity[END_REF], / DΨ does not quite match with the standard covariant Dirac operator for spinors / D comm Ψ = iγ a e µ a ∂ µ + Σ bc ω bc µ Ψ, where ω ab µ = i 2 e aν ∇ µ e b ν is the usual spin connection, and

Σ ab = i 4 [γ a , γ b ].
While the explicit derivative term in (93) is essentially the same, the spin connection vanishes 16 in the matrix coordinates x µ . To understand this, recall that the spin connection determines how the spinors are rotated under parallel transport along a trajectory. However, ω ab µ can always be eliminated (via a suitable gauge choice) along an open trajectory, so that the conventional kinetic term essentially coincides (93) in the point-particle limit. Hence the trajectory of a classical fermion with action (90) will follow properly the geodesics of the metric17 G µν , albeit with a non-standard gravitational "spindragging". This means that holonomies here will be different than in General Relativity, and the gravitational spin rotation for a free-falling fermions might provide a characteristic signature for the framework of matrix models. For special geometries, / D coincides with the usual Dirac operator on curved manifolds, e.g. in the case of the fuzzy sphere [START_REF] Grosse | The Dirac operator on the fuzzy sphere[END_REF].

We will see below that upon integrating out the fermions, an induced gravitational action is obtained which induces the expected Einstein-Hilbert term d 4 x Λ 2 R[G] , albeit with an unusual numerical coefficient, as well as additional terms. All this shows that (90) defines a reasonable action for fermions in the background defined by G µν .

Supersymmetry. The presence of fermions in the matrix model is important not only to describe physical fermions but also because they allow supersymmetry. The IKKT model [START_REF] Ishibashi | A large-N reduced model as superstring[END_REF] 

S IKKT = - Λ 4 0 g 2 Tr 1 4 [X a , X b ][X a , X b ]η aa η bb + 1 2 ΨΓ a [X a , Ψ] (94) 
with D = 10 and Ψ a Majorana-Weyl spinor is singled out be the existence of the following maximal supersymmetry

δ (1) Ψ = i 2 [X a , X b ] Γ ab , δ (1) X a = i¯ Γ a Ψ, δ (2) Ψ = ξ, δ (2) X a = 0, ( 95 
)
where

Γ ab = 1 2 [Γ a , Γ b ],
and , ξ are Grassmann-valued spinors. This model is obtained by dimensional reduction of N = 1 super-Yang-Mills theory on R 10 to a point.

To recover spacetime supersymmetry, we split the matrices again into 4 + 6 dimensions X a = (X µ , φ i ). Then the 4-dimensional Moyal-Weyl quantum plane R 4 θ is a (BPS) solution of the generalized matrix equations of motion, embedded as

X µ = Xµ , µ= 0, ..., 3, φ i = 0 . ( 96 
)
All previous geometrical considerations can be generalized, except that the matrix model now contains scalar fields φ i (x). For simplicity we only discuss the case of R 4 θ with flat embedding ∂ µ φ i = 0. If we set ξ = 1 2 θµν Γ µν following [START_REF] Ishibashi | A large-N reduced model as superstring[END_REF] and recall X µ = Xµθµν A ν and (91), then the combined transformation δ = δ (1) + δ (2) takes the form

δΨ = -ie σ F µν Σµν + e σ/2 D µ Φ i γµ γ 5 ∆ i - i 2 [Φ i , Φ j ]∆ ij δφ i = i¯ γ 5 ∆ i Ψ, δA ν = ie -σ G νµ ¯ γµ Ψ ( 9 7 ) 
where

Σµν = i 4 [γ µ , γν ], ∆ ij = 1 2 [∆ i , ∆ j ],
and Γ µ = γ µ , Γ 3+i = ∆ i γ 5 where ∆ i generates the SO(6) Clifford algebra. The constant e σ factors can be absorbed by rescaling the fields. This indeed amounts to the N = 4 supersymmetry on R 4 θ . In the case of general NC backgrounds, the SUSY transformation will also act on the metric G µν (x). This can be viewed as a supersymmetric form of emergent gravity, which should be worked out elsewhere.

Symmetries and conservation laws

The matrix model is invariant under the gauge symmetry (4) as well as a global rotational and translational symmetry. The gauge symmetry has been identified geometrically in section 3.2 as invariance under symplectomorphisms. The SO(D-1, 1) resp. SO(D) rotation invariance is realized as X a → Λ a b X b supplemented by suitable action on the spinors, and translations act as

X a → X a + c a 1l, c a ∈ R. ( 98 
)
Together these form the inhomogeneous Euclidean group i.e. the Poincaré group. As usual, these global symmetries should lead to conservation laws. Now consider the semi-classical case. Taking advantage of this rotation and translation symmetry, one can choose for any given point p ∈ M adapted coordinates where the brane is tangential to the plane spanned by the first 2n components, i.e. ∂ µ φ i | p = 0. Then the embedding metric satisfies

δg µν | p = ∂ σ δg µν | p = 0. ( 99 
)
We denote such coordinates as "Normal Embedding Coordinates" NEC from now on; they are preferred matrix coordinates x µ ∼ X µ . This simplifies the analysis of general branes, allowing to reduce many considerations to the case of trivially embedded branes. For example, it is now easy to see that the matrix model action for the U (1) fields can be written as in [START_REF] Clarke | On the Global Isometric Embedding of Pseudo-Riemannian Manifolds[END_REF] in

terms of 4η(x) = {x a , x b }{x a , x b }η aa η bb = e σ G µν (x)g µν (x). ( 100 
)
This is so because η(x) can be viewed as a SO(D) scalar, which in normal embedding coordinates reduces to e σ G µν (x)η µν . The covariant version is as above.

If the effective metric coincides with the embedding metric G µν = g µν as discussed below, then these NEC are "free-falling" Riemannian normal coordinates in GR, i.e. G µν | p = η µν and (Γ ρ µν )| p = 0. Local Lorentz invariance is then manifest in these coordinates. However, an important distinction with GR becomes obvious: the extrinsic curvature of the brane M ⊂ R D does play a role in the matrix model (at least in the "harmonic branch" discussed below), due to the brane tension. For example, even though a cylinder embedded in R D is intrinsically flat, it is not a minimal surface.

Tangential conservation law

Motivated by the translational symmetry, one can consider the following "x-dependent tangential" variation

X a → X a + δX a , δX a = {X b , [X a , ε b (X)]} (101) 
which defines a measure-preserving transformation on the space of matrices. The corresponding Dyson-Schwinger equations have the form of a conservation law

[X a , T a c ]η aa = 0. ( 102 
)
This provides useful non-perturbative information which is not restricted e.g. to BPS sectors. The bosonic action (1) leads to the matrix -"energy-momentum tensor" [17, 58-60]

T ab = [X a , X c ][X b , X c ]η cc + [X b , X c ][X a , X c ]η cc - 1 2 η ab [X d , X c ][X d , X c ]η dd η cc . ( 103 
)
It is easy to verify this using the matrix e.o.m., but (102) is more useful because it involves only tangential tensors on M. Indeed the semi-classical geometrical limit of T ab is given by

T ab ∼ -2G µν (x)∂ µ x a ∂ ν x b + 2η ab η(x), (104) 
which for g µν = G µν is essentially the projector on the normal bundle of M ⊂ R D . As elaborated in [START_REF] Steinacker | Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models[END_REF], the conservation law (102) then leads to the following equivalent equations

θ νρ ∂ ρ η = θ µη ∂ η (e σ G νρ g µρ ) ( 1 0 5 ) ∂ η (ρe σ θην ) = ρ θ ρν ∂ ρ η (106) ∇ µ ( θµν ) = e -σ θ µν ∂ µ η ∇ µ (e σ θ -1 µν ) = e -σ G νν θ ν µ ∂ µ η. ( 107 
)
where θνη is anti-symmetric and defined in (86). The last form coincides precisely with the e.o.m [START_REF] Austing | Convergent Yang-Mills matrix theories[END_REF], which therefore can be trusted at the quantum level, and it holds more generally e.g. in the presence of a mass term or a more general potential. Note that the D relations (102) reduce to 2n tangential ones, while the "transversal" components give no new information. This matrix conservation law also applies to the nonabelian SU(n) components. Then (102) gives precisely the Yang-Mills equations of motion for SU(n) gauge fields coupled to gravity obtained from (83). This seems to be the best way to establish the action for nonabelian gauge fields [START_REF] Steinacker | Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models[END_REF].

Special geometries and perturbations

The most obvious solution of the above covariant equations of motion is of course R 2n , corresponding to the semi-classical limit x a = (x µ , 0) of the Moyal-Weyl quantum plane R 2n θ . Its effective metric Ḡµν is flat. In the supersymmetric case, these are BPS solutions [START_REF] Ishibashi | A large-N reduced model as superstring[END_REF] and therefore protected from quantum corrections. To understand other, less trivial solutions, it is illuminating to introduce the following tensor

J η γ = e -σ/2 θ ηγ g γ γ = -e σ/2 G ηγ θ -1 γ γ . ( 108 
)
Then the effective metric can be written as

G µν = J µ ρ J ν ρ g ρρ = -(J 2 ) µ ρ g ρν , (109) 
which is the reason for choosing the above normalization. J ρ ν satisfies the following properties

(J 2 ) µ ρ = -G µν g νρ trJ 2 = -4e -σ η (110)
due to the anti-symmetry of θ -1 µν . Moreover, det J = 1 in 2n = 4 dimensions using [START_REF] Muthukumar | U(1) gauge invariant noncommutative Schroedinger theory and gravity[END_REF]. We can now extend the discussion in section 2.2.1 on (anti)self-dual symplectic structures and Euclidean versus Minkowski signatures to the general case.

Self-duality and G µν = g µν .

We focus on the 2n = 4 -dimensional case. Since everything is now formulated in tensorial language, the same arguments of section 2.2.1 apply at any given point p ∈ M. Assume first that M is Euclidean. Then we can diagonalize the embedding metric at that point g µν | p = δ µν , and bring the Poisson tensor into canonical form

ω = θ -1 (α dx 0 dx 3 ± α -1 dx 1 dx 2 ) ( 1 1 1 ) 
(37) at p ∈ M using a suitable SO(4) rotation. This leads to18 

G µν = diag(α 2 , α -2 , α -2 , α 2 ) at p ∈ M. (112) 
Noting that (dx 0 dx 3 ) = dx 1 dx 2 where denotes the Hodge star defined by ε µνρσ and g µν on M 4 , it follows again that the corresponding symplectic form is (anti-) self-dual ((A)SD) if and only if

ω = ±ω ⇔ α = 1 resp. e -σ η = 1 ⇔ G µν = g µν ⇔ J 2 = -1. (113) 
These are tensorial statements. The second statement follows from

e -σ η = 1 2 (α 2 + α -2 ) ≥ 1. (114) 
Note that J 2 = -1 means that J defines an almost-complex structure, and M becomes an almost-Kähler manifold. It is easy to check that then (64) reduces to ∇ µ θ -1 µν = 0, which follows from ω = ±ω resp. d ω = ±dω = 0.

In the Minkowski case, completely analogous statements apply once we adopt complexified Poisson structures with imaginary time components, having in mind a Wick rotation 19x 0 → it. Accordingly, we agree that the Wick-rotated epsilon-tensor is given by ε 0123 = i. Then

ω = ±ω ⇔ α = 1 resp. e -σ η = 1 ⇔ G µν = g µν ⇔ J 2 = -1 (115) 
where

ω = θ -1 (iα dx 0 dx 3 ± α -1 dx 1 dx 2 ). (116) 
The physical metric

G µν = diag(-α 2 , α -2 , α -2 , α 2 ) at p ∈ M (117) 
is of course always real, and related to g µν by some volume-preserving linear transformation.

It is important to note that self-dual Poisson structures always solve the equation of motion [START_REF] Austing | Convergent Yang-Mills matrix theories[END_REF], which reduce to ∇ µ θ -1 µν = 0 for e σ = η. Such (A)SD closed 2-forms θ -1 with constant asymptotics θ -1 µν (x) → θ -1 µν as x → ∞ always exist on (suitable) asymptotically flat spaces. This can be seen by interpreting θ -1 as sourceless electromagnetic field with constant field strength at infinity: we only have to solve d F = 0, F = dA with constant asymptotics F → F as r → ∞, and define θ -1 to be the (A)SD component of F . Therefore

G µν = g µν , ∇ µ θ -1 µν = 0, φ i = x µ = 0 (118)
provides a particularly interesting and transparent class of solutions without matter. The bare action (67) then has the form of a brane tension using (113),

S = Λ 4 0 4g 2 d 4 x η θ 2 = Λ 4 0 4g 2 d 4 x |g| . ( 119 
)
This has the same form as the one-loop vacuum energy, and the two may approximately cancel provided Λ 0 coincides with some effective cutoff. In that case, the total effective brane tension may indeed be small. However, even though minimal surfaces are in general not BPS, they are protected and in fact stabilized by quantum corrections.

In the remainder of this review, we will mostly assume that ω is (anti-) selfdual to a very good approximation, i.e. G µν = g µν . Most of the known solutions of matrix models (possibly with additional quadratic and cubic terms) such as fuzzy CP 2 etc. indeed satisfy this condition. A more in-depth study of this class of geometries is given in [START_REF] Blaschke | Curvature and Gravity Actions for Matrix Models[END_REF]. However, we now study small perturbations of this (A)SD case.

Metric perturbations from U (1) gauge fields

Using the above results, the most general geometry of the matrix model can be viewed as perturbation of an (A)SD background Ḡµν = g µν through "would-be" U (1) gauge fields A µ with field strength F µν , leading to a metric perturbation

G µν = Ḡµν + h µν ( 120 
)
elaborated below. These U (1) gauge fields result from tangential variations of the matrices, while transversal fluctuations of the matrices lead to variations of the embedding metric g µν . This appears to be the most useful parametrization.

Hence consider some M ⊂ R D with embedding normal coordinates at p ∈ M such that g µν = diag(±1, 1, 1, 1) at p ∈ M. We can assume that the Poisson tensor θµν has the form (116) resp. (111), leading to an effective metric

Ḡµν = diag(±α 2 , α -2 , α -2 , α 2 ) ( 1 2 1 )
at p ∈ M as in [START_REF] Hoppe | Membranes and matrix models[END_REF], which in the case of (A)SD Poisson structure satisfies Ḡµν = g µν . Now consider small fluctuations of the tangential matrices X µ around such a configuration. They can be parametrized as

X µ = Xµ -θµν A ν (x) , (122) 
and the A ν were interpreted in section 2.2 as U (1) gauge fields. On the other hand, we saw in section 3.2 that they can be interpreted as perturbation of the effective Poisson tensor (69) on M,

θ -1 µν = θ-1 µν + F µν ( 123 
)
where

F µν = ∂ µ A ν -∂ µ A ν .
This in turn leads to a perturbation of the metric (120) on M, with

h µν = θ ( J -1 ) µ ν F µ µ + ( J -1 ) ν µ F ν ν - 1 2 (( J -1 ) ρ ν F ρσ Ḡνσ ) Ḡµν ( 124 
)
where

ρ = |θ -1 µν | 1/2 and ( J -1 ) γ µ = g γη θ θ-1 ηµ =     0 0 0 -α -1 0 0 -α 0 0 α 0 0 α -1 0 0 0     . ( 125 
)
To be specific we assume the Euclidean case here, where θµν has the canonical form [START_REF] Hoppe | Membranes and matrix models[END_REF]. As a check, observe that h = Ḡµν h µν = 0 consistent with [START_REF] Chaichian | Riemannian geometry of noncommutative surfaces[END_REF]. This interpretation of the noncommutative U (1) gauge fields in terms of a metric perturbation was first given by Rivelles [START_REF] Rivelles | Noncommutative field theories and gravity[END_REF]. He observed that if the gauge fields solve the Maxwell equations, then the h µν are actually gravitational waves resp. gravitons. To see this, consider the case of M = R 4 , so that the linearized Ricci tensor is given by

R (1) µγ = ∂ ρ ∂ (µ h γ)ρ - 1 2 ∂ µ ∂ γ h - 1 2 ∂ δ ∂ δ h µγ . (126) 
Now recall the equations of motion (66) (equivalent to the Maxwell equations for F µν ) in the preferred (matrix) coordinates, which together with [START_REF] Das | On the energy-momentum tensor in non-commutative gauge theories[END_REF] gives

0 = Γ µ ∼ ∂ ν ( |G ησ | G νµ ). ( 127 
)
For the metric fluctuations this gives

∂ µ h µν - 1 2 ∂ ν h = 0, ( 128 
)
and the expression for the linearized Ricci tensor simplifies as

R (1) µγ = - 1 2 ∂ δ ∂ δ h µγ . ( 129 
)
Now the Maxwell equations for the U (1) fluctuations on R 4

∂ µ F µν = 0 (130) imply as usual ∂ ρ ∂ ρ F µν = 0. ( 131 
)
Together with ( 129) and ( 124), it follows that these U (1) metric fluctuations are Ricciflat [START_REF] Rivelles | Noncommutative field theories and gravity[END_REF],

R µν [η µν + h µν ] = 0. ( 132 
)
This can also be seen as a consequence of G x µ = 0. Once we establish that the corresponding Riemann tensor is indeed non-trivial, these are genuine gravitational waves 20 (in harmonic gauge (128)), parametrized through on-shell degrees of freedom of U (1) gauge fields. This provides an interesting relation with GR.

To make this more explicit, consider the case Ḡ = g i.e. α = 1. Using the usual parametrization of F µν in terms of E i and B i , the corresponding metric perturbation is

h µν = θ     (B 3 -E 3 ) (B 2 -E 2 ) -(B 1 -E 1 ) 0 (B 2 -E 2 ) -(B 3 -E 3 ) 0 (B 1 -E 1 ) -(B 1 -E 1 ) 0 -(B 3 -E 3 ) (B 2 -E 2 ) 0 (B 1 -E 1 ) (B 2 -E 2 ) (B 3 -E 3 )     . ( 133 
)
This vanishes for self-dual fields B i = E i as expected due to (113) (only for α = 1!), and is non-trivial for the anti-self dual fields as we verify below. In the Minkowski case, the corresponding result for

θµν = θ     0 0 0 -i 0 0 -1 0 0 1 0 0 i 0 0 0     and F µν =     0 iE 1 iE 2 iE 3 -iE 1 0 B 3 -B 2 -iE 2 -B 3 0 B 1 -iE 3 B 2 -B 1 0     (134) 
is

h µν = θ     -(E 3 + B 3 ) -i(B 2 + E 2 ) i(B 1 + E 1 ) 0 -i(B 2 + E 2 ) -(B 3 + E 3 ) 0 B 1 + E 1 i(B 1 + E 1 ) 0 -(B 3 + E 3 ) B 2 + E 2 0 B 1 + E 1 B 2 + E 2 E 3 + B 3     , (135) 
which vanishes for21 F = F . The imaginary h 0i are misleading, since the physical metric in real coordinates is manifestly real (117). The above form is written in "partially Wick rotated" coordinates, and the real physical form is seen in coordinates where h 0i = 0. This is obtained after a transformation x i → x i + x 0 ξ i (x) = x i + itξ i (x), which amounts to the required local Lorentz boost to achieve the normal form (116). In case of doubt, one can first work in the Euclidean framework and do a formal Wick rotation in the end. Hence on a self-dual background g µν = G µν , only the anti-selfdual perturbations F µν describes non-trivial gravitational waves, while the self-dual perturbations do not lead to any metric deformations at least at the linearized level. However they are non-trivial perturbations of θ µν . Hence they seem to be completely sterile fields which decouple from everything else. This suggests that they should be integrated over. That would in particular suppress Lorentz-violating effects due to θ µν , such as in the term d 4 x R µνρσ θ µν θ ρσ found in [START_REF] Klammer | Fermions and noncommutative emergent gravity II: Curved branes in extra dimensions[END_REF]. On the other hand if θ µν is taken to be real in the Minkowski case, then one finds 2 independent physical gravitons as in GR.

In summary, configurations with g µν = G µν can provide the required geometrical degrees of freedom for full-fledged gravity assuming D = 10 [67], while perturbations due to the "would-be" U (1) gauge fields are additional graviton-like degrees of freedom on such a background. Clearly more work is required in order to fully understand their significance.

Plane waves and linearized Riemann tensor. We verify here that the Riemann tensor of the above metric perturbations is non-trivial. Consider in particular plane waves

A µ (x) = A µ e ikx (136) such that F µν = i(k µ A ν -k ν A µ ) = 0.
Then

h µν = iθ( kµ A ν + kν A µ ) -iθ(k µ Ãν + k ν õ ) + i Ḡµν ( θρσ k ρ A σ ) ( 1 3 7 ) where kµ = (J -1 ) ρ µ k ρ . ( 138 
)
Observe that the term i(k µ Ãν +k ν õ ) has the form of a diffeomorphism generated by Ãν , and therefore does not contribute to the Riemann tensor. Using (137) for the metric fluctuations gives

R (1) σµνγ = - i 2 θ (k µ kσ -kµ k σ )(k ν A γ -A ν k γ ) + (k µ A σ -k σ A µ )(k ν kγ -kν k γ ) - i 2 (k ν k µ Ḡσγ -k ν k σ Ḡµγ -k γ k µ Ḡσν + k γ k σ Ḡµν )( θρσ k ρ A σ ) = 0. ( 139 
)
Thus the U (1) metric fluctuations correspond to propagating gravitational waves on R 4 with 2 independent degrees of freedom, i.e. physical gravitons in harmonic gauge 22 .

Linearized coupling to matter. Here we briefly discuss the coupling of these "wouldbe" U (1) degrees of freedom to matter, corresponding to perturbations of G µν = g µν . The coupling of h µν = G µν -g µν = δG µν is given as usual by

δS matter ≈ 8π d 4 x √ G δG µν T µν (140)
where T µν is the energy-momentum tensor of matter. We will focus on the case of static matter distributions with T 00 = ρ(x), T ij = T 0i = 0. Then the linearized metric perturbation (120) couples as

δS matter ≈ 8π d 4 x h µν T µν = 8π d 4 x h 00 ρ(x) ≡ d 4 x ( E • m E + B • m B ) ( 1 4 1 )
22 the restriction to (A)SD field strength is not seen here because there are no (A)SD plane waves.

in the Minkowski case, replacing (-E 3 -B 3 ) → (B 3 -E 3 ) in the Euclidean case. Hence from the point of view of electrodynamics, matter behaves like a dipole 23 with dipole strength

m E = -8πθ(0, 0, ρ(x)) = m B , (142) 
pointing in the direction determined by θ 0i . The total dipole moment is given by the mass

M, M E = -8πMθ e 3 = M B , (143) 
Note again that only the anti-selfdual components of the would-be U (1) gauge field couple to matter. In particular, observe that the total effective dipole moment of e.g. a system of stars rotating each other is time-independent and pointing in a constant direction, hence they can radiate only quadrupole and higher multipole modes in h µν .

Hence matter leads to a small localized dipole-like deviation from θ µν (x) being self-dual, leading to g µν = G µν near matter. However, this will be suppressed by powers of 1 Λ 0 resp.

1

Λ NC , and is therefore presumably negligible for most purposes. We will therefore ignore the would-be U (1) gauge fields, and focus on geometries with G µν = g µν .

Quantization

Perhaps the main motivation for the matrix model approach is that they provide a natural non-perturbative concept of quantization, defined in terms of an integral over all matrices

Z = dX a dΨe -S[X,Ψ] (144) 
and similarly for correlation functions. In particular, the IKKT model thereby promises to provide an accessible quantum theory of gravity (as well as the other fundamental interactions), because it can be viewed equivalently as N = 4 NC SYM on R 4 θ . This allows to circumvent many of the technical problems in quantizing GR. In the Euclidean case, it was shown that this type of integrals exists for finite N (in D ≥ 3 dimensions) [START_REF] Austing | Convergent Yang-Mills matrix theories[END_REF][START_REF] Krauth | Finite Yang-Mills integrals[END_REF], even for purely bosonic models; see also [START_REF] Kazakov | D-particles, matrix integrals and KP hierarchy[END_REF] for some non-perturbative results. Nevertheless, in order to obtain a well-behaved quantum theory, it is probably necessary to restrict to the IKKT model with N = 4 supersymmetry resp. D = 10, or closely related models; this will be explained below. Remarkably, D = 10 happens to provide precisely the degrees of freedom needed to realize the most general 4-dimensional geometries through embeddings M 4 ⊂ R 10 [67]. Even though the mechanism is quite different, it is worth recalling that single-matrix models have been used as a non-perturbative definition of 2D gravity [START_REF] Di Francesco | 2-D Gravity and random matrices[END_REF].

In the following we study the quantization around some NC background as discussed above, which amounts to a "condensation" of the matrices. This is a strong assumption, which would imply that the U (∞) gauge symmetry is spontaneously broken 24 . However, many of our results should hold also under somewhat weaker assumptions, notably X µ = [X µ , X ν ] = 0 but [X µ , X ν ][X µ , X ρ ] = 0; more specifically, θ µν might not have long-range order but short-range fluctuations and should be averaged. This may also be important for suppressing Lorentz-violating effects.

UV/IR mixing in noncommutative gauge theory

Consider first the matrix model from the point of view of NC gauge theory on R 4 θ as in section 2.2. A general matrix resp. field on R 4 θ can be expanded in a basis of plane waves,

φ(X) = d 4 k (2π) 4 φ k e ikµ Xµ ∈ Mat(∞, C) ∼ = R 4 θ ( 145 
)
where φ k ∈ C is now an ordinary function of k ∈ R 4 . The free (quadratic part) of the action is then independent of θ µν , but the interaction vertices acquire a nontrivial phase factor e i 2

P i<j k i µ k j µ θ µν
where k i µ denotes the incoming momenta. The matrix integral (144) then becomes an ordinary integral dX a = Πdφ k , which can be evaluated perturbatively in terms of Gaussian integrals, similar to ordinary QFT. This leads to the well-known Filktype Feynman rules [START_REF] Filk | Divergencies in a field theory on quantum space[END_REF] for field theory on R 4 θ , where planar diagrams coincide with their undeformed counterparts, while the non-planar diagrams involve oscillatory factors. All this can be made rigorous on fuzzy spaces, where the matrices are finite-dimensional. The reason for recalling these steps is to emphasize that these rules are consequences of the basic definition (144), there really is no choice 25 in the framework of matrix-models.

In particular, the loop integrals are generally divergent in spite of the existence of a fundamental length scale Λ NC . The reason is that area rather than length is quantized on R 4

θ . This implies that a UV-divergence in some direction k µ Λ NC is necessarily associated with an IR effect in another direction; this is the essence of UV/IR mixing [START_REF] Minwalla | Noncommutative perturbative dynamics[END_REF]. Assuming some cutoff Λ in the loops, one finds new terms in the one-loop effective action for the trace-U (1) components, which are divergent for external momentum p → 0. In the example of scalar fields coupled to external U (1), they have the form

Γ Φ = - g 2 2 1 16π 2 d 4 p (2π) 4 - 1 6 F µν F µ ν (-p)g µµ g νν log( Λ 2 Λ 2 eff ) + 1 4 (θF (p))(θF (-p)) Λ 4 eff - 1 6 p • p Λ 2 eff + (p • p) 2 1800 (47 -30 log( p•p Λ 2 eff )) (146) 
where

Λ 2 eff (p) = = 1 1/Λ 2 + 1 4 p 2 Λ 4 NC . (147) 
The first term amounts to a renormalization of the coupling, but the second term is unusual and singular as p → 0. These IR divergences become worse in higher loops, and the models are probably pathological as they stand. There is a notable exception given by the N = 4 SYM theory on R 4 θ , which is nothing but the IKKT matrix model for D = 10. This is (almost 26 ) the unique model which has no UV/IR mixing at one loop, and is arguably welldefined and finite to any order in perturbation theory just like its commutative cousin [START_REF] Jack | Ultra-violet finiteness in noncommutative supersymmetric theories[END_REF]. Now focus on the N = 4 model with soft SUSY breaking terms, leading to a physical cutoff Λ = Λ 4 given by the scale of N = 4 SUSY breaking. Then the above "unusual" term in Γ Φ still leads to physically unacceptable effects from the point of view of U (1) gauge theory (e.g. polarization-dependent dispersion relations for the photon [START_REF] Jaeckel | Telltale traces of U(1) fields in noncommutative standard model extensions[END_REF]), however they are perfectly sensible from the point of view of emergent gravity: they amount to an induced gravitational action, as explained below.

Induced gravity

We now explain how this phenomenon of UV/IR mixing in NC gauge theory can be understood in terms of induced gravity. The "strange" new term in the effective action are simply induced gravitational terms such as an Einstein-Hilbert term R[G].

Induced gravitational action due to scalars

Consider the quantization of a scalar field ϕ coupled to the matrix model as in [START_REF] Cornalba | Holomorphic curves from matrices[END_REF]. Upon integration, this leads to an effective action

e -Γϕ = dϕ e -S[ϕ] , where Γ ϕ = 1 2 Tr log ∆ G . (148) 
A standard argument using the heat kernel expansion of ∆ G gives [START_REF] Gilkey | Invariance theory, the heat equation and the Atiyah-Singer index theorem[END_REF] Γ

ϕ = 1 16π 2 d 4 x -2Λ 4 - 1 6 R[G] Λ 2 + O(log Λ) . (149) 
which is also the one-loop induced gravitational action due to a scalar field in the matrix model on a generally embedded brane M 4 ⊂ R D [START_REF] Grosse | Emergent Gravity, Matrix Models and UV/IR Mixing[END_REF]. This is essentially the mechanism of induced gravity [START_REF] Sakharov | Vacuum quantum fluctuations in curved space and the theory of gravitation[END_REF]. It was shown in [START_REF] Grosse | Emergent Gravity, Matrix Models and UV/IR Mixing[END_REF] that this reproduces the UV/IR mixing terms (146) using the identification (124), in the semi-classical limit

pΛ < Λ 2 NC ( 150 
)
where p is the external momentum. This means that the phase factors e i Induced gravitational action due to fermions The one-loop effective action due to integrating out a fermion in the matrix model is more complicated. Due to the non-standard spin connection, one cannot simply use the standard results for the usual Dirac operator. The induced gravitational action was determined in [START_REF] Klammer | Fermions and noncommutative emergent gravity II: Curved branes in extra dimensions[END_REF] using the general formulae for the Seeley-de Witt coefficients for fermions. This is still too complicated in the most general case; for a Dirac fermion on generally embedded branes M 4 ⊂ R D with G µν = g µν , the induced gravitational action can be written as

Γ Ψ = 1 4π 2 d 4 x |g| 2Λ 4 + Λ 2 - 1 3 R[g] + 1 4 ∂ µ σ∂ µ σ + 1 8 e -σ R[g] µνρσ θ µν θ ρσ + 1 4 ( g x a )( g x b )η ab + O(log Λ) . ( 151 
)
Here k is the number of components of D-dimensional Dirac spinors. This formula generalizes to the case of 2n-dimensional branes. The term ( g x a )( g x b )η ab vanishes27 for on-shell (tree-level) vacuum geometries, but may be non-trivial in general, reflecting the embedding of M 4 ⊂ R D . A similar result was also obtained for such on-shell (tree level) geometries with G µν = g µν [START_REF] Klammer | Fermions and Emergent Noncommutative Gravity[END_REF][START_REF] Klammer | Fermions and noncommutative emergent gravity II: Curved branes in extra dimensions[END_REF]. Again, it was verified that this reproduces the UV/IR mixing terms the fermionic loops in the semi-classical limit (150). There is indeed a corresponding matrix model action [START_REF] Blaschke | Curvature and Gravity Actions for Matrix Models[END_REF], as given below.

Induced gravitational action due to gauge fields

The induced gravitational action due to integrating out gauge fields has not yet been computed directly for a general background. However, it can be obtained indirectly based on supersymmetry: note that the fermionic contribution to the one-loop effective action does not quite cancel the scalar contribution. Some UV/IR mixing may remain even in supersymmetric gauge theory on R 4 θ , and the UV/IR mixing is absent only in the case of N = 4 supersymmetry [START_REF] Jack | Ultra-violet finiteness in noncommutative supersymmetric theories[END_REF][START_REF] Matusis | The IR/UV connection in the noncommutative gauge theories[END_REF]. This strongly suggests that the model should be finite above some scale Λ to obtain a well-defined quantum theory. This is realized by the IKKT model on a NC background, where Λ is the scale of N = 4 SUSY breaking above which no divergent terms are induced.

Hence consider a matrix model with n S scalar fields and n Ψ Dirac fermions. The N = 4 model has n S = 6 and n Ψ = 2, in addition to the U (1) gauge field A µ . Because this model is free of UV/IR mixing , it follows that

Γ A = -2 Γ Ψ -6 Γ Φ (152) 
This matches the vacuum energy contribution of 2 scalars (149), but has a distinct Einstein-Hilbert term 28 as well as a Rθθ due to the would-be topological term (85). Note that (152) applies to both the SU(n) as well as the U (1) contributions to induced gravity, because all fields in the loop (abelian or nonabelian) couple in the same way to external U (1) legs. Thus there will be no induced gravitational action above the scale Λ of N = 4 SUSY breaking. What happens below that scale depends on the specific breaking mechanism, which could be due to some Higgs effect, fermion condensation, or some other unknown mechanism. The Rθθ may be problematic due to the explicit presence of θ µν which breaks Lorentz invariance. This term might disappear due to fluctuations of θ µν , or due to suitable SSB such that the contributions from gauge fields and fermions cancel, or by counterterms in the matrix model (154). Then the effective gravitational action can take the desired Einstein-Hilbert form

Γ grav = 1 16π 2 d 4 x Λ 4 1 + R[G] Λ 2 4 + O(log Λ) (153) 
plus possibly some additional terms as above. Higher-order contributions in the curvature will be suppressed by powers of 1 Λ ; note that in induced gravity there is no coupling constant of negative mass dimension unlike in GR. Moreover, there are no unstable modes in the matrix model unlike in GR. Furthermore the strong RG running of the U (1) sector is cut off at the NC scale. All this suggests that the quantization of gravity in this model should be well-defined and under control. This would be jeopardized in the presence of higher-order terms such as (154), requiring and a more sophisticated RG-type analysis. In any case, the model certainly provides an exciting new approach to quantum gravity.

Higher-order terms in the matrix model

As shown recently [START_REF] Blaschke | Curvature and Gravity Actions for Matrix Models[END_REF], the above induced gravitational actions can be identified with higherorder terms in the matrix model. In particular,

Tr[[X a , X c ], [X c , X b ]][X a , X b ] ∼ d 4 x √ ge σ e -σ 2 θ µη θ ρα R µηρα + ∂ µ σ∂ µ σ Tr [X a , T bc ][X a , T bc ] + T ab X a X b ∼ d 4 x √ g (D -4)e σ g e σ -2e 2σ R (154) 
assuming g µν = G µν , where X a ≡ [X c , [X c , X a ]], and matrix indices are lowered with η ab . A matrix expression for e σ g e σ term can also be found. This could be used to cancel unwanted contributions in the induced action, and to study systematically the quantization of gravity through purely bosonic matrix models.

Macroscopic description: Harmonic branch and Einstein branch

In this final section, we want to discuss the low-energy effective gravity theory arising from the D = 10 matrix model, trying to minimize any explicit reference to the detailed noncommutative origin. We will derive equations of motion for gravity coupled to matter in the semi-classical limit, assuming that g µν = G µν with appropriate (anti-) self-dual θ µν . This should be a very good approximation even in the presence of matter. Our starting point is the semi-classical effective action of the matrix model (119) together with the action for matter, as well as the Einstein-Hilbert action R[g] induced at one-loop 

S = d 4 x |g| (Λ 2 4 R -2Λ 4 
where G µν = R µν -1 2 g µν R is the Einstein tensor, and T µν is the energy-momentum tensor for matter (recall that matter and fields couple to the effective metric essentially in the standard way). The crucial point is now that the fundamental geometrical degrees of freedom are not the g µν , but the embedding fields φ i as well as X µ resp. θ µν . The most general variation can thus be decomposed into variations of g µν = η µν + ∂ µ φ i ∂ ν φ i and variations of θ µν . The e.o.m. for θ µν are satisfied for g µν = G µν to an excellent approximation as explained above. The variation of S with respect to the fundamental fields φ i can be written in matrix coordinates

x µ = X µ using δg µν = ∂ µ φ i ∂ ν δφ i + ∂ µ δφ i ∂ ν φ i as δS = d 4 x |g| δg µν H µν = -2 d 4 x δφ i ∂ µ ( |g| H µν )∂ ν φ i (157) 
up to boundary terms, where

H µν = 8πT µν -Λ 2 4 G µν -Λ 4 1 g µν . ( 158 
)
This leads to the equations of motion for

φ i ∂ µ ( |g| H µν ∂ ν φ i ) = 0, (159) 
which using the identity

∇ µ V µ ≡ 1 √ g ∂ µ ( √ g V µ ) can be written as Λ 4 1 g φ i = (8πT µν -Λ 2 4 G µν )∇ µ ∂ ν φ i + 8π(∇ µ T µν )∂ ν φ i (160) 
recalling ∇ µ G µν = 0. This equation has 2 types ("branches") of solutions:

1. "Harmonic branch":

The first class of solutions

∂ µ ( |g| H µν ∂ ν φ i ) = 0, H µν = 0 (161)
can be interpreted as solutions of a deformed Laplacian. The prototype of such a solution is flat Minkowski space φ i = 0. Remarkably, this is a solution for arbitrarily large vacuum energy resp. Λ 1 > 0: the term d 4 x √ g Λ 4 1 is interpreted as brane tension rather than as cosmological constant. More generally if the vacuum energy dominates the matter density, (161) reduces to g φ i ≈ 0, leading essentially to minimal surfaces. As explained in more detail below, this leads to the near-realistic cosmological solutions of FRW type [START_REF] Klammer | Cosmological solutions of emergent noncommutative gravity[END_REF], which are stable and largely insensitive to the detailed matter content. Remarkably, Newtonian gravity is also obtained due to the brane tension, without even using the Einstein-Hilbert action. In that scenario it is natural to assume that Λ 4 Λ planck (162) so that the induced gravitational action and in particular the Rθθ term (151) are only small corrections and pose no strong constraints. Hence the harmonic branch may provide a solution of the notorious cosmological constant problem, which is a strong motivation for more detailed studies.

Another attractive feature of this harmonic branch is that its quantization should be comparably simple, as the embedding fields φ i are governed by a simple action with positive excitation spectrum. On the other hand, it is questionable if the solar system precision tests can be met, and more thorough studies are required.

"Einstein branch":

The above deformed harmonic equation (161) becomes void if H µν = 0; then M is in some sense a tensionless brane. This amounts precisely to the Einstein equations

Λg µν + G µν = 8πG T µν , (163) 
upon identifying 1 G = Λ 2 4 Λ G = Λ 4 1 . (164) 
In particular, the Planck scale should be identified as

Λ 4 ≈ Λ planck , (165) 
and the term d 4 x √ g Λ 4 4 appears to be a cosmological constant. Indeed using general embedding theorems [START_REF] Clarke | On the Global Isometric Embedding of Pseudo-Riemannian Manifolds[END_REF], any solution of the E-H equations can be realized (locally) using embeddings in D ≥ 10. This provides a realization of (induced) Einstein gravity through matrix models. Since the quantization is defined through the matrix model in a background-independent way, certain problems of quantizing gravity such as unstable modes are not expected to occur. This should provide a quantum theory of gravity very similar to general relativity, along with all the other fields in the IKKT model. Singularities should be resolved due to the quantum structure of space-time. On the other hand, the usual cosmological constant and its fine-tuning problems appears to arise again. However, the different parametrization of the geometry in terms of embedding rather than a fundamental metric might come to rescue: In the flat case, the first variation δ √ g due to transversal δφ i drops out (!), and the tangential variations are transmuted into variations of the Poisson tensor which also drop out as explained before. The same argument "almost" applies to near-flat geometries, which should thus be at least meta-stable even in the presence of large vacuum energy. It remains to be seen whether the c.c. problem can be solved in this way.

Hybrid solutions also conceivable where the rank of H µν is not maximal. This is expected in the presence of extra dimensions M = M 4 × K, where M 4 could be a solution of the Einstein equations while K could be e.g. a sphere (stabilized by a flux). Indeed the IKKT model provides just enough degrees of freedom for Einstein gravity on a 4-dimensional brane, but not for higher-dimensional ones. In the presence of additional terms in the matrix model such as T r(X a X b X c ε abc ) or T r(X a X b η ab ), new types of solutions arise. Cubic terms can be interpreted in terms of fluxes, and preserve the translational symmetry of the matrix model. The prototypical example of a solution in presence of a cubic term is the fuzzy sphere S 2 N , which is also a solution in the presence of a quadratic "mass" term.

The solar system precision tests clearly support the Einstein branch, and its realization in the present framework should be studied in detail; e.g. the Schwarzschild geometry will be discussed in [76]. On the other hand, the harmonic branch is very interesting because it leads to a stable cosmology which is remarkably close to what we see, and to interesting long-distance modifications of gravity. We will therefore discuss the harmonic branch in the remainder of this paper. Although at this early stage of investigation it does not appear to be fully realistic, some of the result might carry over into a modified Einstein branch.

Harmonic branch: gravity from branes with tension

Based on the general results above, we can start to explore the physical properties of gravity in this matrix model. In this section some preliminary and particular results for the "harmonic branch" of the model will be discussed, which may or may not be physically relevant. These solutions can be understood largely in terms of embedded branes M ⊂ R 10 with tension coupled to matter. We will identify an intuitive and physically appealing mechanism for (Newtonian, at least) gravity on the brane, which applies in a more general context.

Cosmological solutions

Consider first cosmological solutions of Friedmann-Robertson-Walker (FRW) type. These are characterized by spatially homogeneous and isotropic metrics

ds 2 = -dt 2 + a(t) 2 dΣ 2 , dΣ 2 = 1 1 -k 2 r 2 dr 2 + r 2 dΩ 2 (166)
where dΣ 2 is the metric on a 3-dimensional space with constant curvature, and a(t) is the cosmological "scale" parameter. There are essentially 3 possibilities: the space-like 3manifold is flat R 3 (denoted by k = 0), a 3 sphere S 3 with k = +1, or hyperbolic space H 3

where k = -1. In GR, such FRW solutions are obtained in the presence of a homogeneous matter distribution, which leads to the Friedmann equations for a(t).

In the present framework, we will look for solutions describing an embedding M 4 ⊂ R 10 with metric G µν = g µν of FRW type. We know from section 4.1 that this is a vacuum solution of the matrix model provided M 4 ⊂ R 10 is a minimal surface i.e. x a = 0, equipped with a (anti-) self-dual nondegenerate 2-form θ -1 µν . The presence of matter will in general modify these solutions, however they are expected to be a good approximation provided the vacuum energy Λ 4 1 dominates the energy density ρ due to matter. Thus we will assume that Λ 1 is at least of order eV , say, and increasing Λ 1 will only stabilize the solutions. This is in striking contrast with GR, where the vacuum energy resp. cosmological constant must be very precisely tuned to Λ 1 ≈ 2meV according to the ΛCDM model. This leads naturally to very reasonable solutions which are in remarkably good agreement with observations (leaving aside aspects related to the early universe such as the CMB, which need to be re-analyzed in the present framework).

Generalizing the one-parameter solutions in [START_REF] Nielsen | Minimal Immersions, Einstein's Equations and Mach's Principle[END_REF], the following embeddings of FRW geometry through minimal surfaces M 4 ⊂ R 10 were found in [START_REF] Klammer | Cosmological solutions of emergent noncommutative gravity[END_REF]:

x a (t, χ, θ, ϕ) =         R(t)     sinh(χ) sin θ cos ϕ sinh(χ) sin θ sin ϕ sinh(χ) cos θ cosh(χ)     0 x c (t)         ∈ R 10 (167) 
where

R(t) = a(t) cos ψ(t) sin ψ(t) (168) 
and η ab = diag(+, ...+, -, -, +, +). This leads to a FRW geometry with k = -1

ds 2 = -dt 2 + a(t) 2 dΣ 2 , dΣ 2 = dχ 2 + sinh 2 (χ)dΩ 2 (169) 
where r = sinh(χ). This is harmonic

x a = 0 provided 0 = (R(t) sinh(χ) cos θ) 0 = x c . (170) 
This leads to

3 1 a ( ȧ2 -1) + ä -ψ2 a = 0 (171) 5 ψ ȧ + ψa = 0 (172) 3 1 a ȧ ẋc + ẍc = 0. ( 173 
)
Similar solutions for k = +1 were also found which are however unrealistic, while for k = 0 only the one-parameter solution in [START_REF] Nielsen | Minimal Immersions, Einstein's Equations and Mach's Principle[END_REF] is known. The equations (173) can be integrated as follows:

( ȧ2 -1)a 6 + b 2 a -2 = d 2 = const a 5 ψ = b = const > 0 a 3 ẋc = d = const, (174) 
leading to a 2-parameter family of solutions; the case b = 0 was obtained before in [START_REF] Nielsen | Minimal Immersions, Einstein's Equations and Mach's Principle[END_REF]. For the Hubble parameter this implies

H 2 = ȧ2 a 2 = -b 2 a -10 + d 2 a -8 + 1 a 2 , ( 175 
) ä a = -3d 2 a -8 + 4b 2 a -10 . (176) 
For the early universe i.e. small a and b = 0, this leads to a big bounce with minimal size a 0 ∼ b 1/4 . There is a transition determined by d to a coasting universe at late times with ä < 0, ȧ → 1. The physics of the early universe in this model is quite different from standard cosmology and requires a more detailed analysis including matter29 ; however, it is a solid prediction that a(t) → t for late times, i.e. the solution approaches a Milne universe. This is in remarkable good agreement with the basic observations including the type Ia supernovae data [START_REF] Benoit-Levy | Do we live in a 'Dirac-Milne' universe?[END_REF], which are usually interpreted in terms of an accelerating universe.

Milne universe. The Milne universe is nothing but (a quarter of) flat Minkowski space R 4 + , with flat metric ds 2 = -dτ 2 + dr 2 + r 2 dΩ 2 written in terms of the variables τ = t cosh(χ), r = t sinh(χ).

Then this metric takes the form of a FRW metric with a(t) = t and k = -1,

ds 2 = -dt 2 + a(t) 2 (dχ 2 + sinh 2 (χ)dΩ 2 ). (178) 
This is the metric in the above solution for late times, which is expected to be valid as long as the vacuum energy Λ 4 1 dominates the energy density due to matter. The solution is now easy to understand: it is an almost-trivial embedding R 4 + ⊂ R 10 with a slight rotation in the early universe, like a twisted rubber sheet. Clearly such a solution is stabilized by large Λ 1 .

To obtain a reasonable theory of gravity, it remains to be shown that matter such as stars and galaxies lead to appropriate local perturbations of this cosmological solution, and reproduce at least Newtonian gravity. This indeed happens in this harmonic branch through an interesting mechanism, as we show next.

Perturbations and Newtonian gravity from brane tension

Now consider perturbations of the flat embedding R 4 ⊂ R D through the scalar fields φ i , leading to

g µν = η µν + ∂ µ φ i ∂ ν φ j δ ij ≡ η µν + h µν , (179) 
keeping only terms linear in h µν . Clearly we must keep contributions to 2nd order in φ i in order to get any non-trivial metric, hence Newtonian gravity will arise through a non-linear mechanism. We assume that G µν = g µν as discussed above, and focus on static metrics g µν , corresponding to static and somewhat localized matter distributions. Thus consider the following localized excitation of the embedding

φ i (x, t) = g(x)e iωt = g(x) cos(ωt) sin(ωt) , i = 1, 2 ( 1 8 0 )
with very small ω. This leads to the metric

ds 2 = -(1 -ω 2 g 2 ) dt 2 + (δ ij + ∂ i g∂ j g)dx i dx j , (181) 
which is static, because (180) is a standing wave rather than a traveling wave.

Harmonic gravity bags

Consider first vacuum excitations φ i 0 (x, t) for ρ = 0. Neglecting corrections due to the induced gravity action, the equation of motion is simply

φ i 0 (x) = 0 (182) 
which for spherical waves reduces to ∂ r (r 2 g )+ω 2 r 2 g(r) = 0. The unique localized spherically symmetric solution which is regular at the origin is g 0 (r) = g 0 sin(ωr) ωr , φ 0 (x) = g 0 (r) cos(ωt) sin(ωt)

with radial wavelength given by

L ω = 2π ω . (184) 
The effective metric (181) is

ds 2 = -(1 -ω 2 g(r) 2 ) dt 2 + (1 + (g ) 2 )dr 2 + r 2 dΩ 2 , (185) 
which allows to read off the effective gravitational potential U 0 seen by a static test particle:

g 00 = -(1 + 2U 0 ), 2U 0 (r) = -ω 2 g(r) 2 = -ω 2 g 2 0 sin(ωr) ωr 2 , (186) 
which satisfies

U 0 (r) ∼ -ω 2 r 2 , r → ∞ -1 2 g 2 0 ω 2 , r ∼ 0 (187) 
Thus U (r) describes an attractive "gravity bag' with size L ω , decreasing as 1 r 2 for r > L ω . Due to the attractive gravitational force, matter will tend to accumulate inside these gravity bags. In particular, large clusters of matter such as galaxies will be embedded in such gravity bags. The essential point is that the matter within such a gravity bag will experience Newtonian gravity, due to a local deformation of the gravity bag.

Perturbed gravity bags, Newtonian gravity and Poisson equations

To understand the mechanism, consider first a spherically symmetric static mass density ρ around the origin within the radius r M . For r > r M , φ i (x) is again a solution of φ i = 0 and therefore must have the form

φ i = g(r)e iωt , g(r) = g 0 sin(ωr + δ) ωr ∼ g 0 (cos(δ) + sin(δ) ωr ) (188) 
assuming ωr 1. The phase shift δ 1 is due to the presence of matter at the origin, and is the key for obtaining Newtonian gravity. The effective metric (185) becomes

g 00 = -1 + g 2 0 ω 2 cos(2δ) + g 2 0 ω sin(2δ) r + O(( δ r ) 2 ) + O(r) ( 1 8 9 )
and similarly for g rr ; the correction terms will be discussed later. This corresponds to a gravitational potential which for intermediate distances sin δ ωr 1 ( 1 9 0 ) is well approximated by a 1 r potential with a constant shift,

U (r) = - 1 2 ω 2 g 2 ≈ U 0 - g 2 0 ω sin(2δ) 2r , U 0 ≈ - 1 2 ω 2 g 2 0 . (191) 
The phase shift δ indeed turns out to be proportional to M, which gives Newtonian gravity.

To understand this more generally, consider the e.o.m. (160) for φ i coupled to matter,

η φ i = 8π Λ 4 1 T µν ∂ µ ∂ ν φ i , T µν ≡ T µν - Λ 2 4 8π G µν (192) 
replacing g ≈ η and using ∇ µ T µν = 0. Assuming ρ(x) = T00 ≥ 0 and Tij ≈ 0 in the presence of (non-relativistic) matter 30 , this becomes

Λ 4 1 φ i = 8πρ∂ 2 0 φ i . ( 193 
)
The solution of this equation depends on the amplitude of the background "gravity bag" φ 0 (x) outside of the matter distribution. Since we are interested in the gravitational field where |δg| g 0 (x) ≈ g 0 (0) is varying on short scales according to ρ(x), while g 0 (x) is slowly varying at the scale L ω . Thus g 0 (x) reflects the average mass distribution in the galaxy resp. a large cosmic structure, while δg(x) is a small local perturbation due to e.g. a single star, as illustrated in figure 1. The separation g(x) = g 0 (x) + δg(x) corresponds to the splitting in (188). Now it makes sense to linearize in δg(x); this is the crucial step. Then (193) gives

(∆ + ω 2 )g = -8πω 2 ρ Λ 4 1 g(x). (195) 
which for g(x) = g 0 (x) + δg(x) with δg g 0 implies

(∆ + ω 2 )δg = -8πω 2 ρ Λ 4 1 (g 0 + δg) ≈ -8πω 2 ρ Λ 4 1 g 0 . (196) 
The gravitational potential is then given by

U (x) = U 0 -ω 2 g 0 δg(x) + O(δg 2 ) ( 1 9 7 ) (cf. ( 191 
)), which under the above assumptions satisfies

(∆ + ω 2 )U (x) ≈ -ω 2 g 0 (∆ + ω 2 )δg(x) = 8πω 4 g 2 0 ρ(x) Λ 4 1 . (198) 
This is the desired Poisson equation

∆U ≈ 4πG (ρ(x) + Λ 4 1 8π ) = 4πG ρ(x) -Λ eff (199) 
where we identify

G = 2g 2 0 ω 4 Λ 4 1 = -4U 0 ω 2 Λ 4 1 , (200) 
Λ eff = - 1 2 GΛ 4 1 = 2U 0 ω 2 , (201) 
U 0 = - 1 2 g 2 0 ω 2 . ( 202 
)
has approximately the form of a Schwarzschild-de Sitter metric with apparent negative (!) cosmological constant Λ eff and a constant shift [START_REF] Rindler | Relativity: Special, General, And Cosmological[END_REF],

g 00 ≈ -1 + 2U 0 - 2GM r - 1 3 Λ eff r 2 (206) 
assuming r < L ω . The Newtonian term dominates the Λ eff r 2 term provided the vacuum energy E vac (r) = 4πr 3 3 Λ 4 1 is smaller than M. We then obtain Newtonian gravity with potential

U (r) ≈ U 0 - GM r . ( 207 
)
The radial part of the effective metric turns out to be

g rr ≈ 1 + 1 3 2GM r - 1 9 Λ eff r 2 - GM r 1 2Λ eff r 2 GM r (1 + ω 2 r 2 ) + O(r 3 ). ( 208 
)
The factor 1 3 differs from general relativity, and will be confirmed in section 7.4 using a different approach. This presents a challenge for the solar system constraints; however this might change in more sophisticated embeddings, and a more complete analysis is required before a reliable judgment can be given.

The basic result is that Newtonian gravity arises at intermediate scales, with significant long-distance modifications. Notice that the precise form of the induced gravitational action was never used up to now, rather gravity arises through a deformation of the harmonic embedding which couples to T µν . Thus the mechanism is quite different from GR.

Vacuum energy and cutoff. Inside the gravity bag, the vacuum energy Λ 4 1 > 0 contributes a positive energy density to the gravitational potential (199) within the harmonic gravity bag, leading to an additional gravitational binding. However for very large distances r ≥ L ω , the harmonic behavior

U (r) ∼ - 1 2 ω 2 g 2 0 sin 2 (ωr) r 2 (209) 
dominates and leads to a screening of gravity, smoothly merging g µν (x) → η µν with the flat metric of the Milne-like cosmology as discussed in section 7.1. Recall that cosmology does not lead to the usual stringent constraints on the vacuum energy here. An illustrative plot of U (x) = -1 2 ω 2 g(x) 2 in comparison with the terms in (206) is given in figure 2. This clearly shows that the Newtonian potential dominates for small r, while the vacuum energy term takes over for larger r until the potential is cut off effectively at L ω .

(Galactic) rotation curves. The non-relativistic orbital velocity v(r) around a central mass with the above metric is given for small distances r < L ω by This decreases like r -1/2 as in Newtonian gravity as long as E vac (r) < M, but for E vac (r) ≈ 4πM it starts to increase linearly like v ∼ |Λ eff | r until r ≈ L ω . At that scale, the harmonic cutoff becomes effective, leading to a decreasing rotational velocity v ∼ 1 r for large distances. An illustrative plot of v(r) compared with the Newtonian approximation is shown in figure 3. This idealized result hold only outside of the mass distribution, and will be modified e.g. in galaxies. One naturally obtains a slightly increasing rotation curve, which is indeed often observed. It remains to be seen whether this allows to explain the galactic rotation curves, providing an (partial?) alternative for dark matter. We only emphasize here that the qualitative behavior certainly goes in the right direction, and G = g 2 0 ω 4 Λ 4 1 may differ somewhat from galaxy to galaxy.

v(r) = √ U r = 2 GM r (1 + π 2 3 r 2 L 2 ω ) - 2 3 Λ eff r 2 . ( 210 
)

Local linearized effective action

The above analysis requires a non-linear treatment of the large-scale gravity bag. We now provide a local, linearized description of the same mechanism 31 . Consider a local neighbor-hood of a point p inside a gravity bag, using "free-falling" normal embedding coordinates ∂ µ φ i 0 | p = 0, g µν | p = η µν . Then the background gravity bag manifests itself in terms of a non-vanishing 2nd derivatives of the embedding32 

∂ µ ∂ ν φ i 0 = K i µν , φ i 0 (x) = 1 2 K i µν x µ x ν + O(x 3 ). ( 211 
)
For example, a spherical harmonic gravity bag φ 0 (x) = g 0 cos(ωt) sin(ωr) ωr leads near its center to 1 2 K µν x µ x ν = -1 2 g 0 ω 2 (t 2 + 1 3 (x 2 + y 2 + z 2 )). The advantage of this approach is that it allows to explore more general backgrounds, and indeed Ricci-flat metric perturbations are obtained for K i µν ∼ δ µν . The linearized action valid near p is given by

S lin [φ i ] = d 4 x (-Λ 4 1 h µν η µν + 8π T µν h µν ) = d 4 x (Λ 4 1 φ i φ j δ ij -8πφ i T µν ∂ µ ∂ ν φ j δ ij ) ( 2 1 2 )
using partial integration, recovering (192). We now add a small perturbation corresponding to a small mass distribution ρ, φ(x) = φ 0 (x) + δφ(x), φ 0 = 8π

T µν Λ 4 1 K µν . (213) 
which we assume to be static with T µν = δ µ,0 δ ν,0 ρ(x) for simplicity. We can then assume that δφ(x) is static (more precisely ∂ 2 0 δφ K 00 ), so that the effective action for δφ(x) can be written as S lin [δφ i ] = d 4 x (Λ 4 1 δφ i δφ j δ ij -8πδφ i T µν (2∂ µ ∂ ν φ j 0 + ∂ µ ∂ ν δφ j ) δ ij ) ≈ d 4 x (Λ 4 1 δφ i δφ j δ ij -16πδφ i ρK j 00 δ ij ) ( 2 1 4 ) omitting background terms. This is now reminiscent of scalar gravity where δφ couples essentially to ρ, cf. [START_REF] Shapiro | Scalar gravitation: A Laboratory for numerical relativity[END_REF]. The equation of motion for δφ i becomes

∆δφ i = 8π T µν K µν 1 Λ 4 1 ≈ 8πρK 00 1 Λ 4 1 + (gravity bag), (215) 
cf. (196). The effective metric has the form

g µν = η µν + ∂ µ φ i 0 ∂ ν φ j 0 δ ij + ∂ µ φ i 0 ∂ ν δφ j δ ij + ∂ µ δφ i ∂ ν φ 0 δ ij + ∂ µ δφ i ∂ ν δφ j δ ij (216) 
The mixed g 0i components can be eliminated using a change of variables x µ = x µ + ξ µ , ξ µ = -η µµ ∂ µ φ i 0 δφ j δ ij which gives

g µν = η µν -2K i µν δφ j δ ij + ∂ µ δφ i ∂ ν δφ j δ ij . (217) 
hidden from low-energy physics and enters only through the effective metric. The matrix model action can be written in a covariant i.e. geometric way, leading to reasonable effective actions which can be studied further. In particular the D = 10 models, notably the IKKT model, allow to describe generic 4-dimensional geometries, and can be expected to define a well-behaved quantum theory. Moreover, the Einstein-Hilbert action are obtained either upon quantization or as an additional higher-order term in the matrix model. Therefore the matrix model should provide a realization of Einstein gravity or some closely related gravity theory. Emergent gravity from matrix models therefore becomes a serious candidate for a realistic theory of gravity at the quantum level.

There are several aspects which make this framework very attractive from a theoretical point of view. First, its definition requires no classical-geometrical notions of geometry whatsoever. The geometry arises dynamically, which is very appealing from the point of view of quantum gravity and cosmology. Another fascinating aspect is that the matrix model framework leads naturally to a unified picture of gravitons and nonabelian gauge fields, which arise as abelian resp. nonabelian fluctuations of the basic matrices (covariant coordinates) around a geometrical background. The quantization around a such a background should be technically rather straightforward, similar to nonabelian gauge field theory. Nevertheless, more analytical and numerical work on the emergence and stability of 4-dimensional NC branes in matrix models is needed, particularly for the supersymmetric case [START_REF] Nishimura | Dynamical generation of four-dimensional space-time in the IIB matrix model[END_REF][START_REF] Azeyanagi | On Matrix Model Formulations of Noncommutative Yang-Mills Theories[END_REF].

Leaving aside its theoretical appeal, we can briefly summarize the physical aspects of the model as follows. 2 types of solutions have been identified, dubbed "harmonic branch" and "Einstein branch". The harmonic branch essentially describes branes with tension. The most interesting feature is that it naturally predicts a (nearly-) flat universe, resulting in luminosity curves e.g. for type Ia supernovae which are close to the observed ones (usually interpreted in terms of cosmic acceleration) without any fine-tuning. These and other longdistance modifications of gravity might also offer a mechanism for (partially?) explaining the galactic rotation curves, without requiring large amounts of dark matter. Moreover, flat space remains to be a solution even in the preesnce of large vacuum energy, which is very interesting in the context of the cosmological constant problem. However, the solar system precision tests may be a problem in the harmonic branch. These should be obviously satisfied in the Einstein branch, which has not yet been studied in this framework in great detail; see [76] for a realization of the Schwarzschild geometry. Generally speaking, the physical properties of emergent gravity are not yet sufficiently well understood. This applies in particular for the would-be U (1) gauge field which appear to behave as additional gravitational waves.

We conclude by stressing that the gravity "theory" under consideration is not based on some theoretical expectations, but is simply the result of a careful analysis of the semiclassical limit of this type of matrix models. Taking simplicity as a guideline towards a more fundamental theory, the matrix model appears to be an extremely appealing candidate for a quantum theory of fundamental interactions including gravity, and certainly deserves a thorough investigation.
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 1 Figure 1: sketch of embedding function g(x) with short-scale perturbations and long-distance oscillations
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 21 Figure 2: Gravitational potential U (x) compared with the Schwarzschild-de Sitter potential U 0 -MG r -1 6 Λr 2 (dashed line) and long-distance oscillations, for ω = 0.1, g 0 = 1, δ = 0.1.
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 3 Figure 3: Orbital velocity v(x) for a central point mass compared with Newtonian case: Newtonian domain, enhancement and cutoff, for ω = 0.1, g 0 = 1, δ = 0.1.

For a review of analogue models for emergent gravity see[START_REF] Barcelo | Analogue gravity[END_REF].

which would not simplify the problem of quantizing gravity in any obvious way.

in the Minkowski case, we will assume that the time-like matrices are anti-hermitian. This will be addressed in more detail below.

The particular embedding of R 2n ⊂ R D implied by this choice of variables is of course arbitrary, and will be generalized below.

The precise definition of this limiting process is non-trivial, and there are various definitions and approaches. Here we simply assume that the limit and the expansion in θ exist in some appropriate sense.

[START_REF] Taylor | M(atrix) theory: Matrix quantum mechanics as a fundamental theory[END_REF] A is the algebra generated by X µ = I(x µ ), or some subalgebra corresponding to well-behaved functions.

Since Mat(∞, C) is irreducible, this implies that θ µν as defined in (47) is non-degenerate.

This does not exclude the existence of compactified physical extra dimensions in the matrix model.

In fact the next-to-leading order corrections are expected to be suppressed by O(θ 2 ), because one can choose a star product[START_REF] Kontsevich | Deformation quantization of Poisson manifolds, I[END_REF] such that [f, g] = i{f, g} + O(θ 3 ).

It is in general much smaller that the volume-preserving diffeos except in 2 dimensions, hence a comparison with unimodular gravity is quite inappropriate.

this was elaborated by A. Schenkel, unpublished

We drop sub-leading terms, such as 1 2 {A ρ , ∂ ρ Φ i } for the nonabelian scalars.

In particular, fermions should also be in the adjoint, otherwise they cannot acquire a kinetic term. This is not incompatible with particle physics, see e.g.[START_REF] Chatzistavrakidis | Orbifolds, fuzzy spheres and chiral fermions[END_REF][START_REF] Grosse | Noncommutative gauge theory and symmetry breaking in matrix models[END_REF].

Incidentally, the present Dirac operator on submanifolds is the analog of the operator used in Witten's proof of the positive energy theorem[START_REF] Witten | A Simple Proof Of The Positive Energy Theorem[END_REF].

for massless particles, the geodesics are independent of possible conformal factors. Masses should be generated spontaneously, which is not studied here.

Of course this holds only at p and does not extend into a local neighborhood of p ∈ M.

A reader not comfortable with such a complexified θ µν may prefer to stick with the Euclidean case and postpone the issue of Wick rotation.

It was argued in[START_REF] Rivelles | Noncommutative field theories and gravity[END_REF] that these metric perturbations generally correspond to pp waves.

recall that we use ε 0123 = i in the Minkowski case.

This is strongly reminiscent of the picture of[START_REF] Sheikh-Jabbari | Open strings in a B-field background as electric dipoles[END_REF][START_REF] Bigatti | Magnetic fields, branes and noncommutative geometry[END_REF] where open strings act as dipoles in the presence of a B-field background.

gauge fields can thus be viewed as analogs of Nambu-Goldstone bosons, where the gauge symmetry is realized non-linearly. This is a beautiful insight provided by NC gauge theory.

The generalization to the Minkowski case is mathematically more subtle, but formally the same derivation applies and preserves the basic oscillating character of the vertices. This should be well-defined at least in the case of (softly broken) N = 4 SYM, consistent with the concept of Wick rotation discussed previously.

pµkν θ µν in the nonplanar loop integral due to the non-commutativity are small and thus well reproduced by the semi-classical Poisson structure incorporated in G µν .[START_REF] Doplicher | The Quantum structure of spacetime at the Planck scale and quantum fields[END_REF] there is also a particular N = 1 model with that property[START_REF] Jack | Ultra-violet finiteness in noncommutative supersymmetric theories[END_REF], which however has the same field content and is closely related to the IKKT model. More general soft SUSY breaking terms (i.e. quadratic and cubic terms in the matrix model) should also be admissible.

This term can be expressed in terms of intrinsic quantities including θ µν .

This is the reason why even N = 2 NC SUSY gauge theories do have UV/IR mixing.

In particular the consistency with the CMB data cannot be reliably addressed at this point, see however[START_REF] Benoit-Levy | Do we live in a 'Dirac-Milne' universe?[END_REF] for the simplified case of an exact Milne universe. The above refined solutions yield a big bounce and an early phase with power-law acceleration[START_REF] Klammer | Cosmological solutions of emergent noncommutative gravity[END_REF], but the incorporation of matter is still missing.

This is not evident, as the simple embeddings below will generally not lead to G ij = 0. It might be justified either for more sophisticated embeddings, or -more interestingly -if Λ 4 Λ planck which is very appealing as we will see.

I am indebted to N. Arkani-Hamed for illuminating discussions and insights related to this section.

K i µν is essentially the 2nd fundamental form.

Acknowledgments I would like to thank N. Arkani-Hamed for illuminating discussions and hospitality at the IAS Princeton, as well as D. Blaschke, R. Brandenberger, H. Grosse,

Note that G is naturally small since |U 0 | ≤ 1 and L ω is large. The correction due to Λ 4 1 can be identified as effective vacuum energy resp. apparent negative cosmological constant Λ eff . If ρ Λ 4 1 this reduces to the usual Poisson equation of Newtonian gravity, ∆U = 4πG ρ. Corrections to the Newtonian approximations will be discussed below.

We conclude that localized matter ρ inside a gravity bag is subject to Newtonian gravity, with a dynamically determined gravitational "constant" G given by (200). For example, two stars or planets would lead to local perturbations

where δg i are perturbations due to object ρ i . They both see the same g 0 and ω, thus the same gravitational constant G, and Newtonian gravity is recovered on scales shorter than L ω . However at very long scales L ω and near the border of the galaxy resp. the gravity bag, the effective gravitational constant will vary. The role of the "extrinsic curvature" of the gravity bag and its brane tension will be clarified in section 7.4 using a different approach.

Gravitational (non-)constant G. Since L ω , g 0 and therefore G are dynamical here, the question arises why G would be at least approximately the same in different parts of the universe. A possible explanation might be as follows: Galaxies are typically parts of large structures such as (super)-clusters and filaments, which should provide the dominant contribution to the brane embedding and hence to G. Given the homogeneity of the CMB background, it is plausible that similar scales for g 0 (x) arise on these dominant cosmic structures. As a consistency check, one can show that ω and g 0 of gravity bags propagating in a flat Milne resp. Minkowski background remain essentially constant in time [START_REF] Steinacker | On the Newtonian limit of emergent NC gravity and long-distance corrections[END_REF].

Hence we obtain at least a crude approximation of the universe as we see it at late times, with far less fine-tuning than in the standard model. One may hope that a fully realistic picture will arise in a more sophisticated treatment.

Beyond Newtonian gravity

Now consider spherically symmetric mass distribution ρ(r) at the origin. A more careful analysis [START_REF] Steinacker | On the Newtonian limit of emergent NC gravity and long-distance corrections[END_REF] shows that the time-component of the effective metric is given by

We assume that the Newtonian potential due to M is smaller than the background potential

Then O(M 2 /r 2 ) term can be neglected, and the vacuum energy term (as well as the Newtonian potential) dominates the linear term,

Thus we recover the Newtonian potential U (x) = K i 00 δφ j δ ij as in (197), which according to (215) satisfies

The gravitational constant G is determined by

in agreement with (200). In the case of a point mass M and a harmonic gravity bag, this gives

The factor 1 3 agrees with our previous result (208), and stems from the harmonic form of the gravity bag. It is not hard to see [76] that the leading Ricci-flat metric perturbation

of linearized GR is obtained for K µν = 1 2 δ µν K. For static δφ, this gives for the Einstein tensor G 00 ∼ 8πGρ and G

ii = 0, consistent with GR. In other words, a gravity bag with the form φ0 = cos(ωt) sin(kr) kr

with k 2 = 3ω 2 would lead to a Ricci-flat local deformation h µν ; however it is not clear why such a background should arise. We conclude by pointing out that the effective gravitational constant G in the harmonic branch is governed by the extrinsic geometry K i µν of a "gravity bag", whose intrinsic geometry may be (almost) flat. This is an interesting mechanism which deserves to be studied in detail, and it remains to be seen whether a more sophisticated version will modify the detailed properties and perhaps reconcile it with general relativity.

Conclusion

The foundations of the matrix-model approach to (emergent) gravity are presented. The effective geometry of noncommutative space-time branes M θ ⊂ R D is identified in the semiclassical limit, and the effective action for fields, matter and geometry is given. Fluctuations of the matrices around such a background lead to fields and matter on M θ , and the commutators in the matrix model become derivative operators which act on these fields. Hence the noncommutative nature of M θ is essential for this mechanism, nevertheless θ µν is largely

Appendix A: Some identities

The following is a useful identity for Poisson tensors:

For our restricted class of metrics, this identity together with

Appendix B: Identity for θ µν

To obtain a covariant equation for θ µν , recall the following identity derived in ( [START_REF] Steinacker | Emergent Gravity and Noncommutative Branes from Yang-Mills Matrix Models[END_REF], Appendix B)

µν which in (any) matrix coordinates can be written as

which gives

This is interesting, because it shows that θ µν captures some of the extrinsic geometry of M ⊂ R D through the last term. In particular, the conservation law (107) implies ∂ µ x a G x a = 0 (227) [START_REF] Steinacker | Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models[END_REF], which holds identically for g µν = G µν .