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Abstract
We perform an analysis of the dynamics of the circular, restricted, planarthree–body

problem under the effect of different kinds of dissipation (linear, Stokes and Poynting–
Robertson drags). Since the problem is singular, we implement a regularization technique
in the style of Levi–Civita. The effect of the dissipation is often to decreasethe semi–major
axis; as a consequence the minor body collides with one of the primaries. In general, it
is quite difficult to find non–collision orbits using random initial conditions. However, by
means of the computation of the Fast Lyapunov Indicators (FLI), we obtaina global view
of the dynamics. Precisely, we detect the regions of the phase space potentially belonging
to basins of attraction. This investigation provides information on the different regions
of the phase space, showing both collision and non–collision trajectories. Moreover, we
find periodic orbit attractors for the case of linear and Stokes drags, while in the case of
the Poynting–Robertson effect no other attractors are found beside theprimaries, unless a
fourth body is added to counterbalance the dissipative effect.

Keywords. Three–body problem, dissipative effects, regularizationtheory.
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1 Introduction

Dissipative effects play a key role in Solar System dynamics. One of the most important mech-
anisms of dissipation is the Poynting–Robertson (hereafterPR) effect (see [4]), which is due
to the solar radiation incident on a particle. Numerical experiments on the dynamical conse-
quences of the PR effect in a three–body problem have been carried out since the ’80s (see,
e.g., [8]). Another important kind of non gravitational effect is the so–called Stokes drag; this
effect is due to the collisions of particles with the molecules of the gas nebula being present
during the formation of a planetary system.

The main effect of the dissipation is that of reducing the semi–major axis of the particle, which
is compelled to spiral toward the Sun. Resonances appear as the only mechanism which is able
to slow down the particle’s fall to the Sun; for this reason their role has been extensively stud-
ied in the framework of the three–body problem with PR or Stokes drags (see also [9] for
applications to exoplanets). It has been shown that interior resonances (namely, taking place
inside the orbit of the primary different from the Sun) cannot compensate the decrease of the
semi–major axis of the particle (compare with [8]). Moreover, the stationary pointsL4 and
L5 are shown to become unstable for both kinds of dissipation. An analytical study of the
linearized stability ofL4 andL5 is provided in [12], [13], while a numerical analysis of the
1:1 resonance, taking also into account the effect of the inclination and of the eccentricity, can
be found in [11]. It was shown in [1], [2], [3], [15] that, in the case of PR and Stokes drags,
exterior resonances (namely, outside the orbit of the otherprimary) may compensate the de-
crease of the semi–major axis and that stationary solutionsstill exist. Precisely, for the PR
effect the capture into resonance turns out to be only temporary ([2], [15]), although on times
long enough for statistical effects to be significant; for Stokes drag ([1]) stationary solutions
appear to be stable. Finally, the influence on dust grains of exterior resonances with the Earth
is investigated in [16], showing that some particles may be trapped, even for times of the order
of 105 years, in the planar, circular, restricted three–body problem.

The aim of the present paper is to study numerically the dynamics of the planar, circular, re-
stricted three–body problem under the effect of the dissipation. We consider the cases of a
linear drag, Stokes drag and PR effect (as a matter of fact, the linear drag is a special case of
the Stokes drag). As a particular case, we have considered a particle moving under the gravi-
tational effect of Sun and Jupiter. We investigate the existence of periodic attractors under the
different dissipations; linear and Stokes drag admit periodic orbits of different periods, while
we have not been able to determine periodic motions under thePR dissipation, unless a fourth
body (e.g., a Saturn–like body) is present in the system. To have a global view of the dynam-
ics, we compute the Fast Lyapunov Indicators (hereafter FLI, see [7], [6]), which require the
integration of the equations of motion and of the variational equations. Since the equations of
motion of the three–body problem are singular, particular care must be taken when performing
the numerical integration, especially in the dissipative context where particles often move to-
ward one of the singularities. To get rid of this problem we regularize the equations of motion
by implementing the Levi–Civita transformation ([18], see also [5] and [17] for applications).
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The study of the regularized tangent space in the conservative case can be found in [10], while,
as far as we know, this is the first analysis adopting regularization in the dissipative setting. The
global analysis of the phase space provided by the FLI shows the effects of the different kinds
of dissipation on the dynamics; we find that, even on short integration times, a large fraction
of test particles with initial conditions in the interior region collides with the Sun. Due to the
effect of the dissipation, orbits with close encounters with the Sun experience fast deflections
on collision orbits. In the exterior region, collisions occur mainly with Jupiter. When increas-
ing the strength of the dissipation or the integration time,a larger fraction of orbits collides
with one of the primaries. In general, the PR effect is fasterthan that provoked by Stokes and
linear drags. Through the computation of the FLI on quite long integration times in the Stokes
case, we show that certain portions of the space phase remainstable, at least up to this time.
Orbits in these regions are computed on much longer times providing the existence of attrac-
tors (different from the primaries) for some values of the parameterα (the ratio between the
velocity of the gas and the keplerian velocity at a given radius) up toα = 0.6. For the physical
value, for exampleα = 0.995 ([1]) used in the model of formation of the Solar System, we
could find only temporary stability. An interesting result of our investigation is that even when
dissipative effects are taken into account, there exist some regions where the particle stays save
from collisions with one of the primaries.
This paper is organized as follows: in Section 2 we describe the model problem in the dissi-
pative framework and the Levi–Civita regularization. Results on periodic attractors and on the
global analysis are provided in Section 3. Conclusions are detailed in Section 4; the computa-
tion of the regularized dissipative equations is provided in the Appendix.

2 The restricted three–body problem with dissipation

We consider theplanar, circular, restricted three–body problem,which is composed by three
bodies, say an asteroid moving in the gravitational field of two primariesP1, P2, with masses,
respectively,1 − µ, µ. It is assumed that the motion of the three bodies takes placeon the
same plane, that the relative motion of the primaries is circular and that (restricted problem)
the mass of the asteroid is so small that its influence on the primaries can be neglected. In the
following sections we will describe the equations of motionin the conservative setting as well
as with the effect of dissipation, both in the cartesian and regularized variables. In particular,
we shall consider a linear drag, the Poynting–Robertson dissipation and the Stokes drag.

2.1 Equations of motion in the conservative setting

We briefly present the equations of motion in the conservative framework, together with the
formulae necessary to derive the equations in the dissipative case as well as the corresponding
regularized equations. Let us consider an inertial reference frame, say(O, ξ, η), with origin
in the barycenter of the primaries, which are assumed to moveon a plane. Let(ξ, η) be the
coordinates of the asteroid; denoting by(ξ1, η1), (ξ2, η2) the coordinates of the primaries, the
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equations of motion of the asteroid can be written as ([12])

ξ̈ = µ
ξ1 − ξ

r3

1

+ (1 − µ)
ξ2 − ξ

r3

2

η̈ = µ
η1 − η

r3

1

+ (1 − µ)
η2 − η

r3

2

, (1)

wherer1, r2 denote the distances from the primaries:

r1 =
√

(ξ1 − ξ)2 + (η1 − η)2 , r2 =
√

(ξ2 − ξ)2 + (η2 − η)2 .

Let us introduce a synodic reference frame(O, x, y), rotating with the angular velocityn
of the primaries, wheren can be normalized to one, thanks to a proper choice of the units.
Let us choose the axes of the synodic frame so that the coordinates of the primaries become
(x1, y1) = (−µ, 0), (x2, y2) = (1 − µ, 0). The link between the synodic and the sidereal
reference frames is

ξ = x cos(t) − y sin(t)

η = x sin(t) + y cos(t) , (2)

while the distances of the asteroid from the primaries are now given by

r1 =
√

(x + µ)2 + y2 , r2 =
√

(x − 1 + µ)2 + y2 .

Computing the second derivative of (2) with respect to time and inserting the result in (1) one
obtains the equations of motion in the synodic frame:

ẍ = 2ẏ + x − (1 − µ)
x + µ

r1
3

− µ
x − 1 + µ

r2
3

ÿ = −2ẋ + y − (1 − µ)
y

r1
3

− µ
y

r2
3

.

2.2 Equations of motion in the dissipative case

The Stokes drag is a force experienced by a particle moving ina gas, and it is due to the
collisions of the particle with the molecules of the gas. In the frame of the protoplanetary
nebula, Stokes drag is used to describe the dissipative force acting on a particle moving around
a star. The gas is assumed to be in circular motion around the system’s barycenter; its angular
velocity is slightly smaller by a factorα, than the Keplerian velocity at the same distance.
The particle is assumed to be small or to move very slowly. In such a context, this effect can
be described as a dissipative force acting on the particle, modeled by a linear function of the
relative velocity of the particle with respect to the gas. Insynodic coordinates the components
(Fx, Fy) of the dissipative force take the form ([12]):

(Fx, Fy) = −k(ẋ − y + αΩy, ẏ + x − αΩx) , (3)
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wherek ∈ [0, 1) is the dissipative constant, depending on several physicalparameters ([1])
like the viscosity of the gas, the radius and the mass of the particle; Ω = Ω(r) ≡ r−3/2 is the
Keplerian angular velocity at distancer =

√

x2 + y2 from the origin of the synodic frame and
α ∈ [0, 1) is the ratio between the gas and Keplerian velocities ([13]). The equations of motion
with a Stokes dissipation read as

ẍ = 2ẏ + x − (1 − µ)
x + µ

r1
3

− µ
x − 1 + µ

r2
3

− k(ẋ − y + αΩy)

ÿ = −2ẋ + y − (1 − µ)
y

r1
3

− µ
y

r2
3

− k(ẏ + x − αΩx) .

Let us remark that the particular caseα = 0 corresponds to the linear drag with a dissipative
force given by

(Fx, Fy) = −k(ẋ − y, ẏ + x) .

The Poynting–Robertson force (see also [14]) is a non gravitational effect acting on a particle
moving around the Sun and it is due to the solar radiation incident on the particle. In the
synodic frame it takes the following form ([12]):

(Fx, Fy) = − k

r1
2

(

ẋ − y +
x

r1
2
(xẋ + yẏ), ẏ + x +

y

r1
2
(xẋ + yẏ)

)

.

One can split this force into two components. The first one is the drag component due to
the impact of the photons of the solar radiation with the particle; it can be described as a
force proportional and opposed to the velocity of the particle in the synodic frame, but with a
magnitude proportional to the inverse of the square of the distance from the Sun (because the
amount of light hitting the particle is proportional to the inverse of the square of the distance
from the Sun):

− k

r1
2
(ẋ − y, ẏ + x) . (4)

A second component represents the Doppler shift of solar radiation that hits the particle, due
to the fact that the particle is moving around the Sun:

− k

r1
4

((xẋ + yẏ)x, (xẋ + yẏ)y) ; (5)

we do not consider this contribution, since it decreases much faster than the drag component,
being proportional to the inverse of the fourth power of the distance from the Sun.
In conclusion, we consider the following equations of motion including the Poynting–Robertson
drag:

ẍ = 2ẏ + x − (1 − µ)
x + µ

r1
3

− µ
x − 1 + µ

r2
3

− k

r1
2
(ẋ − y)

ÿ = −2ẋ + y − (1 − µ)
y

r1
3

− µ
y

r2
3

− k

r1
2
(ẏ + x) ,

wherek ∈ [0, 1) is the dissipative constant.
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2.3 Regularized equations of motion

Since the equations of motion are singular at the primaries’locations, we now address the
question of writing the equations of motion in regularized variables ([18], [5]). Using standard
regularization theory, we define a change of coordinates, known as the Levi–Civita transfor-
mation, by introducing the parametric coordinates(u1, u2) through the expression

x = u1
2 − u2

2 + x0

y = 2u1u2 ,

wherex0 is the coordinate of the singularity, namelyx0 = −µ to regularize aroundP1 and
x0 = 1 − µ to regularize aroundP2. Next, we define a change of time by introducing the
regularized times related to the ordinary timet through the expression

dt = R ds , R ≡ u1
2 + u2

2 .

The regularized equations of motion read as

u′′

1
=

[

1

R

(

u′

1

2
+ u′

2

2 − 1 − µs

2

)

+
R

2

(

R + x0 − µs
R − xs

rs
3

)]

u1 + 2Ru′

2
+ Fu1

u′′

2
=

[

1

R

(

u′

1

2
+ u′

2

2 − 1 − µs

2

)

+
R

2

(

R − x0 − µs
R + xs

rs
3

)]

u2 − 2Ru′

1
+ Fu2

,

wherers = r2, µs = µ, xs = 1, x0 = −µ if we regularize inP1 and rs = r1, µs =
1 − µ, xs = −1, x0 = 1 − µ if we regularize inP2. The dissipative terms(Fu1

, Fu2
) are zero

in the conservative case, while in the dissipative case theytake the following expression:

(Fu1
, Fu2

) = (−k
R

2
[2u′

1
− (R − x0)u2] ,−k

R

2
[2u′

2
− (R + x0)u1]) (linear drag) ,

(Fu1
, Fu2

) = (−k
R

2
[2u′

1
− (R − x0)u2 + αΩ(R − x0)u2] ,

− k
R

2
[2u′

2
− (R + x0)u1 − αΩ(R + x0)u1]) (Stokes drag) .

Concerning the PR effect, since it is singular inr1 we need to distinguish two different cases:

• if we regularize inP1 then:

(Fu1
, Fu2

) =

(

− k

2R
(2u′

1
− u2(R − x0)),−

k

2R
(2u′

2
+ u1(R + x0))

)

;

• if we regularize inP2 then:

(Fu1
, Fu2

) =

(

−k
R

2r2

1

(2u′

1
− u2(R − x0)),−k

R

2r2

1

(2u′

2
+ u1(R + x0))

)

.

A detailed derivation of the equations of motion in the regularized variables is provided in the
Appendix.
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3 Periodic orbits and global behavior

3.1 Periodic orbits in the dissipative setting

We investigate the existence of periodic attractors under the different kinds of dissipation
introduced in Section 2. We assume that the primaries’ mass ratio amounts to9.537 · 10−4

(namely, the mass of Jupiter over the total mass of the primaries). The periodic orbits are de-
termined by applying a Newton’s method on the Poincaré map associated to the equations
of motion (for example one can take the Poincaré section by considering the crossing points
of the trajectories with the surfacey = 0, for instance); a continuation method is applied to
find the periodic orbits for different values of the parameters. In practical computations, we
start by selecting a grid of initial conditions in the orbital elements(a, e), beinga the semi-
major axis ande the orbital eccentricity. Then we derive the initial conditions through the
following algorithm. We first compute the energyE and the angular momentumL by means
of E = −1/(2a), L =

√

(1 − e2)/(−2E). Then we select initial conditions of the form
(x(0), y(0), px(0), py(0)) = (x0, 0, 0, py,0) with

x0 =
1 ±

√
1 + 2EL2

−2E
, py,0 =

L

x0

.

By a Newton’s method we look for the fixed point on the Poincaré map starting from the initial
condition(x0, 0, 0, py,0). Next we compute the period of the solution and we mark the orbital
elements(a, e) of the initial grid, which lead to a trajectory with given period. This strategy
allows us to determine the domain of convergence of Newton’smethod in the element’s plane
(a, e).
We start by looking for periodic orbits in the conservative casek = 0 and then we proceed
to analyze the dissipative case. In order to compute the occurrence of the periodic orbits and
to draw the domain of convergence of Newton’s method, we select a grid of100 × 100 initial
conditions in the orbital elements with0 < a ≤ 6 (remind that the distances between the
primaries has been set to one) and0 < e ≤ 0.5. For each initial condition, we implement a
Newton’s method to look for fixed points on the Poincaré section obtained by settingy = 0.
The results are shown in Figure 1, which provides the domain of convergence of Newton’s
method in the conservative case withk = 0: the left picture shows a grid over the semimajor
axis up to 6 times the Jupiter–Sun distance and for eccentricities up to 0.5; the right panel
shows a grid for the semimajor axis between 0 and 1. Almost allsolutions are represented by
the periodic orbits with periods 3, 4, 5, but there occur alsoa few periodic orbits with different
periods. Fork different from zero a continuation method can be implemented to detect periodic
attractors, which are found within the linear and Stokes drag models, while they do not occur
when using the three–body problem with the Poynting–Robertson drag. Figure 2 shows two
periodic orbits of period 3 and 4 in the conservative case andin the linear drag case with
k = 10−5; the corresponding initial conditions are provided in Table 1.
Stokes dissipation depends on the parameterα, which represents the ratio between the gas
and Keplerian velocities. Using a small value, for exampleα = 0.05, one can find the same
periodic orbits of the linear case. Increasingα these orbits are modified (Figure 3, left) and
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Figure 1: Domain of convergence of Newton’s method in the conservative case:+ denotes the
periodic orbit of period 3,× refers to period 4 and∗ to period 5 (respectively, red, green, blue
on the on–line version). Left: a grid over the semimajor axisbetween 0 and 6. Right: a grid
over the semimajor axis between 0 and 1.

Dissipation x(0) ẋ(0) y(0) ẏ(0)

Figure 2, left 0.63494347 −0.99563772 −1.19873351 0.18354021
Figure 2, right −1.75550227 0.19093344 −4.67132085 · 10−15 1.26477867
Figure 3,α = 0.05 −2.07095471 −0.272901991 −8.57062131 · 10−16 1.713523845
Figure 3,α = 0.1 −2.10810068 −0.270733105 −9.39068924 · 10−15 1.773488031
Figure 3,α = 0.11 −2.11821224 −0.270126714 −8.26276782 · 10−15 1.789917779

Table 1: Initial conditions of Figures 2 and 3, left.

they ultimately disappear when the parameter is too big, as it happens forα = 0.12. Let
us remark thatα = 0.12 is much lower than the typical physical value used for the model
of formation of the solar system (e.g.,α = 0.995 as in [1]). A question remains about the
dynamical stability of this kind of orbits; this task is approached through the global analysis
of the dynamics performed in Section 3.3.

3.2 Periodic orbits in a 4–body problem

So far we have seen that no periodic orbits can be found when adding the Poynting–Robertson
drag; in this case, in order to find periodic orbits, one needsto modify the model, for example
adding a third primary (e.g., a Saturn–like body), whose influence balances that of the two main
primaries. More specifically, we introduce a four–body model composed by the primariesP1,
P2, P3 with massesµ1, µ2, µ3 respectively (P1 is the inner body andP3 the outermost one).
Let S be a minor body moving in the gravitational field of the primaries. We consider an
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Figure 2: Periodic orbits of period 3 (left) and 4 (right) forthe conservative case (inner curve)
and under the linear drag withk = 10−5 (outer curve).

inertial reference frame with originO coinciding with the barycenter ofP1, P2 andP3. Let
rj be the distances ofPj from O for j = 1, 2, 3. As a first approximation we assume that
the three primaries move on fixed circular orbits around the origin, so thatr2 − r1 = 1 and
thatr3 − r1 = β for some constantβ > 0; the crude assumption that we do not consider the
interaction between Jupiter and the Saturn–like body represents a first approximation of the
real problem, which indeed should take into account also themutual interaction between the
two planets. Let us normalize the units such that the frequency of P2 is unity, which implies
thatµ1 + µ2 = 1 and that the distance betweenP1 andP2 is unity. By definition of the origin
we also have thatµ1r1 + µ2r2 + µ3r3 = 0. Let (Xj, Yj) be the coordinates (depending on
time) of Pj, j = 1, 2, 3, and let(x, y) be the coordinates of the asteroid, whose dynamics is
described by the Hamiltonian function

H(px, py, x, y, t) =
1

2
(p2

x + p2

y) − R(x, y, t) ,

wherepx, py are the momenta conjugated to the coordinates and

R(x, y, t) ≡ µ1
√

(x − X1)2 + (y − Y1)2
+

µ2
√

(x − X2)2 + (y − Y2)2
+

µ3
√

(x − X3)2 + (y − Y3)2
.

Let us identifyP1 with the Sun,P2 with Jupiter andP3 with Saturn; since Jupiter and Saturn
move approximately in a5 : 2 orbital resonance, by Kepler’s laws we can setβ = [2π · 5

2
]2/3.

Moreover, settingµ2 = µ, µ1 = 1 − µ for someµ > 0, one obtains that

r1 = −µ + µ3β

1 + µ3

, r2 =
1 − µ + µ3(1 − β)

1 + µ3

, r3 =
β − µ

1 + µ3

.

Let us now introduce a synodic reference frame, rotating with the angular velocity ofP2. To
this end, we introduce the generating function

W (px, py, q1, q2, t) ≡ pxq1 cos t − pxq2 sin t + pyq1 sin t + pyq2 cos t ,
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Figure 3: Left: Periodic orbits of period 3 with Stokes drag for k = 10−5 andα = 0.05 (inner
curve),α = 0.1 (intermediate curve),α = 0.11 (external curve). Right: Periodic orbits of
period 3 in the conservative case (external curve) and with Poynting–Robertson drag, using
the Sun–Jupiter–Saturn model (inner curve) withk = 10−4 andµ3 = 10−5µ.

such that

x = q1 cos t − q2 sin t

y = q1 sin t + q2 cos t

px = p1 cos t − p2 sin t

py = p1 sin t + p2 cos t .

Due to the assumptions on the circular motion of the primaries, we can set

X1 = r1 cos t Y1 = r1 sin t

X2 = r2 cos t Y2 = r2 sin t

X3 = r3 cos(
2

5
t) Y3 = r3 sin(

2

5
t) .

Therefore the new Hamiltonian is given byH ′ = H − ∂W
∂t

, namely

H ′(p1, p2, q1, q2, t) =
1

2
(p2

1
+ p2

2
) + p1q2 − p2q1 − R′(q1, q2, t) ,

where

R′(q1, q2, t) ≡ µ1
√

(q1 − r1)2 + q2

2

+
µ2

√

(q1 − r2)2 + q2

2

+
µ3

√

q2

1
+ q2

2
+ r2

3
− 2r3(q1 cos((2

5
− 1)t) + q2 sin((2

5
− 1)t)

.

Next, we write the equations of motion associated to the above Hamiltonian and then we add
the dissipative component. The periodic orbits are determined using a continuation method
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from the conservative case withk = 0. As starting point, the orbital elements of Figure 1 have
been considered.
The existence of periodic orbits is confirmed in the linear and Stokes cases; periodic attractors
are also found when adding the Poynting–Robertson effect. Indeed, Figure 3 (right) shows the
usual periodic orbit of period 3 of the conservative case andthe periodic attractor (again with
period 3), which is found using the Poynting–Robertson dissipation withk = 10−4 and setting
µ3 = 10−5µ, beingµ = 9.537·10−4 (notice that the mass ofP3 is smaller than the astronomical
value for the mass of Saturn).

3.3 Analysis of the dynamics

A global behavior of the dynamics can be obtained through theanalysis of the so–calledFast
Lyapunov Indicator,hereafter FLI ([7], [6]), which is strictly related to the computation of
the largest Lyapunov exponent. Its definition is based on thefact that the norm of the tangent
vector over a finite interval of time is an indicator of the dynamical character of a trajectory
(periodic, quasi–periodic or chaotic). We denote byz(0) ≡ (x(0), ẋ(0), y(0), ẏ(0)) the vector
of the initial conditions and letv(0) ∈ R

4 be an initial unit vector. Given a set of differential
equations:

dz

dt
= F (z) , z = (x, ẋ, y, ẏ) ,

the time evolution of the tangent vectorv(t) is obtained by integrating the variational equations

dv

dt
= (

∂F

∂z
)v ,

where∂F
∂z

is the Jacobian matrix. We define the quantity FLI up to a giventimeT > 0 as

FLI(z(0), v(0), T ) ≡ log ‖v(T )‖ ,

where‖ · ‖ denotes the Euclidean norm. We compute the FLI for differentinitial conditions
z(0); its value is represented through a color scale, where the colors have the following mean-
ing:

• chaotic motions, which admit very high FLI, are representedby the light grey color1,

• collision orbits with one of the primaries are marked in black,

• the remaining values of the FLI, with colors ranging from grey to dark grey correspond
to orbits which are either stable, i.e. orbits which end up onan attractor, or quasi–stable,
i.e. orbits needing a time longer than the integration timeT to be destabilized.

1In the electronic version of the paper the reader can find color pictures: light grey will appear as yellow, grey
to dark grey colors will correspond from orange to blue colors.
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We remark that in order to compute the FLI we first integrate the regularized equations of
motion and the regularized equations for the evolution of the tangent vector, which are obtained
using the changes of coordinates described in the Appendix.When the timeT is reached, we
use the inverse transformation to go back to the physical space. Finally we calculate the FLI
as the logarithm of the norm of the tangent vector in the original coordinates.
The following set of figures is obtained by computing the FLI for a grid of480 × 640 initial
conditions regularly spaced in thex, y coordinates with−1.5 < x(0) < 1.5 and−1.125 <
y(0) < 2.875. The other initial conditions arėy = 0, while ẋ is computed from the value of
the Jacobi constant for the conservative case, which was setto 2.99047, i.e. the value of the
Jacobi constant at the Lagrangian pointsL4 andL5 with ẋ = 0 and ẏ = 0. We remark that
for this value of the Jacobi constant there are no zero velocity curves, i.e no forbidden regions
on thex-y physical space. The integration time is set equal toT = 100. The initial values
of the tangent vectors are the same for all the orbits of the grid in the physical coordinates.
Figure 4 provides the FLI for the conservative three–body problem. The left panel corresponds
to the computation of the FLI using the non regularized equations, while on the right panel the
computation is done with the regularized equations. In bothcases we use a Runge–Kutta–
Merson integration scheme (namely, a fourth order Runge–Kutta method with adaptive time
step for error control).

Figure 4: FLI map for the conservative case. The map is obtained integrating a grid of480×640
orbits, with an integration timeT = 100. Each point in the map corresponds to an initial
condition in thex-y plane. We seṫy(0) = 0 and we calculatėx(0) from the value of the Jacobi
constant, set to2.99047 which is the value at the Lagrangian pointL4 or L5 with ẋ = 0, ẏ = 0.
Left: non regularized equations; right: regularized equations.
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Both panels of Figure 4 reveal the presence of a large regular zone in the interior region with
respect to the 1:1 resonance, while a peculiar light grey structure reveals a chaotic dynamics
in the exterior region. When using non regularized equations, a light grey ring appears in the
middle of the regular interior zone. The orbits with initialconditions on the light grey ring
are those having the closest approach with the Sun within thetime T = 100. A check on the
preservation of the Jacobi constantC shows that for these orbits we obtain the worst energy
preservation, i.e. the relative variation with respect to the initial valueC(0) is of the order of
10−5, while it is lower than10−12 for all other orbits. This problem is due to the existence of the
singularity and it cannot be canceled, neither by changing the integration scheme, nor through
a better precision computation. Actually, the singularitymeans that the solution cannot be
expressed as a power series development about it, while usual integration schemes are based
on the development in power series of the solution. By using regularization, the problem is
solved and the light grey ring disappears. In the following we study the dissipative dynamics
using always the regularized equations.
Figure 5 refers to the three–body problem with Stokes drag for α = 0.995 (top) and PR–drag
(bottom) withT = 100, while Figure 6 refers to Stokes drag with a longer integration time,
namelyT = 5000. Each picture is computed for two values of the dissipative constant, namely
k = 10−5 (left panels) andk = 10−3 (right panels). In each panel we observe black zones,
which represent collision orbits (namely orbits which comecloser than10−2 to one of the
primaries). There is a wide black zone in the interior region: indeed, the orbits in this zone
are those with the closest approach to the Sun in the conservative case. Therefore, this is the
region of the phase space in which the dissipation, even a weak one (k = 10−5), affects in a
very short time (T = 100) the dynamics. Of course the size of the black region gets larger
as we increase the dissipation (right panels) and the integration time (Figure 6). In the case
of Poynting–Robertson drag the region of collision orbits turns out to be much larger than
that appearing in the case of the Stokes drag. This is probably due to the dependence of the
Poynting–Robertson drag on the inverse of the (square) distance from the Sun.
The light grey boundary of the collision region with the Sun in Figure 5 (bottom left) corre-
sponds to orbits which are interpreted as chaotic, but whosedistance remains larger than10−2

from the Sun withinT = 100. In all pictures we also observe orbits colliding with Jupiter;
they appear as black structures within the chaotic exteriorregion. When considering a longer
integration time, sayT = 5000, we find that the chaotic exterior region is almost completely
filled by orbits colliding with Jupiter fork = 10−5 (Figure 6, left panel); on the contrary,
for k = 10−3 (Figure 6, right panel) the fraction of orbits colliding with Jupiter turns out to
be smaller than that fork = 10−5. It is also interesting to observe that atT = 5000 we still
observe, in the exterior region, stable or quasi–stable zones (grey colors), which are almost un-
changed with respect to the computation forT = 100. Indeed, as shown in Figure 1, periodic
orbits are typically found outside the orbit of Jupiter, sayfor a ≥ 1. A detailed computation on
longer times for some initial conditions with FLI values lower than3 for α = 0.995 shows that
these orbits become unstable on times larger thanT = 5000. However it is remarkable that on
quite long times, we can detect regions of temporary stability through the FLI.
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Orbit label x(0) ẋ(0) y(0) ẏ(0)

A −2.09 −0.6071558 −0.5 1.713523845
B −2.1 −1.043882 −1. 1.713523845
C −1.9 0 0 1.713524

Table 2: Initial conditions of Figure 8.

3.4 Regions of stability and basins of attractions

The aim of this section is to use the FLI on long integration times (T = 5000) in order to
find orbits within given basins of attraction. To this end, wehave considered a neighborhood
of the periodic orbit of Figure 3 (left) forα = 0.05. Precisely, we have computed the FLI up
to T = 5000 for a set of500 × 500 initial conditions regularly spaced inx ∈ [−2.3,−1.8],
y ∈ [−1, 0.5] with ẏ = 1.713523845 (see Table 1, line 3) anḋx obtained from the Jacobi
constant of the periodic orbit of Figure 3 (left) withα = 0.05 (namelyC = 2.24409690). In
Figure 7 (left panel) we observe different regions (grey to dark grey colors, indicating stability
up toT = 5000) of various shapes embedded in a large collisional zone. A white circle denotes
the initial conditions forx andy of the periodic orbit of Figure 3 (left). It is interesting to
observe that the same FLI computation forα = 0.995 (Figure 7, right panel) provides the same
zones of stability up toT = 5000 as in the case withα = 0.05. A much longer integration
time would be necessary to confirm the stability of such regions, but this would require months
of CPU time. Indeed, the FLI values are useful to select initial conditions of orbits potentially
belonging to basins of attraction. For example, by choosingFLI values lower than3, which
seems to be a good experimental threshold (compare with points A, B and C in Figure 7; see
Table 2 for the corresponding initial conditions), we foundorbits going on different periodic
or point attractors forα = 0.05 (Figure 8, left column), while forα = 0.995 we observe only
a transitory attracting behavior (Figure 8, right column).Precisely the initial condition labeled
by A belongs to the basin of attraction of the periodic orbit of period three of Figure 3 (left),
while the orbit B belongs to the basin of attraction of another periodic attractor and the orbit
C goes to an attracting point. The computation of the LargestCharacteristic Number (whose
limit as time goes to infinity gives the Largest Lyapunov exponent) allows us to confirm on a
timeT = 106 the stability of these orbits in the caseα = 0.05 (Figure 9). Moreover, increasing
the value ofα, we have found that the orbit A belongs to the basin of attraction of the periodic
orbit of period three of Figure 3 (left) up toα = 0.25, the orbit B belongs to the same periodic
attractor up toα = 0.5, while the orbit C goes to an attracting point up toα = 0.6. In
conclusion, through the FLI charts we have a good indicationof the potentially stable zones
and of their shape. A detailed integration of single orbits allows us to confirm the long–term
stability and the nature of the attractor to which they belong.
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4 Conclusions

Using the regularized equations for the computation of the equations of motion and of the
variational equations, we performed a global study of the dynamics of the circular, restricted,
three–body problem under the effect of different kinds of dissipation. As it is well known,
the effect of the dissipation is that of decreasing the semi–major axis of orbits that collide
with one of the primaries. We have recovered this result, showing which are the regions of the
phase space affected by the dissipation even on very short time scales. Precisely, we found that
a large fraction of test particles with initial conditions in the interior region collides with the
Sun. Regular orbits having the closest approach with the Sun in the conservative setting are
the first to be affected by the dissipation. In the exterior region, collisions occur mainly with
Jupiter. When increasing the strength of the dissipation or the integration time, a larger fraction
of orbits ends on one of the primaries. In general, the effectof the PR drag is faster than those
associated to Stokes and linear drags. Moreover, we have found periodic orbit attractors for
the case of the linear and Stokes drags, while in the case of the Poynting–Robertson effect no
other non–trivial attractor (namely, not coinciding with one of the primaries) is found. In the
latter case, in order to find periodic orbits, we need to modify the model, for example adding
the action of a third primary (e.g., a Saturn–like body), whose effect turns out to balance that
of the two main primaries. In the case of the Stokes drag, a long time (T = 5000) FLI compu-
tation allows us to identify the size and the shape of the regions of the phase space potentially
belonging to basins of attraction. A longer integration of individual orbits is necessary to con-
firm the attracting dynamics. For the rather unphysical caseα = 0.05 we have found sizeable
regions behaving as basins of attraction. For moderate values ofα ≤ 0.6 we still find periodic
attractors or points attractors, while for the more physical caseα = 0.995 the stable behaviour
turns out to be only temporary. It is remarkable to find that even in the presence of drag there
are regions of the phase space, where the dynamics prevents the particle to collide with one of
the primaries.

Acknowledgments.A.C. and L.S. acknowledge the grants ASI “Studi di Esplorazione del
Sistema Solare” and PRIN 2007B3RBEY “Dynamical Systems and Applications” of MIUR.
FLI computations have been done on the “Mesocentre SIGAMM” machine, hosted by the
Observatoire de la Cote d’Azur.

5 Appendix: The regularized equations

The equations of motion of the three–body problem present two singularities at the primaries’
positions, namely atr1 = 0 andr2 = 0. In order to study the motion at collision or at close
encounters with the primaries one can implement regularization theory ([18], see also [5]).
The classical technique consists of a change of coordinates, a rescaling of the time, and the
use of energy preservation; the last ingredient must be avoided in the case of a dissipative
system. We provide here the details of the regularization ofthe equations of motion including
the dissipative terms.
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Let us write the equations of motion as

ẍ = 2ẏ + x − (1 − µ)
x + µ

r1
3

− µ
x − 1 + µ

r2
3

+ Fx

ÿ = −2ẋ + y − (1 − µ)
y

r1
3

− µ
y

r2
3

+ Fy , (6)

whereFx, Fy denote the two components of the dissipative force, whose explicit expression is
given in (3), (4), (5). We start by implementing the Levi–Civita transformation, which relates
the cartesian coordinates(x, y) to new variables(u1, u2) according to the following formulae:

(

x
y

)

=

(

u1 −u2

u2 u1

) (

u1

u2

)

+

(

x0

0

)

, (7)

wherex0 is the abscissa of the collision point that we will regularize, i.e.x0 = −µ for colli-
sions withP1 andx0 = 1 − µ for collisions withP2. Let us remark that the determinant of the
Levi–Civita matrix in (7) corresponds to the distanceR from the singularity, namely

R ≡ u1
2 + u2

2 =
√

(x − x0)2 + y2 ,

so thatR = r1 if we regularize inP1 andR = r2 if we regularize inP2. Then, we introduce a
fictitious times, which is related to the ordinary timet through the expression

dt = D ds ,

where the quantityD will be chosen later in order to regularize the equations of motion. We
denote by a prime the derivative with respect to the regularized time. It is easy to show that:

(

u′

1

u′

2

)

=
1

2R

(

u1 u2

−u2 u1

) (

x′

y′

)

(

u′′

1

u′′

2

)

= − R′

2R2

(

u1 u2

−u2 u1

) (

x′

y′

)

+
1

2R

(

u′

1
u′

2

−u′

2
u′

1

) (

x′

y′

)

+
1

2R

(

u1 u2

−u2 u1

) (

x′′

y′′

)

, (8)

whereR′ = 2(u1u
′

1
+ u2u

′

2
). Using the relation between the real and fictitious times one

obtains:
(

x′′

y′′

)

= Ḋ

(

x′

y′

)

+ D2

(

ẍ
ÿ

)

. (9)

Combining (8) and (9), the derivativesu′′

1
andu′′

2
are given by

u′′

1
=

(

D′

D
− R′

R

)

u′

1
+

u′

1

2 + u′

2

2

R
u1 +

D2

2R
(u1ẍ + u2ÿ)

u′′

2
=

(

D′

D
− R′

R

)

u′

2
+

u′

1

2 + u′

2

2

R
u2 +

D2

2R
(−u2ẍ + u1ÿ) ,
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whereẍ, ÿ must be expressed in terms of the new variables. To this end, using the equations of
motion (6) in cartesian coordinates, one obtains

ẍ =
4

D
(u1u

′

2
+ u2u

′

1
) + u1

2 − u2
2 + x0

− (1 − µ)
u1

2 − u2
2 + µ + x0

r1
3

− µ
u1

2 − u2
2 + µ − 1 + x0

r2
3

+ Fx(u1, u2, u
′

1
, u′

2
)

ÿ = − 4

D
(u1u

′

1
− u2u

′

2
) + 2u1u2 − (1 − µ)

2u1u2

r1
3

− µ
2u1u2

r2
3

+ Fy(u1, u2, u
′

1
, u′

2
) ,

where the distances from the primaries are now given by

r1 =
√

(u1
2 − u2

2 + x0 + µ)2 + (2u1u2)2

r2 =
√

(u1
2 − u2

2 + x0 − 1 + µ)2 + (2u1u2)2 .

Next we choose the factorD asD = R, which allows us to remove one of the singularities;
denoting byFu1

, Fu2
the components of the dissipative force in the regularized variables, the

equations of motion become :
• if we regularize inP1:

u′′

1
=

[

1

R

(

u′

1

2
+ u′

2

2 − 1 − µ

2

)

+
R

2

(

R − µ − µ
R − 1

r2
3

)]

u1 + 2Ru′

2
+ Fu1

u′′

2
=

[

1

R

(

u′

1

2
+ u′

2

2 − 1 − µ

2

)

+
R

2

(

R + µ − µ
R + 1

r2
3

)]

u2 − 2Ru′

1
+ Fu2

;

• if we regularize inP2:

u′′

1
=

[

1

R

(

u′

1

2
+ u′

2

2 − µ

2

)

+
R

2

(

R + 1 − µ − (1 − µ)
R + 1

r1
3

)]

u1 + 2Ru′

2
+ Fu1

u′′

2
=

[

1

R

(

u′

1

2
+ u′

2

2 − µ

2

)

+
R

2

(

R − 1 + µ − (1 − µ)
R − 1

r1
3

)]

u2 − 2Ru′

1
+ Fu2

.

The two cases can be written in compact form as

u′′

1
=

[

1

R

(

u′

1

2
+ u′

2

2 − 1 − µs

2

)

+
R

2

(

R + x0 − µs
R − xs

rs
3

)]

u1 + 2Ru′

2
+ Fu1

u′′

2
=

[

1

R

(

u′

1

2
+ u′

2

2 − 1 − µs

2

)

+
R

2

(

R − x0 − µs
R + xs

rs
3

)]

u2 − 2Ru′

1
+ Fu2

,

wherers = r2, µs = µ, xs = 1, x0 = −µ if we regularize inP1 andrs = r1, µs = 1−µ, xs =
−1, x0 = 1 − µ if we regularize inP2. We conclude by providing the explicit expression of
the dissipative terms as a function of the regularized variables, using the same regularization
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scheme; we also remark that the regularization itself is determined by the conservative part,
where the strongest singularities occur. In particular, weobtain

Fu1
=

R

2
(u1Fx + u2Fy)

Fu2
=

R

2
(−u2Fx + u1Fy) ,

where(Fx, Fy) must be expressed as functions of the new variables. In the case of the linear
drag we have

Fu1
= −k

R

2
(2u′

1
− u2(R − x0))

Fu2
= −k

R

2
(2u′

2
+ u1(R + x0)) .

For the Stokes drag, if we denote by(Dx, Dy) the components of the linear drag dissipation,
the components(Sx, Sy) of the Stokes drag are given by

Sx = Dx − kαΩy, Sy = Dy + kαΩx .

It remains to transform the term(−kαΩy, kαΩx) as

Fu1
= −k

R

2
(2u′

1
− u2(1 − αΩ)(R − x0))

Fu2
= −k

R

2
(2u′

2
+ u1(1 − αΩ)(R + x0)) .

Concerning the Poynting–Robertson effect, let us remark thatthe expression of the force is the
same as in the linear case except for the factor1/r2

1
. Since PR is singular inr1, we have two

different cases:

• if we regularize inP1 then:

Fu1
= − k

2R
(2u′

1
− u2(R + µ))

Fu2
= − k

2R
(2u′

2
+ u1(R − µ)) ;

• if we regularize inP2 then:

Fu1
= −k

R

2r2

1

(2u′

1
− u2(R − 1 + µ))

Fu2
= −k

R

2r2

1

(2u′

2
+ u1(R + 1 − µ)) .
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Figure 5: FLI map for the Stokes drag (top) forα = 0.995, and for the PR drag (bottom) with
T = 100. Left: k = 10−5, right: k = 10−3.
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Figure 6: FLI map of the Stokes case withα = 0.995 andT = 5000. Left: k = 10−5, right:
k = 10−3.
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A

B

C

Figure 7: FLI map of the Stokes case forT = 5000 in a neighborhood of the initial condition
for the periodic orbit of period 3 (see Table 1 and Figure 3, left). Left: α = 0.05, right:
α = 0.995. On the left panel the initial condition of the periodic orbit of period 3 is marked
with a white circle. The letters A, B, C denote the initial conditions of Figure 8 and of Figure 9,
top, middle and bottom panels, respectively.
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Figure 8: Orbits computed on a timeT = 106 and sampled every∆t = 100 with initial
conditions given in Table 2 (respectively, orbit A (top), B (middle), C (bottom)). Left column:
α = 0.05, right column:α = 0.995.
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Figure 9: Computation of the largest Lyapunov indicator for the orbits with initial conditions
given in Table 2 (respectively, orbit A (top), B (middle), C (bottom)) and plotted in Figure 8.
The line corresponds toα = 0.05 and the dots correspond toα = 0.995. In the caseα = 0.995
the computation is stopped, when the orbit escapes.
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