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Abstract

We perform an analysis of the dynamics of the circular, restricted, ptanee—body
problem under the effect of different kinds of dissipation (linear, 8&so&nd Poynting—
Robertson drags). Since the problem is singular, we implement a regtitarizgchnique
in the style of Levi—Civita. The effect of the dissipation is often to decréassemi—major
axis; as a consequence the minor body collides with one of the primariesnéral, it
is quite difficult to find non—collision orbits using random initial conditions. téger, by
means of the computation of the Fast Lyapunov Indicators (FLI), we obtgiabal view
of the dynamics. Precisely, we detect the regions of the phase spanéailytéelonging
to basins of attraction. This investigation provides information on the diffeesgions
of the phase space, showing both collision and non—collision trajectori@edver, we
find periodic orbit attractors for the case of linear and Stokes dragk mithe case of
the Poynting—Robertson effect no other attractors are found besigetharies, unless a
fourth body is added to counterbalance the dissipative effect.

Keywords. Three—body problem, dissipative effects, regularizatiwory.



1 Introduction

Dissipative effects play a key role in Solar System dynan@icge of the most important mech-
anisms of dissipation is the Poynting—Robertson (hereBf®reffect (see [4]), which is due
to the solar radiation incident on a particle. Numericaleskpents on the dynamical conse-
guences of the PR effect in a three—body problem have beeedaut since the '80s (see,
e.g., [8]). Another important kind of non gravitationalet is the so—called Stokes drag; this
effect is due to the collisions of particles with the molesubf the gas nebula being present
during the formation of a planetary system.

The main effect of the dissipation is that of reducing theisemajor axis of the particle, which
is compelled to spiral toward the Sun. Resonances appea asljhmechanism which is able
to slow down the particle’s fall to the Sun; for this reasoeithole has been extensively stud-
ied in the framework of the three—body problem with PR or 8toldrags (see also [9] for
applications to exoplanets). It has been shown that inteesonances (namely, taking place
inside the orbit of the primary different from the Sun) cahoempensate the decrease of the
semi—major axis of the particle (compare with [8]). Moregube stationary pointg,, and

L5 are shown to become unstable for both kinds of dissipationaAalytical study of the
linearized stability ofL, and Ls is provided in [12], [13], while a numerical analysis of the
1:1 resonance, taking also into account the effect of thenetton and of the eccentricity, can
be found in [11]. It was shown in [1], [2], [3], [15] that, in ¢hcase of PR and Stokes drags,
exterior resonances (namely, outside the orbit of the qitharary) may compensate the de-
crease of the semi—-major axis and that stationary solustihexist. Precisely, for the PR
effect the capture into resonance turns out to be only teampdf2], [15]), although on times
long enough for statistical effects to be significant; fook&s drag ([1]) stationary solutions
appear to be stable. Finally, the influence on dust graingtefier resonances with the Earth
is investigated in [16], showing that some particles mayaépegded, even for times of the order
of 10° years, in the planar, circular, restricted three—body lermb

The aim of the present paper is to study numerically the dyc&of the planar, circular, re-
stricted three—body problem under the effect of the disgipaWe consider the cases of a
linear drag, Stokes drag and PR effect (as a matter of faeljrtbar drag is a special case of
the Stokes drag). As a particular case, we have consideradial@ moving under the gravi-
tational effect of Sun and Jupiter. We investigate the erist of periodic attractors under the
different dissipations; linear and Stokes drag admit gkciorbits of different periods, while
we have not been able to determine periodic motions undd?heissipation, unless a fourth
body (e.g., a Saturn—like body) is present in the system.ale la global view of the dynam-
ics, we compute the Fast Lyapunov Indicators (hereafter §é&é [7], [6]), which require the
integration of the equations of motion and of the variatl@tpuations. Since the equations of
motion of the three—body problem are singular, particudse enust be taken when performing
the numerical integration, especially in the dissipatigatext where particles often move to-
ward one of the singularities. To get rid of this problem wgularize the equations of motion
by implementing the Levi—Civita transformation ([18], ségod5] and [17] for applications).



The study of the regularized tangent space in the conseewedse can be found in [10], while,
as far as we know, this is the first analysis adopting regrdéion in the dissipative setting. The
global analysis of the phase space provided by the FLI shiogvsftects of the different kinds
of dissipation on the dynamics; we find that, even on shoegiration times, a large fraction
of test particles with initial conditions in the interiorgien collides with the Sun. Due to the
effect of the dissipation, orbits with close encounterdiite Sun experience fast deflections
on collision orbits. In the exterior region, collisions acenainly with Jupiter. When increas-
ing the strength of the dissipation or the integration tiaéarger fraction of orbits collides
with one of the primaries. In general, the PR effect is fagtan that provoked by Stokes and
linear drags. Through the computation of the FLI on quiteyloriegration times in the Stokes
case, we show that certain portions of the space phase restadile, at least up to this time.
Orbits in these regions are computed on much longer timesding the existence of attrac-
tors (different from the primaries) for some values of theapaetera (the ratio between the
velocity of the gas and the keplerian velocity at a givenuaplup toor = 0.6. For the physical
value, for examplex = 0.995 ([1]) used in the model of formation of the Solar System, we
could find only temporary stability. An interesting resulbair investigation is that even when
dissipative effects are taken into account, there exises@gions where the particle stays save
from collisions with one of the primaries.

This paper is organized as follows: in Section 2 we deschieenodel problem in the dissi-
pative framework and the Levi—Civita regularization. Resolt periodic attractors and on the
global analysis are provided in Section 3. Conclusions ata&ldd in Section 4; the computa-
tion of the regularized dissipative equations is providethe Appendix.

2 The restricted three—body problem with dissipation

We consider thglanar, circular, restricted three—body problevhjch is composed by three
bodies, say an asteroid moving in the gravitational fieldvaf primariesP;, P,, with masses,
respectively,l — u, u. It is assumed that the motion of the three bodies takes madhe
same plane, that the relative motion of the primaries isutarcand that (restricted problem)
the mass of the asteroid is so small that its influence on tingapies can be neglected. In the
following sections we will describe the equations of motimthe conservative setting as well
as with the effect of dissipation, both in the cartesian awlilarized variables. In particular,
we shall consider a linear drag, the Poynting—Robertsofpdissn and the Stokes drag.

2.1 Equations of motion in the conservative setting

We briefly present the equations of motion in the consergdt@mework, together with the
formulae necessary to derive the equations in the diss@e#ise as well as the corresponding
regularized equations. Let us consider an inertial reflrdrame, say O, &, n), with origin

in the barycenter of the primaries, which are assumed to mave plane. Let¢, n) be the
coordinates of the asteroid; denoting @y, 1), (&, 72) the coordinates of the primaries, the



equations of motion of the asteroid can be written as ([12])

. a¢ &—¢
5 = MK T;lz, +(1_:u) 7’;’
R e (1)

wherer, r, denote the distances from the primaries:

rn=V(E -+ m-n?,  n=V(&-&+mn-n?.

Let us introduce a synodic reference fraii®, =, y), rotating with the angular velocity:

of the primaries, where can be normalized to one, thanks to a proper choice of the.unit
Let us choose the axes of the synodic frame so that the ca@tediof the primaries become
(x1,91) = (=u,0), (z2,92) = (1 — u,0). The link between the synodic and the sidereal
reference frames is

¢ = wcos(t) — ysin(t)
= xsin(t) + ycos(t) 2

while the distances of the asteroid from the primaries ave gigen by

n=VE 2ty = -1hp)?y?

Computing the second derivative of (2) with respect to time iaserting the result in (1) one
obtains the equations of motion in the synodic frame:

r+p x—1l+p

i = 20+ —(1—p)—

T1 T
.. . Y Y
= -2 —(1—p)—= —pn—=—.
i 4y — u)mg 7

2.2 Equations of motion in the dissipative case

The Stokes drag is a force experienced by a particle movirgy gas, and it is due to the
collisions of the particle with the molecules of the gas. e frame of the protoplanetary
nebula, Stokes drag is used to describe the dissipative &mting on a particle moving around
a star. The gas is assumed to be in circular motion around/gters’s barycenter; its angular
velocity is slightly smaller by a factas, than the Keplerian velocity at the same distance.
The particle is assumed to be small or to move very slowlyulthsa context, this effect can
be described as a dissipative force acting on the partiabeleted by a linear function of the
relative velocity of the particle with respect to the gassynodic coordinates the components
(F,, F,) of the dissipative force take the form ([12]):

(Fe, Fy) = —k(& —y + oQy,§ + 2 — ofdz) | 3)



wherek € [0, 1) is the dissipative constant, depending on several phyperameters ([1])
like the viscosity of the gas, the radius and the mass of thicf|g Q = Q(r) = r—3/2 is the
Keplerian angular velocity at distanee= /2 + y? from the origin of the synodic frame and
a € [0, 1) is the ratio between the gas and Keplerian velocities ([I3jg equations of motion
with a Stokes dissipation read as

T+ W r—1+p

i = 2y+z—(1—p) R — k(& —y+ ally)
_— : Yy Yy .
i = —2i+y ——(1-—-u);¥§<— e —k(y+ 2 —afdx).

Let us remark that the particular case= 0 corresponds to the linear drag with a dissipative
force given by

The Poynting—Robertson force (see also [14]) is a non gitawiial effect acting on a particle
moving around the Sun and it is due to the solar radiatiordart on the particle. In the
synodic frame it takes the following form ([12]):

(Fy, Fy) = —r—l; (x —y+ %(m‘c +yy),y+x+ %(m + yy)) :
One can split this force into two components. The first onenésdrag component due to
the impact of the photons of the solar radiation with the ipltit can be described as a
force proportional and opposed to the velocity of the pkatiic the synodic frame, but with a
magnitude proportional to the inverse of the square of teadce from the Sun (because the
amount of light hitting the particle is proportional to theverse of the square of the distance
from the Sun):

=), (@)

A second component represents the Doppler shift of solaatrad that hits the particle, due
to the fact that the particle is moving around the Sun:

~ia (@t +yy)z, (xd +y9)y) ; (5)
we do not consider this contribution, since it decreasesnfaster than the drag component,
being proportional to the inverse of the fourth power of tistathce from the Sun.

In conclusion, we consider the following equations of moicluding the Poynting—Robertson
drag:

r+p  rx—l4p k

e ona g (1 ko
i y+a—(1-p) o R 7“12(36 y)
.. . Y Y k .

- -9 (1= - -
i T+y—( u)m?, s rlg(y + ),

wherek € [0, 1) is the dissipative constant.



2.3 Regularized equations of motion

Since the equations of motion are singular at the primatasdtions, we now address the
question of writing the equations of motion in regularizediables ([18], [5]). Using standard
regularization theory, we define a change of coordinateswhkras the Levi—Civita transfor-
mation, by introducing the parametric coordinates u-) through the expression
r = u12—uQ2+x0
= 2uwuy,
wherez, is the coordinate of the singularity, namely = —u to regularize around, and

x9g = 1 — p to regularize around?. Next, we define a change of time by introducing the
regularized times related to the ordinary timethrough the expression

dt = Rds R=wu?+ uy?.

The regularized equations of motion read as

1 1-— R R — x;
ug:[_(u’eru’f— “S>+—<R+xo—us 3$)}U1+2Ru’z+f’ul

R 2 2 s
1 2 21— pus R R+,
uy = {}_?(U/l +uy” — 5 >+§ R —xo — s 3 uy — 2Ru} + F,, ,
wherery, = ry, us = u, rs = 1, xg = —p if we regularize inP, andry, = ry, us, =
1 —p,xs = —1, 29 = 1 — p if we regularize inP,. The dissipative termgF,,, F,,,) are zero
in the conservative case, while in the dissipative casettiaythe following expression:
R __, R __, .
(Fuy, Fuy) = <_k§ [2u] — (R — xo)us], —ka [2uy — (R+ zo)uy]) (linear drag) ,
R
(Fu, Fuy) = (—k; [2u] — (R — xo)ug + aQ2(R — xo)us] ,
R
— k§ [2uy — (R + z0)up — aQ2(R + xo)uy]) (Stokes drag) .

Concerning the PR effect, since it is singular-irwe need to distinguish two different cases:

¢ if we regularize inP; then:

(Furs Fo) = (= (20 = a2 = 20), = (2 4 (R + ) )

e if we regularize inP, then:

R R
(Funs Fo) = b3 2 (B = ), k5

2
1 1

(2uy + ui (R + xo))) :

A detailed derivation of the equations of motion in the reguzied variables is provided in the
Appendix.



3 Periodic orbits and global behavior

3.1 Periodic orbits in the dissipative setting

We investigate the existence of periodic attractors underdifferent kinds of dissipation
introduced in Section 2. We assume that the primaries’ matss amounts t@®.537 - 10~*
(namely, the mass of Jupiter over the total mass of the pr@s)arThe periodic orbits are de-
termined by applying a Newton’s method on the Poigcarap associated to the equations
of motion (for example one can take the Poircaection by considering the crossing points
of the trajectories with the surfage= 0, for instance); a continuation method is applied to
find the periodic orbits for different values of the param&tén practical computations, we
start by selecting a grid of initial conditions in the orbitdements(a, ¢), beinga the semi-
major axis anc: the orbital eccentricity. Then we derive the initial comalits through the
following algorithm. We first compute the energyand the angular momentumby means

of E = —1/(2a), L = /(1 —¢?)/(—2E). Then we select initial conditions of the form

(fL’(O), y(0)7 pr(0)7py<0>> = (Io, O, 0,])%0) with

1+vV1+2EL2 L
To = “9F ) py,ozm—o-

By a Newton’s method we look for the fixed point on the Poigaaap starting from the initial
condition(zo, 0,0, p, o). Next we compute the period of the solution and we mark théairb
elementgq, e) of the initial grid, which lead to a trajectory with given jed. This strategy
allows us to determine the domain of convergence of Newtme'thod in the element’s plane
(a,e€).

We start by looking for periodic orbits in the conservatiaset = 0 and then we proceed
to analyze the dissipative case. In order to compute thergauee of the periodic orbits and
to draw the domain of convergence of Newton’s method, wecsalgrid of 100 x 100 initial
conditions in the orbital elements with < a« < 6 (remind that the distances between the
primaries has been set to one) dne& e < 0.5. For each initial condition, we implement a
Newton’s method to look for fixed points on the Poireaection obtained by setting= 0.
The results are shown in Figure 1, which provides the domaooovergence of Newton’s
method in the conservative case with= 0: the left picture shows a grid over the semimajor
axis up to 6 times the Jupiter—Sun distance and for eccémsiaip to 0.5; the right panel
shows a grid for the semimajor axis between 0 and 1. Almosiadlitions are represented by
the periodic orbits with periods 3, 4, 5, but there occur al$ew periodic orbits with different
periods. Fok different from zero a continuation method can be implenetaeletect periodic
attractors, which are found within the linear and Stokeg a@nadels, while they do not occur
when using the three—body problem with the Poynting—Robertsag. Figure 2 shows two
periodic orbits of period 3 and 4 in the conservative caseiarttie linear drag case with
k = 107°; the corresponding initial conditions are provided in Eabl

Stokes dissipation depends on the parametfexhich represents the ratio between the gas
and Keplerian velocities. Using a small value, for example- 0.05, one can find the same
periodic orbits of the linear case. Increasimghese orbits are modified (Figure 3, left) and
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Figure 1: Domain of convergence of Newton’s method in theseovative caset+ denotes the
periodic orbit of period 3x refers to period 4 and to period 5 (respectively, red, green, blue
on the on-line version). Left: a grid over the semimajor desveen 0 and 6. Right: a grid
over the semimajor axis between 0 and 1.

| Dissipation z(0) i(0) y(0) (0) |
Figure 2, left 0.63494347 —0.99563772  —1.19873351 0.18354021
Figure 2, right —1.75550227 0.19093344 —4.67132085 - 1071%  1.26477867

Figure 3, = 0.05 —2.07095471 —0.272901991 —8.57062131 10716 1.713523845
Figure 3,0 = 0.1  —2.10810068 —0.270733105 —9.39068924 - 10~15 1.773488031
Figure 3, = 0.11 —2.11821224 —0.270126714 —8.26276782 1071 1.789917779

Table 1: Initial conditions of Figures 2 and 3, left.

they ultimately disappear when the parameter is too bigf &sppens forr = 0.12. Let
us remark thatv = 0.12 is much lower than the typical physical value used for the @hod
of formation of the solar system (e.gv, = 0.995 as in [1]). A question remains about the
dynamical stability of this kind of orbits; this task is appched through the global analysis
of the dynamics performed in Section 3.3.

3.2 Periodic orbits in a 4—body problem

So far we have seen that no periodic orbits can be found whidingithe Poynting—Robertson
drag; in this case, in order to find periodic orbits, one naeasodify the model, for example
adding a third primary (e.g., a Saturn—like body), whoseiarice balances that of the two main
primaries. More specifically, we introduce a four—-body maenposed by the primaries,,
P, P; with masses.y, usq, 13 respectively £ is the inner body ands; the outermost one).
Let S be a minor body moving in the gravitational field of the prirear We consider an
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Figure 2: Periodic orbits of period 3 (left) and 4 (right) the conservative case (inner curve)
and under the linear drag with= 10~° (outer curve).

inertial reference frame with origi® coinciding with the barycenter af;, P, and P;. Let

r; be the distances aP; from O for j = 1,2,3. As a first approximation we assume that
the three primaries move on fixed circular orbits around thgrm so thatr, — r; = 1 and
thatr; — r; = [ for some constant > 0; the crude assumption that we do not consider the
interaction between Jupiter and the Saturn—like body sgmts a first approximation of the
real problem, which indeed should take into account alsartbual interaction between the
two planets. Let us normalize the units such that the freqqeh P, is unity, which implies
thatu; + p = 1 and that the distance betwe&nand P, is unity. By definition of the origin
we also have thatr; + pors + pgrs = 0. Let (X;,Y;) be the coordinates (depending on
time) of P;, j = 1,2,3, and let(z, y) be the coordinates of the asteroid, whose dynamics is
described by the Hamiltonian function

1
H(pxapy7$7y7t) - E(pi +pg2;) - R(il?,y,t) )

wherep,, p, are the momenta conjugated to the coordinates and

H1 4 H2 X U3 '
VE-X)2+-%)? @ -X)+ 1 -Y2)? V(e — X5+ (y — V3)?

Let us identify P; with the Sun,P; with Jupiter andP; with Saturn; since Jupiter and Saturn
move approximately in & : 2 orbital resonance, by Kepler's laws we can Set [27 - 3]2/3.
Moreover, settingi; = p, u1 = 1 — p for somey > 0, one obtains that

R(z,y,t) =

Bt s m:l—wus(l—ﬂ) B—u

r = ) ) r3 = .
L+ ps L+ pg L+ ps

Let us now introduce a synodic reference frame, rotating tie angular velocity of%. To
this end, we introduce the generating function

W (pzs Dy, @15 G2, 1) = D1 cOSt — prgosint + pyqy sint + pygo cost



Figure 3: Left: Periodic orbits of period 3 with Stokes drag# = 10~° anda = 0.05 (inner
curve),a = 0.1 (intermediate curve)y = 0.11 (external curve). Right: Periodic orbits of
period 3 in the conservative case (external curve) and woynthg—Robertson drag, using
the Sun—Jupiter—Saturn model (inner curve) vith 10~* andus = 1075 .

such that

= qicost — gosint
= @ sint+ gycost
Pr = pP1cost — pysint

Py = p1sint + pycost.

Due to the assumptions on the circular motion of the prinsare can set

X, = rjcost Y, =risint
Xo = rycost Y, =rysint

2 2
X; = 13 cos(gt) Y =13 sin(gt) :

- - - - . 8W
Therefore the new Hamiltonian is given By = H — -, namely

1
H'(p1,p2, q1, g2, ) = 5(17? +p3) + P12 — P2y — R (q1, q2, 1) ,
where
H1 H2

+
\/(Q1—7‘1)2+Q§ \/(Q1—7“2)2+Q%
M3

\/qf + a3 + 1 — 2r3(qu cos((2 — 1)t) + gz sin((2 — 1)t)

Rl(Ql? q2, t) =

+

Next, we write the equations of motion associated to the albtamiltonian and then we add
the dissipative component. The periodic orbits are deteethiusing a continuation method

10



from the conservative case with= 0. As starting point, the orbital elements of Figure 1 have
been considered.

The existence of periodic orbits is confirmed in the lineat Stokes cases; periodic attractors
are also found when adding the Poynting—Robertson effedédd, Figure 3 (right) shows the
usual periodic orbit of period 3 of the conservative casethrgeriodic attractor (again with
period 3), which is found using the Poynting—Robertson gagn withs = 10~* and setting

ps = 1075, beingy = 9.537-10~* (notice that the mass @ is smaller than the astronomical
value for the mass of Saturn).

3.3 Analysis of the dynamics

A global behavior of the dynamics can be obtained throughattedysis of the so—calleBast
Lyapunov Indicatorhereafter FLI ([7], [6]), which is strictly related to the mputation of
the largest Lyapunov exponent. Its definition is based orfabiethat the norm of the tangent
vector over a finite interval of time is an indicator of the dymcal character of a trajectory
(periodic, quasi—periodic or chaotic). We denotezly) = (x(0), #(0), y(0),y(0)) the vector
of the initial conditions and let(0) € R* be an initial unit vector. Given a set of differential
equations:

d
S=E@),  z=(ndyg).
the time evolution of the tangent vectd(t) is obtained by integrating the variational equations
dv_ OF
dt 9z~

Where%—f is the Jacobian matrix. We define the quantity FLI up to a gtuee 7" > 0 as
FLI(2(0),v(0),T) = log|u(T)]l

where|| - || denotes the Euclidean norm. We compute the FLI for diffeneitinl conditions
z(0); its value is represented through a color scale, where tloescbave the following mean-

ing:
e chaotic motions, which admit very high FLI, are represefgthe light grey colot,

e collision orbits with one of the primaries are marked in Blac

¢ the remaining values of the FLI, with colors ranging fromygte dark grey correspond
to orbits which are either stable, i.e. orbits which end ugwomttractor, or quasi—stable,
i.e. orbits needing a time longer than the integration tite be destabilized.

'In the electronic version of the paper the reader can find gatdures: light grey will appear as yellow, grey
to dark grey colors will correspond from orange to blue calor

11



We remark that in order to compute the FLI we first integrate régularized equations of
motion and the regularized equations for the evolution etémgent vector, which are obtained
using the changes of coordinates described in the AppeWiien the timel” is reached, we
use the inverse transformation to go back to the physicalesganally we calculate the FLI
as the logarithm of the norm of the tangent vector in the nabcoordinates.

The following set of figures is obtained by computing the Fad & grid of480 x 640 initial
conditions regularly spaced in the y coordinates with-1.5 < z(0) < 1.5 and—1.125 <
y(0) < 2.875. The other initial conditions arg = 0, while & is computed from the value of
the Jacobi constant for the conservative case, which wae 8699047, i.e. the value of the
Jacobi constant at the Lagrangian poihtsand L; with & = 0 andy = 0. We remark that
for this value of the Jacobi constant there are no zero wgloarves, i.e no forbidden regions
on thex-y physical space. The integration time is set equél'te= 100. The initial values
of the tangent vectors are the same for all the orbits of tigeigrthe physical coordinates.
Figure 4 provides the FLI for the conservative three—boaplam. The left panel corresponds
to the computation of the FLI using the non regularized €quat while on the right panel the
computation is done with the regularized equations. In lwatbes we use a Runge—Kutta—
Merson integration scheme (namely, a fourth order Rungeakuethod with adaptive time
step for error control).

Figure 4: FLI map for the conservative case. The map is obtaimtegrating a grid of80 x 640
orbits, with an integration tim& = 100. Each point in the map corresponds to an initial
condition in ther-y plane. We sef(0) = 0 and we calculate (0) from the value of the Jacobi
constant, set t0.99047 which is the value at the Lagrangian pointor Ls; with z = 0, ¢y = 0.
Left: non regularized equations; right: regularized et
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Both panels of Figure 4 reveal the presence of a large regoie in the interior region with
respect to the 1:1 resonance, while a peculiar light greyctire reveals a chaotic dynamics
in the exterior region. When using non regularized equatiaright grey ring appears in the
middle of the regular interior zone. The orbits with init@nditions on the light grey ring
are those having the closest approach with the Sun withitiniee7" = 100. A check on the
preservation of the Jacobi constartshows that for these orbits we obtain the worst energy
preservation, i.e. the relative variation with respecth® initial valueC'(0) is of the order of
102, while it is lower thanl0~'2 for all other orbits. This problem is due to the existencenef t
singularity and it cannot be canceled, neither by chandiegrttegration scheme, nor through
a better precision computation. Actually, the singulantgans that the solution cannot be
expressed as a power series development about it, whilé insegration schemes are based
on the development in power series of the solution. By usigglegization, the problem is
solved and the light grey ring disappears. In the followirg study the dissipative dynamics
using always the regularized equations.

Figure 5 refers to the three—body problem with Stokes drag fe 0.995 (top) and PR—drag
(bottom) with7T = 100, while Figure 6 refers to Stokes drag with a longer integratime,
namely? = 5000. Each picture is computed for two values of the dissipatoestant, namely
k = 107° (left panels) and: = 103 (right panels). In each panel we observe black zones,
which represent collision orbits (namely orbits which coaheser thanl0—2 to one of the
primaries). There is a wide black zone in the interior regiodeed, the orbits in this zone
are those with the closest approach to the Sun in the cornserease. Therefore, this is the
region of the phase space in which the dissipation, even & aea ¢ = 10~°), affects in a
very short time " = 100) the dynamics. Of course the size of the black region getgetar
as we increase the dissipation (right panels) and the mtiegrtime (Figure 6). In the case
of Poynting—Robertson drag the region of collision orbitshsuout to be much larger than
that appearing in the case of the Stokes drag. This is prplthid to the dependence of the
Poynting—Robertson drag on the inverse of the (square)ndisttom the Sun.

The light grey boundary of the collision region with the SarFigure 5 (bottom left) corre-
sponds to orbits which are interpreted as chaotic, but whissance remains larger thaf—2
from the Sun withinl" = 100. In all pictures we also observe orbits colliding with Jepjt
they appear as black structures within the chaotic exteeigion. When considering a longer
integration time, say’ = 5000, we find that the chaotic exterior region is almost compietel
filled by orbits colliding with Jupiter fols = 10~° (Figure 6, left panel); on the contrary,
for k = 102 (Figure 6, right panel) the fraction of orbits colliding Wilupiter turns out to
be smaller than that fot = 107°. It is also interesting to observe that&At= 5000 we still
observe, in the exterior region, stable or quasi—stablez{grey colors), which are almost un-
changed with respect to the computationTor= 100. Indeed, as shown in Figure 1, periodic
orbits are typically found outside the orbit of Jupiter, $aya > 1. A detailed computation on
longer times for some initial conditions with FLI values lemthan3 for o = 0.995 shows that
these orbits become unstable on times larger ihan5000. However it is remarkable that on
quite long times, we can detect regions of temporary stgltiiirough the FLI.
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| Orbit label z(0)  4(0) y(0)  9(0) |

A —2.09 -0.6071558 —0.5 1.713523845
B —2.1  —1.043882 —1. 1.713523845
C -1.9 0 0 1.713524

Table 2: Initial conditions of Figure 8.

3.4 Regions of stability and basins of attractions

The aim of this section is to use the FLI on long integrationets (" = 5000) in order to
find orbits within given basins of attraction. To this end, ae considered a neighborhood
of the periodic orbit of Figure 3 (left) fotx = 0.05. Precisely, we have computed the FLI up
to T = 5000 for a set 0of500 x 500 initial conditions regularly spaced in € [-2.3, —1.8],

y € [—1,0.5] with y = 1.713523845 (see Table 1, line 3) and obtained from the Jacobi
constant of the periodic orbit of Figure 3 (left) with= 0.05 (namelyC' = 2.24409690). In
Figure 7 (left panel) we observe different regions (greyakdyrey colors, indicating stability
up to7" = 5000) of various shapes embedded in a large collisional zone. ifewircle denotes
the initial conditions forr andy of the periodic orbit of Figure 3 (left). It is interesting to
observe that the same FLI computationdo# 0.995 (Figure 7, right panel) provides the same
zones of stability up t@" = 5000 as in the case withh = 0.05. A much longer integration
time would be necessary to confirm the stability of such negjibut this would require months
of CPU time. Indeed, the FLI values are useful to select imtmditions of orbits potentially
belonging to basins of attraction. For example, by choos&ibgvalues lower thars, which
seems to be a good experimental threshold (compare withispairB and C in Figure 7; see
Table 2 for the corresponding initial conditions), we fowrdits going on different periodic
or point attractors forv = 0.05 (Figure 8, left column), while forv = 0.995 we observe only
a transitory attracting behavior (Figure 8, right colun®recisely the initial condition labeled
by A belongs to the basin of attraction of the periodic orfbiperiod three of Figure 3 (left),
while the orbit B belongs to the basin of attraction of anotheriodic attractor and the orbit
C goes to an attracting point. The computation of the Lar@dstracteristic Number (whose
limit as time goes to infinity gives the Largest Lyapunov exgat) allows us to confirm on a
time T = 10° the stability of these orbits in the case= 0.05 (Figure 9). Moreover, increasing
the value ofr, we have found that the orbit A belongs to the basin of aftvacif the periodic
orbit of period three of Figure 3 (left) up = 0.25, the orbit B belongs to the same periodic
attractor up toa = 0.5, while the orbit C goes to an attracting point updo= 0.6. In
conclusion, through the FLI charts we have a good indicatiotihe potentially stable zones
and of their shape. A detailed integration of single orbilsves us to confirm the long—term
stability and the nature of the attractor to which they bglon
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4 Conclusions

Using the regularized equations for the computation of tipgagons of motion and of the
variational equations, we performed a global study of theadyics of the circular, restricted,
three—body problem under the effect of different kinds afsghation. As it is well known,
the effect of the dissipation is that of decreasing the semajer axis of orbits that collide
with one of the primaries. We have recovered this resultwaimpwhich are the regions of the
phase space affected by the dissipation even on very shn@stales. Precisely, we found that
a large fraction of test particles with initial conditionsthe interior region collides with the
Sun. Regular orbits having the closest approach with the Sdinel conservative setting are
the first to be affected by the dissipation. In the exterigiar, collisions occur mainly with
Jupiter. When increasing the strength of the dissipatioh@irttegration time, a larger fraction
of orbits ends on one of the primaries. In general, the etiethie PR drag is faster than those
associated to Stokes and linear drags. Moreover, we havel fperiodic orbit attractors for
the case of the linear and Stokes drags, while in the case dtdlinting—Robertson effect no
other non-trivial attractor (namely, not coinciding witheoof the primaries) is found. In the
latter case, in order to find periodic orbits, we need to mypothé model, for example adding
the action of a third primary (e.g., a Saturn—like body), sdeffect turns out to balance that
of the two main primaries. In the case of the Stokes drag, gtiome (I" = 5000) FLI compu-
tation allows us to identify the size and the shape of theoregof the phase space potentially
belonging to basins of attraction. A longer integrationrafividual orbits is necessary to con-
firm the attracting dynamics. For the rather unphysical case0.05 we have found sizeable
regions behaving as basins of attraction. For moderatesalti < 0.6 we still find periodic
attractors or points attractors, while for the more phystegex = 0.995 the stable behaviour
turns out to be only temporary. It is remarkable to find tharew the presence of drag there
are regions of the phase space, where the dynamics prekiergatrticle to collide with one of
the primaries.

Acknowledgments.A.C. and L.S. acknowledge the grants ASI “Studi di Esplorazialel
Sistema Solare” and PRIN 2007B3RBEY “Dynamical Systems andiégpns” of MIUR.
FLI computations have been done on the “Mesocentre SIGAMMtInme, hosted by the
Observatoire de la Cote d’Azur.

5 Appendix: The regularized equations

The equations of motion of the three—body problem presemsingularities at the primaries’
positions, namely at; = 0 andr, = 0. In order to study the motion at collision or at close
encounters with the primaries one can implement regulésizaheory ([18], see also [5]).
The classical technique consists of a change of coordinatesscaling of the time, and the
use of energy preservation; the last ingredient must bedadoin the case of a dissipative
system. We provide here the details of the regularizatich@fquations of motion including
the dissipative terms.
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Let us write the equations of motion as

T r—14+p

it (1 P

& gro—(1-p—3 S

j o= ~2ty—(1—p)-2 —ps+F (6)
7’13 7"23 v

whereF,, F, denote the two components of the dissipative force, whogkogbexpression is
given in (3), (4), (5). We start by implementing the Levi—@airansformation, which relates
the cartesian coordinatés, i) to new variablesu,, us) according to the following formulae:

()= (o) ()= (%), o

wherez, is the abscissa of the collision point that we will regularize.z, = —u for colli-
sions withP; andzy = 1 — p for collisions with P,. Let us remark that the determinant of the
Levi—Civita matrix in (7) corresponds to the distangdérom the singularity, namely

R=wu? 4w’ =/(z —20)2 + 12,

so thatR = r, if we regularize inP; and R = r, if we regularize inP,. Then, we introduce a
fictitious times, which is related to the ordinary timehrough the expression

dt = Dds ,

where the quantityD will be chosen later in order to regularize the equations ofiom. We
denote by a prime the derivative with respect to the regeedrtime. It is easy to show that:

uy 1 Uy U !
uy, ) 2R\ —uz w y'
uff R Uy Us ! 1 uy ub !
" - - 5 _ / + 55 o / /
Uy 2R U Uy Y 2R Uy Uy Y
1 Uy U "
— 8
Fan( ey () ®
where R’ = 2(uju) + ugub). Using the relation between the real and fictitious times one

obtains: . / )
(3)-2(3)-(3)
Y Yy Yy

Combining (8) and (9), the derivative$ andu’ are given by

2 2 2
D R R 2R
o - 2_5ﬂw+£ﬁﬁ2+21wimw)
2= \Dp " R)" R Tar T
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wherez, ij must be expressed in terms of the new variables. To this ety the equations of
motion (6) in cartesian coordinates, one obtains

T = 5(u1u'2 + Ugull) + U12 — UQ2 —+ X9
17— Uz W To U™ — U2 n— Zo
ur® — up® + 1+ —u® +p— 1+
- (1 _/“[') rlg — K T23
+ Fz(u1>u27u/17u/2>
. 4 , ’ 2U1UQ 2U1U2
= ——(uju; — usu 2uqug — (1 — —
y D(l | — uguy) + 2ugug — (1 — p) e H e

+ Fy(u17u27u/17u/2) )

where the distances from the primaries are now given by

rn = \/(U12 - U22 + Xo + M)Q + (2u1u2)2
ry = \/(U12 —u? + g — 14 )% + (2uqug)? .

Next we choose the factdp asD = R, which allows us to remove one of the singularities;
denoting byF,,, F,, the components of the dissipative force in the regularizethbles, the
equations of motion become::

e if we regularize inP;:

1 9 9 ]__M R R_l
uy = [f_% <UI1 + _T)—i_a L wn + 2Ry + F,
R
2

)
1 2 2 ]_—[,L

e if we regularize inP:

+1
(R—i—,u—,u o3 )] uy — 2Ruy + F, ;

1 py R fit1

uy = [E<u/12+u/22_§)+5<R+1_M_(1_M) 3 )} L+ 2Ruy + Fy,
1 [ R R—-1

Wl = [E<u'12+u/22—§>+5(R—1+M—(1_U) 5 )}UQ—QR“HFM'

The two cases can be written in compact form as
1 2 2 L —pu R R — x;
u = [E(u,l +uy” — 5 +5 R+ xo — s . uy + 2Ruy + F,
1 1 — s R R+,
uy = [}—%(u’f—i—u’;— 2M>+—<R—x0—us 3x )]ug—QRu’l—l—Fuz,
wherer, = ry, pus = 1, xs = 1, xg = —p if we regularize inP, andry, = ry, s = 1 — p, x5 =

—1, zg = 1 — p if we regularize inP,. We conclude by providing the explicit expression of
the dissipative terms as a function of the regularized & using the same regularization
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scheme; we also remark that the regularization itself isrd@hed by the conservative part,
where the strongest singularities occur. In particularpbiin

R

F, = E(ulFx+u2Fy)
R

Fu2 = §<—U2FI+U1Fy),

where(F,, F,) must be expressed as functions of the new variables. In Seafahe linear
drag we have

R
F,, = —k§(2u'1 — us(R — x))
R

For the Stokes drag, if we denote b¥,, D,)) the components of the linear drag dissipation,
the componentsS,, S, ) of the Stokes drag are given by

Sy = D, — kaSQly, S, =D, + kaQx .
It remains to transform the terta-kaQy, kaQx) as
R, - _kg@u; (1 — aQ)(R — 1))
F, = —k§(2u'2 +ui (1 —aQ)(R+ o)) .
Concerning the Poynting—Robertson effect, let us remarkhieagxpression of the force is the

same as in the linear case except for the fatfet. Since PR is singular in;, we have two
different cases:

o if we regularize inP; then:

k

Fo, = —ﬁ@ui—uz(RﬂLﬂ))
k

Fu, = —ﬁ(2U§+U1(R—M));

o if we regularize inP;, then:

Fu = —h (@ —ws(R— 1+ )
2r]
R, ,
2ry
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Figure 5: FLI map for the Stokes drag (top) ter= 0.995, and for the PR drag (bottom) with
T = 100. Left: k = 1075, right: K = 1073.
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Figure 6: FLI map of the Stokes case with= 0.995 andT' = 5000. Left: k& = 107, right:
k=1073.
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Figure 7: FLI map of the Stokes case Br= 5000 in a neighborhood of the initial condition
for the periodic orbit of period 3 (see Table 1 and Figure &).léeft: « = 0.05, right:
a = 0.995. On the left panel the initial condition of the periodic drbf period 3 is marked
with a white circle. The letters A, B, C denote the initial cdiwhs of Figure 8 and of Figure 9,
top, middle and bottom panels, respectively.
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Figure 8: Orbits computed on a tinie = 10° and sampled evenAt = 100 with initial
conditions given in Table 2 (respectively, orbit A (top), Bi¢ldle), C (bottom)). Left column:
a = 0.05, right column:a = 0.995.
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Figure 9: Computation of the largest Lyapunov indicator fa brbits with initial conditions
given in Table 2 (respectively, orbit A (top), B (middle), Bottom)) and plotted in Figure 8.
The line corresponds @ = 0.05 and the dots corresponddo= 0.995. In the caser = 0.995

the computation is stopped, when the orbit escapes.
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