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PID-Structured Controller Design for Interval Systems:
Application to Piezoelectric Microactuators

Sofiane Khadraoui, Micky Rakotondrabe, Member, IEEE and Philippe Lutz, Member, IEEE

Abstract— This paper addresses the modeling and
robust PID controller design for piezoelectric mi-
crosystems. Piezoelectric cantilevers, used as microac-
tuators in micromanipulation and microassembly con-
texts, are particularly concerned. Due to their small
sizes, these systems are very sensitive to environment
(temperature, vibration, etc.) and to usury during
functioning. Their behaviors often change because of
the parameters variation. For that, linear modeling
with uncertainty has been used to account the uncer-
tainties, then classical H∞ and µ-synthesis approaches
were applied. These techniques were efficiency but
they were of high order which is not suitable for em-
bedded microsystems. Furthermore, when the num-
ber of uncertain parameters increases, the modeling
of microsystems became delicate and difficult.

In this paper, we propose to model the uncertain
parameters by bounding them with intervals. After-
wards, we propose to design a robust PID controller
by using interval arithmetic and related tools in order
to ensure the specified performances. In addition
to thesimplicity of the uncertainties modeling, the
derived controller is of low order. The controller
synthesis is formulated as a set-inversion problem. An
application to the control of piezoelectric microactu-
ators proves the efficiency of the proposed method.

I. Introduction

The development of high performances miniaturized
systems - which is of great interest for various applica-
tions - presents technological and scientifical challenges.
These miniaturized systems called microsystems are very
sensitive to the environmental conditions (temperature,
vibrations, etc.) and to the interaction and contact with
surrounding systems (objects, other microsystems). The
models of their behaviors are therefore subject to change
and uncertainties that should be taken into acocunt
during the controller design. Among these microsystems,
piezoelectric microgrippers are used to manipulate and
assembly or characterize artificial micro-objects and bi-
ological cells with sizes ranging between 10µm to 1mm.
A microgripper is composed of two piezoelectric can-
tilevered microactuators (piezocantilevers) [1] [2]. In
fact, on the one hand piezoelectric materials are widely
used because of their high resolution, large bandwidth
and high force density [3], but on the other hand
their high sensitivity makes the developed piezoelectric
microactuators lose the accuracy.
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To achieve the required performances in micromanipu-
lation and microassembly tasks, linear modeling with ∆-
matrix uncertainties have been used and classical robust
control laws (H2, H∞ and µ-synthesis) were applied for
each piezocantilever [4]–[7]. The efficiency of these ad-
vanced methods was proved in several applications (SISO
and MIMO microsystems). However their major disad-
vantage is the derivation of high-order controllers which
are time consuming and which limit their embedding
possibilities, as required for real packaged microsystems.

A possible alternative to classical robust control laws is
the use of interval analysis which is a suitable tool deal-
ing with parametric uncertain models. These parametric
uncertain models have known structures with unknown
parameters, but their values are assumed constant within
given intervals. Their possible values are usually bounded
by intervals. The principle of the controller design is
therefore based on the combination of the interval arith-
metic with a linear control theory. In addition to its prin-
ciple simplicity to model the uncertain parameters, the
main advantage is the derivation of low-order controllers.

The first idea on interval arithmetic has been proposed
in 1924 by Burkill and 1931 by Young, then later in
1966 with R.E. Moore’s works [8]. Since, several appli-
cations on interval analysis have been raised. Since then,
several applications appeared on the subject. Some of
them relates to guaranteed estimation, robust stability
and controllers design. The works in [9] [10] deal with
guaranteed parameters estimation based on the SIVIA
algorithm (Set Inversion Via Interval Analysis). In
[11] [12] [13], the stability analysis of the closed-loop
with a given controller was proposed using the Routh’s
criteria and/or the Kharitonov’s theorem. Concerning
the design of controller, Chen and Wang [14] proposed
a systematic computational technique to design of ro-
bust stabilizing controller for interval systems basing
on the transformation of the robust controller design
problem into an equivalently non-linearly constrained
optimization problem. In [15] an approach of state
feedback control combined with the intervals for the
parameters model was proposed to synthesize a controller
that ensures the stability. In [16], a PID controller that
ensures robust performances was proposed by using a set-
inversion problem. The method suffers from the compu-
tational complexity, particularly when using high-order
interval systems. Chen and Wang [17] also proposed
a robust method to control interval systems. In their
work, two controllers were necessary: a robust controller



stabilizing the feedback first, and then a pre-filter must
be computed to ensure the wanted performances. Li et
al. [18] proposed a control algorithm prediction-based
interval model that was efficiently applied to a welding
process. In our previous work [19], a robust controller
for interval systems with zero-order numerator was pro-
posed. Its main advantage relative to the other existing
works is that the order of the system’s denominator is not
limited and the derived controller has a low-order. This
later work also proved that interval analysis and related
controller design could be very promising for modeling
and control microsystems.

This paper deals with the interval modeling and robust
control design for piezoelectric microactuators. While we
bound the uncertain parameters with intervals, a PID
structure controller is proposed. Contrary to the previous
work [19], the proposed approach is extended to general
transfer function, i.e. no limitation on the degrees of both
numerator and denominator. Despite the limitation to
SISO systems and the account of only parametric un-
certainties, the proposed approach proposes a low-order
cotroller (PID) that is suitable for real-time embedded
microsystems.

The paper is organized as follows. In section-II, pre-
liminaries related to interval analysis and systems are
provided. Section-III is dedicated to the tuning of the
robust PID controller. In section-IV is concerned with
the application of the proposed method to control piezo-
electric microactuators. Finally, the experimental results
end the paper.

II. Mathematical preliminaries

A. Basic Terms and Concepts on intervals

More details on the preliminaries given here can be
found in [8] or [11].

A closed interval number denoted by [x] corresponds
to a range of real values, it can be represented by the left
and right endpoints x− and x+ respectively:

[x] = [x−, x+] =
{
x ∈ R\x− ≤ x ≤ x+

}
(1)

An ordinary real number x can be represented by a
degenerate interval [x, x] where x− = x+.

A vector (box) of n interval parameters is denoted by:

[x] = [[x1], [x2], ..., [xn]] (2)

The width of an interval [x] is given by:

w([x]) = x+ − x− (3)

The midpoint of [x] is given by:

mid([x]) =
x+ + x−

2
(4)

The radius of [x] is defined by:

rad([x]) =
x+ − x−

2
(5)

1) Operations on intervals: The elementary mathe-
matical operations are also extended to intervals, the
operation result between two intervals is an interval
containing all the operations results of all pairs of num-
bers in the two intervals. So, if we have two inter-
vals [x] = [x−, x+] and [y] = [y−, y+] and a law ⊗ ∈
{+,−, ∗, /} , we can write:

[x]⊗ [y] = {x⊗ y |x ∈ [x], y ∈ [y]} (6)

B. Interval system
Definition 2.1: A linear system under parametric un-

certainties is often modeled by interval system. A SISO
interval system [G](s, [a], [b]) is a family of systems:

[G](s, [a], [b]) =


m∑
j=0

bjs
j

n∑
i=0

aisi

∣∣bj ∈ [b−j , b
+
j ], ai ∈ [a−i , a

+
i ]


(7)

such as: [b] = [[b0], ..., [bm]] and [a] = [[a0], ..., [an]] are
two boxes (interval vectors) and s the Laplace variable.

The following lemma which is a result for interval
functions is due to [8].

Lemma 2.1: (Containment Theorem) Given
[F ]([x]) a rational expression in the interval
variables [x] = [[x1], ..., [xn]]. Let [y] = [[y1], ..., [yn]]
be a box of interval variables, if [y] ⊆ [x], i.e.
[y1] ⊆ [x1], ..., [yn] ⊆ [xn], then [F ]([y]) ⊆ [F ]([x]).

Proof: see [8]
The following theorem is a straightforward conse-

quence of Lemma 2.1.
Theorem 2.1: Given two SISO, linear and stable inter-

val transfers [G1](s, [α], [β]) and [G2](s, [γ], [λ]) defined
as in Definition 2.1. The two systems have the same
structure (same degree for their numerators, idem for
their denominators). If [α] ⊆ [γ] and [β] ⊆ [λ], then
[G1](s, [α], [β]) ⊆ [G2](s, [γ], [λ]).

Proof: Noting that s = [s, s] = [s] and [s] ⊆ [s], and
applying Lemma 2.1 with [F ]([x]) = [G2](s, [γ], [λ]) and
[F ]([y]) = [G1](s, [α], [β]), where [x] = [[s], [γ], [λ]] and
[y] = [[s], [α], [β]], we obtain:

[y] ⊆ [x]⇒ [F ]([y]) ⊆ [F ]([x])

which leads for any s to:{
[α] ⊆ [γ]
[β] ⊆ [λ] ⇒ [G1](s, [α], [β]) ⊆ [G2](s, [γ], [λ])

C. Performances of interval systems
The following theorem [20] defines the inclusion of

the time/frequency domains performances of interval
systems.

Theorem 2.2: Let two SISO, linear and stable interval
transfers [G1](s, [α], [β]) and [G2](s, [γ], [λ]) with the
same structure. If [α] ⊆ [γ] and [β] ⊆ [λ], then the time
and the frequency domains responses of [G1](s, [α], [β])
are bounded by those of [G2](s, [γ], [λ]). These responses
define the time and frequency performances respectively.

Proof: see [20]



III. Computation of the controller

This section aims to design PID controllers ensuring
performances for a parametric uncertain system. The
interval arithmetic and related tools are used for that.

A. Problem statement
Consider the closed-loop with an interval system

[G](s, [a], [b]) as shown on (Fig. 1). The controller must
ensure some given performances for the closed-loop
whatever the parameters ai and bj ranging in [ai] and
[bj ] respectively. [Hcl](s, [p], [q]) denotes the closed-loop
transfer.

 

+-
cy y

cy y

 

PID [G](s,[a],[b])

[H ](s,[p],[q])

Uε

cl

Fig. 1. Closed-loop transfer Hcl.

In the sequel, [G](s, [a], [b]) will be written as:

[G](s, [a], [b]) =

m∑
j=0

[bj ]sj

n∑
i=0

[ai]si
(8)

with [a] = [[a0], ..., [an]], [b] = [[b0], ..., [bm]] and m ≤ n.

B. Computation of the closed-loop model
Let us define a fixed-order controller PID with ad-

justable parameters [θ] = [[Kp], [Ki], [Kd]] as follows:

[C](s, [θ]) = [Kp] + [Kd]s+ [Ki]
1
s

(9)

The closed-loop model can be computed using the
interval model (8) and the controller (9) as follows:

[Hcl](s, [a], [b], [θ]) =
1

1
[C](s, [θ])[G](s, [a], [b])

+ 1
(10)

After replacing [G](s, [a], [b]) and [C](s, [θ]), we get:

[Hcl](s) =

m+2∑
j=0

[αj ]sj

n∑
i=0

[ai]si+1 +
m+2∑
j=0

[αj ]sj
(11)

Such as the coefficients of the box [αj ] for j = 0, ...,m+
2 are dependent and are function of the boxes [b] and [θ].

After developing (11) and factorizing the last coeffi-
cient of the numerator (or the denominator), we obtain:

[Hcl](s, [p], [q]) =
1 +

e∑
j=1

[qj ]sj

r∑
i=0

[pi]si
(12)

where e = m+2 and r = max(n+1,m+2) and where
the boxes of interval parameters [q] and [p] are function
of the boxes [a], [b] and of the controller parameters [θ].

C. Feasible controller parameters
The objective consists to compute the set Θ of con-

troller parameters (9) for which the set of all possible
closed-loop behaviors (12) is included inside the set of all
wanted behaviors defined by an interval reference model
[H]:

Θ = {θ ∈ [θ] |[Hcl](s, [p], [q]) ⊆ [H](s)} (13)

The condition [Hcl](s, [p], [q]) ⊆ [H](s) can be checked
by applying the parameter by parameter inclusion as
given in Theorem 2.1. For that, the interval reference
model [H] must have the same structure than [Hcl] (12).
Therefore, we use as reference model:

[H](s, [w], [x]) =
1 +

e∑
j=1

[xj ]sj

r∑
i=0

[wi]si
(14)

Remark 3.1: [w] and [x] are two interval boxes chosen
by the user from the specifications.

Based on (12), (14) and Theorem 2.2, the problem (13)
can be reduced to the problem of finding Θ such as:

Θ =
{
θ ∈ [θ]

∣∣∣∣ [qj ] ⊆ [xj ], for j = 1, ..., e
[pi] ⊆ [wi], for i = 0, ..., r

}
(15)

Remark 3.2: The number of unknown parameters in
(9) is 3 while the number of inclusions is r + e + 1 (see
(15)). Since e = m+2 and r = max(n+1,m+2), we can
write r+ e+ 1 > 3. Therefore, there are more inclusions
than unknown variables.

The problem of finding the set Θ so that (15) holds,
is known as a set-inversion problem which can be solved
using set inversion algorithms. An algorithm that can be
used to solve such problem is the SIVIA algorithm [9].

IV. Control of piezocantilevers

This section is focused on the application of the
proposed method to control piezoelectric microactuators
(piezocantilevers) used in microgrippers. We particu-
larly use unimorph piezocantilevers due to their ease
of fabrication relative to multimorph ones. A unimorph
piezocantilever is made up of one piezoelectric layer
(often Lead Zirconate Titanate: PZT) and one passive
layer (Copper). Indeed, the piezoelectric layer is used
to actuate or produce energy while the non-piezoelectric
layer (passive) is used to add stiffness as well as make
the beam more durable. When a voltage U is applied to
the piezoelectric layer, the cantilever expands/contracts
which causes a global deflection δ (Fig. 2). Besides, a
force F applied at the tip of piezocantilever may also
cause a charge between the electrodes of the piezoelectric
layer. In this situation, energy can be produced from the
electrodes.

Piezocantilevers can be modeled by a transfer function
with varying parameters. Unfortunately, such models
with interval parameters are difficult to obtain. In ad-
dition, it is known that small differences in dimensions
(somes microns) of similar piezocantilevers due to the



imprecision of the microfabrication process, generate
non-negligible difference on their model parameters. So,
instead of having one piezocantilever with varying pa-
rameters during the experiment, we use two (or more)
similar piezocantilevers. Thereafter, the derivation of the
interval model [G](s, [a], [b]) is based on the two models
of the used piezocantilevers. This interval model is then
used to design controller that ensures performances not
only for the both piezocantilevers but also for a set of
piezocantilevers.

U
support

passive layer

piezolayer
Fδ

Fig. 2. Piezocantilever principle.

A. Presentation of the setup
Fig. 3 presents the experimental setup. It is composed

of:
• two piezocantilevers each one having a total thick-

ness of 0.3mm, a width of 2mm and a length of
15mm,

• a computer-DSpace hardware and the Matlab-
Simulink software used for the data-acquisition and
control,

• a Keyence optical sensor with 10nm of resolution
used to measure the deflections of the piezocan-
tilevers,

• and a high-voltage (HV) amplifier.

amplifier

     HV

(a)

(b)

piezoelectric
cantilever

optical
sensor

optical

sensor

piezoelectric

cantilevers

Fig. 3. The experimental setup.

B. Modeling and identification
The linear relation that relates the output deflection

to the input voltage U applied to piezocantilevers [6]:

δ = G(s)U (16)

where, for us, the transfer functions G1(s) and G2(s)
that model the two piezocantilevers must be identified.

For the identification, a step voltage U = 20V is ap-
plied to each piezocantilever. A second order was chosen
for each model because of its sufficiency to account (the
first) resonance and its simplicity (low order). Using the
output error method and the matlab software, we obtain:

G1(s) = 8.0313×10−8s2+1.808×10−4s+1
9.794×10−8s2+5.24×10−6s+1.44

G2(s) = 7.042×10−8s2+1.809×10−4s+1
8.802×10−8s2+5.364×10−6s+1.291

(17)

C. Derivation of the interval model
Let us rewrite each model Gi(s) (i = 1, 2) as follows:

Gi(s) =
b2is

2 + b1is+ b0i
a2is2 + a1is+ a0i

(18)

The interval model [G](s, [a], [b]) which represents a
family of piezocantilever models is derived using the two
point models Gi(s). Considering each parameter of G1(s)
and the corresponding parameter in G2(s) as an endpoint
of the interval parameter in [G](s, [a], [b]), we have:

[G](s, [a], [b]) =
[b2]s2 + [b1]s+ [b0]
[a2]s2 + [a1]s+ [a0]

(19)

such as:
[b2] = [min(b21, b22),max(b21, b22)]
[b1] = [min(b11, b12),max(b11, b12)]
[b0] = [min(b01, b02),max(b01, b02)]
[a2] = [min(a21, a22),max(a21, a22)]
[a1] = [min(a11, a12),max(a11, a12)]
[a0] = [min(a01, a02),max(a01, a02)]

After the numerical application, we obtain:
[b2] = [7.042, 8.0313]× 10−8

[b1] = [1.808, 1.809]× 10−4

[b0] = 1
[a2] = [8.802, 9.794]× 10−8

[a1] = [5.24, 5.364]× 10−6

[a0] = [1.291, 1.44]

In order to increase the stability margin of the closed-
loop system and to ensure that the interval model really
contains the models (17), we propose to expand the inter-
vals of the model (19). However, it is noticed that when
the interval width of the parameters in the model is too
large, it is difficult to find a controller that respects both
the stability and performances of the closed-loop. After
some trials of controller design, we choose to expand the
interval width of each parameter of (19) by 10%. 10%
represents the maximal value allowed in this application.
Finally, the extended parameters of the interval model
which will be used for the controller design are given by:

[b2] = [6.992, 8.08]× 10−8

[b1] = [1.807, 1.809]× 10−4

[a2] = [8.753, 9.844]× 10−8

[a1] = [5.234, 5.37]× 10−6

[a0] = [1.283, 1.448]

(20)



D. Definition of the specifications
Consider the following specifications for the closed-

loop. These specifications correspond to the requirement
in micropositioning tasks for microassembly and micro-
manipulation that use piezoelectric microgrippers.
• no overshoot,
• settling time 1ms ≤ tr5% ≤ 30ms,
• static error |ε| ≤ 1%.
As the desired system behavior is without overshoot,

we can use two first-order systems to create an interval
reference model. The used time constants for both sys-
tems are 1

3ms and 10ms, while −0.01 and 0.01 for their
statical errors.

E. Controller structure
In this application, we consider a PI (Proportional-

Integral)structure because of its low-order (two parame-
ters). It is a particular case of PID controllers where the
derivative action Kd is set to zero. Though PID structure
can be easily used as presented in Section III.

[C](s, [Kp], [Ki]) =
[Kp]s+ [Ki]

s
(21)

such as Kp and Ki are the parameters to be adjusted
and representing the proportional and the integral gains
repsectively.

F. The closed-loop and the reference models computation
The general model of the closed-loop is given by (10).

In our case, the closed-loop transfer is obtained using the
model with interval parameters in (20) and the controller
(21):

[Hcl](s, [p], [q]) =
[q3]s3 + [q2]s2 + [q1]s+ 1

[p3]s3 + [p2]s2 + [p1]s+ [p0]
(22)

such as:
[q3] = [Kp][b2]

[Ki]

[q2] = [Kp][b1]
[Ki]

+ [b2]

[q1] = [Kp]
[Ki]

+ [b1]

[p3] = [a2]+[Kp][b2]
[Ki]

[p2] = [a1]+[Kp][b1]
[Ki]

+ [b2]

[p1] = [a0]+[Kp]
[Ki]

+ [b1]
[p0] = 1

The computation of the interval reference model is
based on the required specifications and the structure
of the closed-loop (22). As we said before, a first order
interval model would be considered (see Section IV-D):

[H](s, [K], [τ ]) =
[K]

[τ ]s+ 1
(23)

where the parameters [K] and [τ ] define the static
error and settling time respectively and are deduced from
specifications as follows:
• [K] = 1 + ε = [0.99, 1.01],

• [τ ] = [tr5%]
3 = [0.33ms, 10ms].

However, the application of the parameter by param-
eter inclusion (15) requires that the reference model has
the same structure than the closed-loop (22): the same
degrees for the numerator, also for the denominators.
[Hcl](s, [p], [q]) has a degree of 3 for both numerator and
denominator. Thus we add some poles and zeros far from
the imaginary axis to (23)

[H](s, [K], [τ ]) =
[K]( [τ ]

10 s+ 1)3

([τ ]s+ 1).( [τ ]
10 s+ 1)2

(24)

which can also be rewritten as follows:

[H](s, [w], [x]) =
[x3]s3 + [x2]s2 + [x1]s+ 1

[w3]s3 + [w2]s2 + [w1]s+ [w0]
(25)

such as:
[x3] = 0.001[τ ]3

[x2] = 0.03[τ ]2

[x1] = 0.3[τ ]
[w3] = 0.01[τ ]3

[K]

[w2] = 0.21[τ ]2

[K]

[w1] = 1.2[τ ]
[K]

[w0] = 1
[K]

G. Acheivement of robust performances
The controller defined in (21) ensures the required

specifications in Section IV-D if its parameters [Kp] and
[Ki] meet the following inclusions:

[Kp][b2]
[Ki]

⊆ 0.001[τ ]3
[Kp][b1]

[Ki]
+ [b2] ⊆ 0.03[τ ]2

[Kp]
[Ki]

+ [b1] ⊆ 0.3[τ ]
[a2]+[Kp][b2]

[Ki]
⊆ 0.01[τ ]3

[K]
[a1]+[Kp][b1]

[Ki]
+ [b2] ⊆ 0.21[τ ]2

[K]
[a0]+[Kp]

[Ki]
+ [b1] ⊆ 1.2[τ ]

[K]

1 ⊆ 1
[K]

(26)

H. Derivation of the controller
Let us now compute the controller parameters. The

problem given in (26) is known as a set-inversion problem
which can be solved using SIVIA algorithm [9] if an
initial box is provided. We denote Sc the set parameters
of the controller that satisfy these conditions. After the
application of the SIVIA algorithm implemented in the
Matlab-Software, with an initial box [Kp0] × [Ki0] =
[0.1, 0.6] × [0.1, 500], we obtain the subpaving given in
Fig. 4. The dark colored subpaving (Sc) corresponds to
the set parameters [Kp] and [Ki] that define a family of
controllers ensuring performances for the interval model.

Remark 4.1: Any choice of the parameters [Kp] and
[Ki] in the dark colored subpaving Sc (see Fig. 4) satisfies
the inclusions (26) and consequently ensures specifica-
tions in Section IV-D.

Remark 4.2: If the set-inversion problem is not feasi-
ble, i.e. Sc = ∅, the initial box of the parameters must
be changed and/or one must modify the specifications.
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Fig. 4. Set parameters [Kp]× [Ki] ensuring performances.

I. Experimental results
For the implementation of the controller, (point) pa-

rameters Kp and Ki must be taken from the set solution
Sc. In this application, we test two point controllers:

C1(s) = 0.1s+200
s

C2(s) = 0.2s+400
s

(27)

These two controllers are implemented for the two
piezocantilevers. Fig. 5 shows the experimental results
when a step reference of 20µm is applied. In this fig-
ure, we also have the temporal envelope of the refer-
ence model [H](s, [K], [τ ]). We mean by the envelope of
[H](s, [K], [τ ]) the step responses of two tranfer functions
H1(s) and H2(s) such as: 1) H1(s) has the minimal
constant time τ = 0.33ms and the maximal static gain
K = 1.01, 2) and H2(s) has the maximal constant time
τ = 10ms and the minimal static gain K = 0.99.
As shown in Fig. 5, the controllers have played their
roles and ensure the specifications. Indeed, experimental
settling times are tr1 = 17.7ms and tr2 = 7ms with
C1(s) and C2(s) respectively, and the static errors are
neglected and belong to the required interval |ε| ≤ 1%.
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Fig. 5. Step response of the interval reference model and experi-
mental results on the two piezocantilevers using C1(s) and C2(s).

V. Conclusion

The main contribution of this paper was the interval
modeling and robust PID controller design for piezo-
electric microsystems. These microsystems are known to
be sensitive to usury functioning and to environmental
disturbances making their models uncertain during mi-
cromanipulation or microassembly tasks. We therefore
introduced interval techniques to model the uncertain
parameters and to compute robust control law. The main

advantage to use intervals is the ease and natural way
to bound the parametric uncertainties. The proposed
controller design is advantageous for deriving low-order
robust controllers which are necessary to develop real
packaged microsystems. Finally, the experimental results
demonstrated the efficiency of the proposed method.
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