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Recently, chaos theory has been used in the development of novel techniques for global optimization , and particularly, in the specification of chaos optimization algorithms (COA) based on the use of numerical sequences generated by means of chaotic map.

In this paper, we present an improved chaotic optimization algorithm using a new two-dimensional discrete multifold mapping for optimizing nonlinear functions(ICOMM). The proposed method is a powerful optimization technique, which is demonstrated when three nonlinear functions of reference are minimized using the proposed technique.

Introduction

Application of chaos in industrial and applied problems is a very important and urgent research topic [START_REF] Li | Chaos optimization method and its application[END_REF][START_REF] Li | Optimizing complex function by chaos search[END_REF][START_REF] Choi | Chaotic local search algorithm[END_REF][START_REF] Zhang | Improved chaos optimization algorithm and its application in nonlinear constraint optimization problems[END_REF][START_REF] Yang | On the efficiency of chaos optimization algorithms for global optimization[END_REF] . In particulary in theory of control, cryptography and more recently in global optimization algorithms where introduction of chaotic numbers instead of random ones leads to better results [START_REF] Liu | Modified dynamic minimization algorithm for parameter estimation of chaotic system from a time series[END_REF]. In general, chaos has three main dynamics properties [START_REF] Tavazoei | An optimization algorithm based on chaotic behavior and fractal nature[END_REF]: sensitive dependence on initial conditions assessed by Lyapunov exponents [START_REF] Strogatz | Nonlinear Dynamics and Chaos. Massachussetts[END_REF][START_REF] Caponetto | Chaotic sequences to improve the performance of evolutionary algorithms[END_REF][START_REF] Wu | Introduction of Chaos Theory[END_REF], stochasticity and ergodicity. Taking advantage of properties as ergodicity and stochasticity of chaos, some new algorithms called chaos optimization algorithm (COA) and hybridization with other techniques are presented in the literature: gradient-based methods [START_REF] Ou-Yang | Combined BFGS-chaos method for solving geometric constraint[END_REF], genetic algorithms [START_REF] Fei | A novel chaotic optimization algorithm and its applications[END_REF][START_REF] Machado | Optimal tuning of fractional controllers using genetic algorithms[END_REF], particle swarm optimization [START_REF] Liu | Improved particle swarm optimization combined with chaos[END_REF][START_REF] Chen | Study and application of chaosparticle swarm optimization-based hybrid optimization algorithm[END_REF][START_REF] Meng | A hybrid particle swarm algorithm with embedded chaotic search[END_REF][START_REF] Alatas | Chaos embedded particle swarm optimization algorithms[END_REF][START_REF] Wei | Chaotic ant swarm for the traveling salesman problem[END_REF], differential evolution [START_REF] Guo | Chaos differential evolution algorithm with dynamically changing weighting factor and crossover factor[END_REF][START_REF] Ho | Parameter identification of chaotic systems using improved differential evolution algorithm[END_REF], clonal algorithms [START_REF] Du | Adaptive chaos clonal evolutionary programming algorithm[END_REF], artificial immune systems [START_REF] Zuo | Chaotic-search-based immune algorithm for function optimization[END_REF][START_REF] Zuo | The chaos artificial immune algorithm and its application to RBF neuro-fuzzy controller design[END_REF], bee colony algorithms [START_REF] Alatas | Chaotic bee colony algorithms for global numerical optimization[END_REF] and simulated annealing [START_REF] Mingjun | Application of chaos in simulated annealing[END_REF]. The aim of this paper is to present a new optimization algorithm chaotic based on new 2-D discrete chaotic system (map) with multifold attractor. The paper is organized as follows: in Sec.2 we present a new strategy based on locally averaged strategy of the global search and multifold chaotic attractor, in Sec. 3 we analyse the effectiveness of the proposed algorithm on a benchmark suite of 3 well-known nonlinear test functions which are optimized. Finally, we propose a conclusion.

Chaotic optimization method

Multifold chaotic attractor

Since the pioneer chaotic map introduced by Hénon [START_REF] Hénon | A two dimensional mapping with a strange attractor[END_REF] in 1976, many other chaotic maps have been studied [START_REF] Lozi | Un attracteur etrange? du type attracteur de Hénon[END_REF][START_REF] Sprott | chaos and Times-Series Analysis[END_REF][START_REF] Hunt | The Theory of Chaotic Attractorss[END_REF]. Among these maps , some display multifold patterns [START_REF] Zeraoulia | A two-dimensional discrete mapping with C ∞ -multifold chaotic attractors[END_REF][START_REF] Aziz-Alaoui | Dynamics of a Hénon-Lozi map[END_REF]. In this paper we have used the map recently introduced by Zeraoulia and Sprott, as a modification of Hénon map.

y 1 (k) = 1 -a(siny 1 (k -1)) + by(k -1) y(k) = y 1 (k -1) ( 1 
)
where k is the iteration number.

The essential motivation to replace the quadratic term x 2 in the Hénon map by the nonlinear term in sinx. is to develop a C ∞ mapping that is capable of generating chaotic attractors with multifolds via a period-doubling bifurcation route to chaos which has not been studied before in the literature.

The fact that this map is C ∞ in some ways simplifies the study of the map and avoids some problems related to the lack of continuity or differentiability of the map. The choice of the term sinx has an important role in that it makes the solutions bounded for values of b such that |b| ≤ 1, and all values of a, while they are unbounded for |b| > 1. The chosen parameters values are a = 4 and b = 0.9 as suggested in [START_REF] Zeraoulia | A two-dimensional discrete mapping with C ∞ -multifold chaotic attractors[END_REF]. For this values the observed attractor (see Fig. 1) be- However, even if for all a in R and |b| < 1 and all initial conditions (y(0), y 1 (0)), the orbits of (1) are bounded (see cite26, theorem 5), this map exhibits very complicated dynamical behaviors with coexisting attractors. Hence in order to choose initial conditions for ICOMM for which the attractor is observed we choose it in a subset of D. The optimization algorithm needs to normalize the variable y(k) in the range [0, 1] using the transformation

z(k) = y(k) -α β -α . (2) 
where Remark: Contrary to the theorical proof that Lozi map exhibits a strange chaotic attractor [START_REF] Misiurewicz | strange attractors for the lozi mappings[END_REF] there is only weak numerical evidence that (1) has chaotic attractors. It is possible that Fig. 1 displays only a transient regime wich leads eventually to a periodic orbit. Numerically, with any initial condition in the basin of attraction defined for a = 4 and b = 0.9 one finds a period 6 attractor when k ≥ 150, 000 

y 1 (k + 6) = y 1 (k) = 10.9694028942956052. y 1 (k + 1) = 13.0613259136267086 y 1 (k + 2) = 8.97249334266406606 y 1 (k + 3) = 11.0071070225514713 y 1 (k + 4) = 13.0749780033934186 y 1 (k + 5) = 8
.95855079898761808 computation being done with double precision numbers. Again there is no proof that (1) possesses orbit shifted shadowing property as proved for generalized Lozi map [START_REF] Sakurai | orbit shifted shadowing property of generalized lozi maps[END_REF]. However, as for optimization algorithm only few iterates (i.e. k ≤ 10, 000) are needed, property of transient regime ( which is ergodic and stochastic within its range of value) worthes for ICOMM.

Locally averaged strategy

COMM is mainly COLM ( chaotic optimization method based on Lozi map) defined by Coelho [START_REF] Coelho | Tuning of PID Controller for an Automatic Regulator Voltage System using Chaotic Optimization Approach[END_REF] in which Lozi map is replaced by the map of Zeraoulia and Sprott. In order to improve COLM we have done [START_REF] Hamaizia | Improving Chaotic Optimization Algorithm using a new global locally averaged strategy[END_REF] some modification in the global step of reaserch. This new algorithm is called ICOLM ( Improved COLM). Now we introduce the modification to COMM in order the global search converges. The ICOMM algorithm is then defined as:

Find X to minimize f (X), X = [x 1 , x 2 , , x n ] subject to x i ∈ [L i ,U i ].
Where f is the objective function, and X is the decision solution vector consisting of n variables x i ∈ R n bounded by lower (L i ) and upper limits (U i ). The chaotic search procedure based on two-dimensional maps can be illustrated as follows [START_REF] Coelho | Tuning of PID Controller for an Automatic Regulator Voltage System using Chaotic Optimization Approach[END_REF][START_REF] Shayeghi | Robust PSS Design using Chaotic Optimization Algorithm for a Multimachine Power System[END_REF][START_REF] Shayeghi | A PSO based Unified Power Flow Controller for Damping of Power System Oscillations[END_REF] -Step 1 : Initialization of the numbers M g , M gl1 , M gl2 , M l of steps of chaotic search and initialization of parameters λ gl1 , λ gl2 , λ and initial conditions. Set k = 1, y(0), y 1 (0), a = 4 and b = 0.9 . Set the initial best objective function f = +∞ -Step 2: algorithm of chaotic global search:

while k ≤ M g do x i (k) = L i + z i (k).(U i -L i ) if f (X(k)) < f then X = X(k); f = f (x(k)) end if -Step 2-1: sub algorithm of first chaotic global-local search: while j ≤ M gl1 do for i = 0 to n do if r ≤ 0.5 then x i ( j) = xi + λ gl1 z i ( j).|(U i -L i )| else x i ( j) = xi -λ gl1 z i ( j).|(U i -L i )| end if end for if f (X( j)) < f then X = X( j); f = f (x( j)) end if j = j + 1 end while -Step 2-2: sub algorithm of second chaotic global- local search: while s ≤ M gl2 do for i = 0 to n do if r ≤ 0.5 then x i (s) = xi + λ gl2 z i (s).|(U i -L i )| else x i (s) = xi -λ gl2 z i (s).|(U i -L i )| end if end for if f (X(s)) < f then X = X(s); f = f (x(s)) end if s = s + 1 end while k = k + 1 end while -Step 3 : algorithm of chaotic local search: while k ≤ M g × (M gl1 + M gl2 ) + M l do for i = 0 to n do if r ≤ 0.5 then x i (k) = xi + λ z i (k).|(U i -L i )| else x i (k) = xi -λ z i (k).|(U i -L i )| end if end for if f (X(k)) < f then X = X(k); f = f (x(k)) end if k = k + 1 end while
Heuristics: the locally averaged strategy of ICOMM and ICOLM leads to better results than COMM or COLM as shown on Fig. 3. In this figure only three global search results are displayed x 1 , x 2 , x 3 with

f (x 2 ) < f (x 3 ) < f (x 1 ). (3) 
The local search following global one starts from the best global result x 2 (from (3)) and gives x 2 . Instead the local-global search around x 1 , x 2 and x 3 , leads to x 1 , x 2 , x 3 which verify

f (x 1 ) < f (x 3 ) < f (x 2 ). (4) 
The local search following the local-global one starts now from the best globally averaged result x 1 (from( 4)) and leads to x F f (x F ) < (x 1 ).

(5)

Experiments and analysis

In this section, the benchmark suite consists in three nonlinear multimodal functions that differ in terms of various characteristics. They are used to evaluate application performance of ICOMM. To examine the effectiveness of this method involving the multifold map, we apply ICOMM for each function. We use different values of steps size λ , λ gl1 and λ gl2 . For each trial we use 48 random initial points (48 runs); on a 3.2 GHz Pentium IV processor with 2 GB of RAM. For all the studied cases, the four configurations, numbered from C1 to C4, that are used are presented in Tab. 1 Table 1 The set of parameters values for every run on the benchmark suite defined in Sec. 2.2

Multimodal test functions

We test ICOMM in 2D optimization problem using :

3.1.1 Function f 1 (See Fig. 4)

The function f 1 is the Easom function [START_REF] Li | Optimizing complex function by chaos search[END_REF][START_REF] Yang | On the efficiency of chaos optimization algorithms for global optimization[END_REF] 

f 1 = -cos(x 1 )cos(x 2 )e (-(x 1 -π) 2 -(x 2 -π) 2 ))
its characteristics are:

search domain:-10

≤ x i ≤ 10, i = 1, 2.
number of local minima: several local minima.

one global minimum: x = (π, π), f ( x) = -1.

3.1.2 Function f 2 (See Fig. 5)

The function f 2 is the Rosenbrock's function [START_REF] Li | Optimizing complex function by chaos search[END_REF][START_REF] Yang | On the efficiency of chaos optimization algorithms for global optimization[END_REF] 

f 2 = 100(x 2 1 + x 2 ) 2 + (1 -x 1 )
2 its characteristics are defined as follows:

search domain: -2.048 ≤ x i ≤ 2.048, i = 1, 2.

number of local minima: several local minima.

-The global minimum: x = (0, 0), f ( x) = 0. The function f 3 is more complex [START_REF] Hamaizia | Improving Chaotic Optimization Algorithm using a new global locally averaged strategy[END_REF][START_REF] Cong | An Improved Algorithm of Chaos Optimization[END_REF] than f 1 and f 2

f 3 = x 4 1 -7x 2 1 -3x 1 + x 4 2 -9x 2 2 -5x 2 +11x 2 1 x 2 2 + 99sin(71x 1 ) + 137sin(97x 1 x 2 ) + 131sin(51x 2 )
.

search domain: -10 ≤ x i ≤ 10, i = 1, 2.

number of local minima: several local minima.

The essential feature of this benchmark function is that location of minima is not symmetric. In a forthcoming paper we will extend our numerical analysis in higher dimension with an extended benchmark suite [START_REF] Cong | An Improved Algorithm of Chaos Optimization[END_REF].

Numerical results

The numerical results are displayed in Tab.2. For both functions f 1 and f 2 the global minimum is easily reached in few steps. Configurations C1 and C2 are fast and efficient. Concerning f 3 which possesses hundreds of local minima, the best results are obtained using configurations C3 and C4. The global minima is not yet theoretically known, however extended numerical computations give some clues that the values of f 3 found using both C3 and C4 are not far from the value of f 3 on the global minimum. The locally averaged strategy of ICOMM is illustrated on Fig. 7 on which the result of every step 2-2 is plotted. method is fast and converges to a good optimum. because we used a sampling mechanism to coordinate the research methods based on chaos theory, and we refined the final solution using a second method of local search. Further research is needed to gain more confidence and better understanding of the proposed methodology. The proposed algorithm has to be evaluated for a large number of test functions in higher dimension.
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  Chaotic multifold attractor of the map (1) obtained for a = 4 and b = 0.9. longs to the square (y 1 , y) ∈ [-8.588, 27.645] 2 = D ∈ R 2 .
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 1 [α, β ] = [-8.588, 27.645] Numerical computation leads to the density d(s) of iterated values of y(k) displayed on Fig. 2. In this figure, the density is normalized to 1 over the whole interval [0, 1] i.e. d(s)ds = 1.
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 2 Fig. 2 density of iterated values of y(k) of equation (1) over the interval [0, 1] splitted in 100 boxes for 100,000 iterated values.
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 56 Fig. 5 graph of test function f 2 in the search domain
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 7 Fig. 7 Locally-averaged strategy of chaotic search. Results of every Step 2-2 for f 3

  : Inputs: M g : max number of iterations of chaotic Global search. Mgl 1 : max number of iterations of first chaotic Local search in Global search. Mgl 2 : max number of iterations of second chaotic Local search in Global search. M l : max number of iterations of chaotic Local search. Mt = Mg×(Mgl 1 +Mgl 2 )+Mg: stopping criterion of chaotic optimization method in iterations. λ gl1 : step size in first global-local search. λ gl2 : step size in second global-local search. λ : step size in chaotic local search.

	Outputs:
	X: best solution from current run of chaotic search.
	f : best objective function (minimization problem).

  Table 2 optimization results over 48 runs for 4 parameter configurations

	Best value	Mean	Std.Dev ( x,y)	T/s
		value		
	f 1 -1.0000	-0.9999	0.0001 (3.1443, 3.1443)	1.9490
	-1.0000	-0.9998	0.0002 (3.1458, 3.1446)	1.9499
	-1.0000	-0.9999	0.0001 (3.1453, 3.1445)	27.8084
	-1.0000	-1.0000	0.0000 (3.1420, 3.1420)	55.5564
	f 2 0.0000	0.0000	0.0000 (0.9996, 0.9978)	1.8380
	0.0000	0.0000	0.0000 (0.9988,0.9977)	1.8386
	0.0000	0.0000	0.0000 (0.9999, 0.9998)	25.9905
	0.0000	0.0000	0.0000 (1.0001, 1.0002)	52.1532
	f 3 -373.2600	-362.8730	5.8505 (-0.2926,-2.6142)	2.1350
	-391.1240	-362.9798	10.7292 (-2.0556, -2.4995) 2.1736
	-395.5435	-390.5618	5.1234 (-0.2897, -0.2786) 31.3117
	-395.5870	-391.3068	4.7932 (-0.2034, 0.0920)	62.2426