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Abstract Recently, chaos theory has been used in the de-
velopment of novel techniques for global optimization , and
particularly, in the specification of chaos optimization algo-
rithms (COA) based on the use of numerical sequences gen-
erated by means of chaotic map.

In this paper, we present an improved chaotic optimiza-
tion algorithm using a new two-dimensional discrete map-
ping for optimizing nonlinear functions(ICOMM). The pro-
posed method is a powerful optimization technique, which
is demonstrated when three nonlinear functions of reference
are minimized using the proposed technique.

Keywords Chaos optimization algorithms · Nonlinear test
functions · 2-D Discrete map.

1 Introduction

Application of chaos in industrial and applied problems is
a very important and urgent research topic [1- 5]. In partic-
ulary in theory of control, cryptography and more recently in
global optimization algorithms where introduction of chaotic
numbers instead of random ones leads to better results. In
general, chaos has three main dynamics properties [6]: sen-
sitive dependence on initial conditions assessed by Lyapunov
exponents [7-9], stochasticity and ergodicity.
Taking advantage of properties as ergodicity and stochastic-
ity of chaos, some new algorithms called chaos optimization
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algorithm (COA) and hybridization with other techniques
are presented in the literature: gradient-based methods [10],
genetic algorithms [11], particle swarm optimization [12–
15], differential evolution [16], clonal algorithms [17], arti-
ficial immune systems [18,19], bee colony algorithms [20]
and simulated annealing [21].
The aim of this paper is to present a new optimization al-
gorithm chaotic based on new 2-D discrete chaotic system
(map) with multifold attractor.
The paper is organized as follows: in Sec. 2 we present a
new strategy based on locally averaged strategy of the global
search and multifold chaotic attractor, in Sec. 3 we analyse
the effectiveness of the proposed algorithm on a benchmark
suite of 3 well-known nonlinear test functions which are op-
timized. Finally, we propose a conclusion.

2 Chaotic optimization method

2.1 Multifold chaotic attractor

Since the pioneer chaotic map introduced by Hénon [22] in
1976, many other chaotic maps have been studied [23–25].
Among these maps , some display multifold patterns [26,
27]. In this paper we have used the map recently introduced
by Zeraoulia and Sprott, as a modification of Hénon map.{

y1(k) = 1−a(siny1(k−1))+by(k−1)
y(k) = y1(k−1)

(1)

where k is the iteration number.
The essential motivation to replace the quadratic term x2 in
the Hénon map by the nonlinear term in sinx. is to develop
a C∞ mapping that is capable of generating chaotic attrac-
tors with multifolds via a period-doubling bifurcation route
to chaos which has not been studied before in the literature.
The fact that this map is C∞ in some ways simplifies the
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study of the map and avoids some problems related to the
lack of continuity or differentiability of the map. The choice
of the term sinx has an important role in that it makes the
solutions bounded for values of b such that |b| ≤ 1, and all
values of a, while they are unbounded for |b|> 1. The cho-
sen parameters values are a = 4 and b = 0.9 as suggested
in [26]. For this values the observed attractor (see Fig.1) be-

 

-10 -5 0 5 10 15 20 25 30
-10

-5

0

5

10

15

20

25

Fig. 1 Chaotic multifold attractor of the map (1) obtained for a = 4 and
b = 0.9.

longs to the square (y1,y) ∈ [−8.588,27.645]2 = D ∈ R2.
However, even if for all a in R and |b| < 1 and all initial
conditions (y(0),y1(0)), the orbits of (1) are bounded (see
[26], theorem 5), this map exhibits very complicated dynam-
ical behaviors with coexisting attractors. Hence in order to
choose initial conditions for ICOMM for which the attractor
is observed we choose it in a subset of D. The optimization
algorithm needs to normalize the variable y(k) in the range
[0,1] using the transformation

z(k) =
(y(k)−α)

β −α
. (2)

where [α,β ] = [−8.588,27.645]
Numerical computation leads to the density d(s) of it-

erated values of y(k) displayed on Fig. 2. In this figure, the
density is normalized to 1 over the whole interval [0,1] i.e.∫ 1

0
d(s)ds = 1.

Remark: Contrary to the theorical proof that Lozi map ex-
hibits a strange chaotic attractor [28] there is only weak nu-
merical evidence that (1) has chaotic attractors. It is possible
that Fig. 1 displays only a transient regime wich leads even-
tually to a periodic orbit. Numerically, with any initial con-
dition in the basin of attraction defined for a = 4 and b = 0.9
one finds a period 6 attractor when k ≥ 150,000
y1(k+6) = y1(k) = 10.9694028942956052.
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Fig. 2 density of iterated values of y(k) of equation (1) over the interval
[0,1] splitted in 100 boxes for 100,000 iterated values.

y1(k+1) = 13.0613259136267086

y1(k+2) = 8.97249334266406606

y1(k+3) = 11.0071070225514713

y1(k+4) = 13.0749780033934186

y1(k+5) = 8.95855079898761808
computation being done with double precision numbers. Again
there is no proof that (1) possesses orbit shifted shadowing
property as proved for generalized Lozi map [28]. How-
ever, as for optimization algorithm only few iterates (i.e.
k≤ 10,000) are needed, property of transient regime ( which
is ergodic and stochastic within its range of value) worthes
for ICOMM.

2.2 Locally averaged strategy

COMM is mainly COLM ( chaotic optimization method based
on Lozi map) defined by Coelho [30] in which Lozi map
is replaced by the map of Zeraoulia and Sprott. In order to
improve COLM we have done [31] some modification in
the global step of reaserch . This new algorithm is called
ICOLM ( Improved COLM). Now we introduce the modifi-
cation to COMM in order the global search converges. The
ICOMM algorithm is then defined as:

Find X to minimize f (X),X = [x1,x2, ,xn]

subject to xi ∈ [Li,Ui].

Where f is the objective function, and X is the decision so-
lution vector consisting of n variables xi ∈ Rn bounded by
lower (Li) and upper limits (Ui). The chaotic search proce-
dure based on two-dimensional maps can be illustrated as
follows [30,32,33]:
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Inputs:
Mg: max number of iterations of chaotic Global search.
Mgl1: max number of iterations of first chaotic Local search
in Global search.
Mgl2: max number of iterations of second chaotic Local
search in Global search.
Ml : max number of iterations of chaotic Local search.
Mt =Mg×(Mgl1+Mgl2)+Mg: stopping criterion of chaotic
optimization method in iterations.
λgl1: step size in first global-local search.
λgl2: step size in second global-local search.
λ : step size in chaotic local search.
Outputs:
X̄ : best solution from current run of chaotic search.
f̄ : best objective function (minimization problem).

Step 1 : Initialization of the numbers Mg, Mgl1, Mgl2, Ml
of steps of chaotic search and initialization of parameters
λgl1, λgl2, λ and initial conditions. Set k = 1, y(0), y1(0),
a = 4 and b = 0.9 . Set the initial best objective function
f̄ =+∞

– Step 2: algorithm of chaotic global search:

while k ≤Mg do
xi(k) = Li + zi(k).(Ui−Li)

if f (X(k))< f̄ then
X̄ = X(k); f̄ = f (x(k))

end if

– Step 2-1: sub algorithm of first chaotic global-local
search:

while j ≤Mgl1 do
for i = 0 to n do

if r ≤ 0.5 then
xi( j) = x̄i +λgl1zi( j).|(Ui−Li)|

else
xi( j) = x̄i−λgl1zi( j).|(Ui−Li)|

end if
end for
if f (X( j))< f̄ then

X̄ = X( j); f̄ = f (x( j))
end if
j = j+1

end while

– Step 2-2: sub algorithm of second chaotic global-
local search:

while s≤Mgl2 do
for i = 0 to n do

if r ≤ 0.5 then
xi(s) = x̄i +λgl2zi(s).|(Ui−Li)|

else
xi(s) = x̄i−λgl2zi(s).|(Ui−Li)|

end if

end for
if f (X(s))< f̄ then

X̄ = X(s); f̄ = f (x(s))
end if
s = s+1

end while
k = k+1

end while

– Step 3 : algorithm of chaotic local search:

while k ≤Mg× (Mgl1 +Mgl2)+Ml do
for i = 0 to n do

if r ≤ 0.5 then
xi(k) = x̄i +λ zi(k).|(Ui−Li)|

else
xi(k) = x̄i−λ zi(k).|(Ui−Li)|

end if
end for
if f (X(k))< f̄ then

X̄ = X(k); f̄ = f (x(k))
end if
k = k+1

end while
Heuristics: the locally averaged strategy of ICOMM and

ICOLM leads to better results than COMM or COLM as
shown on Fig. 3. In this figure only three global search re-
sults are displayed x1, x2, x3 with

f (x2)< f (x3)< f (x1). (3)

The local search following global one starts from the best
global result x2 (from (3)) and gives x

′
2. Instead the local-

global search around x1, x2 and x3, leads to x
′
1, x

′
2, x

′
3 which

verify

f (x
′
1)< f (x

′
3)< f (x

′
2). (4)

The local search following the local-global one starts now
from the best globally averaged result x

′
1 (from(4)) and leads

to xF

f (xF)< f (x
′
2). (5)

3 Experiments and analysis

In this section, the benchmark suite consists in three non-
linear multimodal functions that differ in terms of various
characteristics. They are used to evaluate application per-
formance of ICOMM. To examine the effectiveness of this
method involving the multifold map, we apply ICOMM for
each function. We use different values of steps size λ ,λgl1
and λgl2. For each trial we use 48 random initial points (48
runs); on a 3.2 GHz Pentium IV processor with 2 GB of
RAM. For all the studied cases, the four configurations, num-
bered from C1 to C4, that are used are presented in Tab. 1



4 Tayeb Hamaizia, René Lozi

 

Fig. 3 Heuristics of locally-averaged strategy.

λ λMgl1 λMgl2 Mg Ml Mgl1 Mgl2 Mt
C1 0.01 0.04 0.01 10 50 2 2 90
C2 0.01 0.4 0.01 10 50 2 2 90
C3 0.01 0.04 0.01 100 50 5 5 1050
C4 0.001 0.04 0.01 200 100 5 5 2100

Table 1 The set of parameters values for every run on the benchmark
suite defined in Sec. 2. 2.

3.1 Multimodal test functions

We test ICOMM in 2D optimization problem using :

3.1.1 Function f1 (See Fig. 4)

The function f1 is the Easom function [2],[5]

f1 =−cos(x1)cos(x2)e(−(x1−π)2−(x2−π)2))

its characteristics are:

–search domain:−10≤ xi ≤ 10, i = 1,2.

–number of local minima: several local minima.

–one global minimum:x̄ = (π,π), f (x̄) =−1.

3.1.2 Function f2 (See Fig. 5)

The function f2 is the Rosenbrock’s function [2],[5]

f2 = 100(x2
1 + x2)

2 +(1− x1)
2

its characteristics are defined as follows:

–search domain:−2.048≤ xi ≤ 2.048, i = 1,2.

–number of local minima: several local minima.

–The global minimum:x̄ = (0,0), f (x̄) = 0.

3.1.3 Function f3 (See Fig. 6)

The function f3 is more complex [31],[34] than f1 and f2

f3 = x4
1−7x2

1−3x1 + x4
2−9x2

2−5x2

+11x2
1x2

2 +99sin(71x1)+137sin(97x1x2)+131sin(51x2)

.

–search domain:−10≤ xi ≤ 10, i = 1,2.

–number of local minima: several local minima.

The essential feature of this benchmark function is that
location of minima is not symmetric. In a forthcoming paper
we will extend our numerical analysis in higher dimension
with an extended benchmark suite [28].

3.2 Numerical results

The numerical results are displayed in Tab. 2.
For both functions f1 and f2 the global minimum is eas-

ily reached in few steps. Configurations C1 and C2 are fast
and efficients. Concerning f3 which possesses hundreds of
local minima, the best results are obtained using configura-
tions C3 and C4. The global minima is not yet theoretically
known, however extended numerical computations give some
clues that the values of f3 found using both C3 and C4 are
not far from the value of f3 on the global minimum. The lo-
cally averaged strategy of ICOMM is illustrated on Fig.7 on
which the result of every step 2-2 is plotted.
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Fig. 4 graph of test function f1 in the search domain

4 Conclusion

In this paper, we have presented a new chaotic optimization
algorithm inspired by COLM methods, chaos optimization
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Fig. 7 Locally-averaged strategy of chaotic search. Results of every
Step 2-2 for f3

algorithms based on new 2-D discrete multifold chaotic at-
tractor. This algorithm is tested on a benchmark suite con-
sisting in three well know nonlinear reference functions.

The presented study allows us to conclude that the pro-
posed method is fast and converges to a good optimum. be-
cause we used a sampling mechanism to coordinate the re-
search methods based on chaos theory, and we refined the
final solution using a second method of local search. Fur-
ther research is needed to gain more confidence and better

Best value Mean
value

Std.Dev ( x,y) T/s

f1 -1.0000 -0.9999 0.0001 (3.1443, 3.1443) 1.9490
-1.0000 -0.9998 0.0002 (3.1458, 3.1446) 1.9499
-1.0000 -0.9999 0.0001 (3.1453, 3.1445) 27.8084
-1.0000 -1.0000 0.0000 (3.1420, 3.1420) 55.5564

f2 0.0000 0.0000 0.0000 (0.9996, 0.9978) 1.8380
0.0000 0.0000 0.0000 (0.9988,0.9977) 1.8386
0.0000 0.0000 0.0000 (0.9999, 0.9998) 25.9905
0.0000 0.0000 0.0000 (1.0001, 1.0002) 52.1532

f3 -373.2600 -362.8730 5.8505 (-0.2926,-2.6142) 2.1350
-391.1240 -362.9798 10.7292 (-2.0556, -2.4995) 2.1736
-395.5435 -390.5618 5.1234 (-0.2897, -0.2786) 31.3117
-395.5870 -391.3068 4.7932 (-0.2034, 0.0920) 62.2426

Table 2 optimization results over 48 runs for 4 parameter configura-
tions

understanding of the proposed methodology. The proposed
algorithm has to be evaluated for a large number of test func-
tions in higher dimension.
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14.Meng, H.J ,Zheng, P. , Wu, R.Y. , Hao, X.-J. , Xie,Z.: A hybrid
particle swarm algorithm with embedded chaotic search. 2004 IEEE
Conference on Cybernetics and Intelligent Systems, 2004, pp. 367-
371.
15.Alatas, B. , Akin, E. , Ozer, A. B.: Chaos embedded particle swarm
optimization algorithms. Chaos, Solitons and Fractals, Vol. 40, No.
4, 2009, pp. 1715-1734.
16.Guo, Z.Y., Kang, L.Y. , Cheng, B.,Ye, M. , Cao, B.G. : Chaos
differential evolution algorithm with dynamically changing weight-
ing factor and crossover factor”. Harbin Gongcheng Daxue Xue-
bao/Journal of Harbin Engineering University, Vol. 27 (SUPPL.),
2006 pp. 523-526.
17.Du, H., Gong, M., Liu, R., Jiao, L. : Adaptive chaos clonal evo-
lutionary programming algorithm. Science in China, Series F: Infor-
mation Sciences, Vol. 48, No. 5, 2005, pp. 579-595.
18.Zuo, X.Q., Fan,Y.S.: Chaotic-search-based immune algorithm for
function optimization. Kongzhi Lilun Yu Yinyong/Control Theory
and Applications, Vol. 23, No. 6, 2006, pp. 957-960+966.
19.Zuo, X.Q., Li,S.Y. : The chaos artificial immune algorithm and its
application to RBF neuro-fuzzy controller design. Proceedings of the
IEEE International Conference on Systems, Man and Cybernetics,
Vol. 3, 2003, pp. 2809-2814.
20.Alatas, B. : Chaotic bee colony algorithms for global numeri-
cal optimization. Expert Systems with Applications, Vol. 37, No. 8,
2010, pp. 5682-5687.
21.Mingjun , J. , Huanwen,T.: Application of chaos in simulated an-
nealing. Chaos, Soitons and Fractals. Vol. 21, No. 4, August 2004,
pp. 933-941.
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