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A large time asymptotics for the solution of the Cauchy problem for the Novikov-Veselov equation at negative energy with non-singular scattering data

In the present paper we are concerned with the Novikov-Veselov equation at negative energy, i.e. with the (2 + 1)-dimensional analog of the KdV equation integrable by the method of inverse scattering for the two-dimensional Schrödinger equation at negative energy. We show that the solution of the Cauchy problem for this equation with non-singular scattering data behaves asymptotically as const t 3/4 in the uniform norm at large times t. We also prove that this asymptotics is optimal.

Introduction

In the present paper we consider the Novikov-Veselov equation

∂ t v = 4Re(4∂ 3 z v + ∂ z (vw) -E∂ z w), ∂ z w = -3∂ z v, v = v, E ∈ R, E < 0, (1.1) v = v(x, t), w = w(x, t), x = (x 1 , x 2 ) ∈ R 2 , t ∈ R,
where

∂ t = ∂ ∂t , ∂ z = 1 2 ∂ ∂x 1 -i ∂ ∂x 2 , ∂ z = 1 2 ∂ ∂x 1 + i ∂ ∂x 2 .
We will say that (v, w) is a rapidly decaying solution of (1.1) if

• v, w ∈ C(R 2 × R), v(•, t) ∈ C 3 (R 3 ),
(1.2a)

• |∂ j x v(x, t)| q(t) (1 + |x|) 2+ε , |j| 3, for some ε > 0, w(x, t) → 0, |x| → ∞,

(1.2b)

• (v, w) satisfies (1.1).

(1.2c)

Note that if v(x, t) = v(x 1 , t), w(x, t) = w(x 1 , t), then (1.1) is reduced to the classic KdV equation. In addition, (1.1) is integrable via the inverse scattering method for the twodimensional Schrödinger equation

Lψ = Eψ, L = -∆ + v(x), x = (x 1 , x 2 ), E = E f ixed .
(1.3)

In this connection, it was shown (see [M], [START_REF] Novikov | Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formula and evolutions equations[END_REF], [START_REF] Novikov | Finite-zone, two-dimensional Schrödinger operators. Potential operators[END_REF]) that for the Schrödinger operator L from (1.3) there exist appropriate operators A, B (Manakov L-A-B triple) such that (1.1) is equivalent to

∂(L -E) ∂t = [L -E, A] + B(L -E),
where [•, •] is the commutator. Note that both Kadomtsev-Petviashvili equations can be obtained from (1.1) by considering an appropriate limit E → ±∞ (see [ZS], [G2]).

We will consider the Cauchy problem for equation (1.1) with the initial data v(x, 0) = v 0 (x), w(x, 0) = w 0 (x).

(1.4)

We will assume that the function v 0 (x) satisfies the following conditions

• v 0 = v0 , (1.5a)

• E = ∅, where E is the set of zeros of the Fredholm determinant ∆ of (2.7) for equation (2.6) with v(x) = v 0 (x), (1.5b)

• v 0 ∈ S(R 2 ), where S denotes the Schwartz class.

(1.5c)

As for the function w 0 (x), which plays an auxiliary role, we will assume that it is a continuous function decaying at infinity and determined using ∂ z w 0 (x) = -3∂ z v 0 (x) from (1.1). Condition (1.5b) is equivalent to non-singularity of scattering data for v 0 (x). Conditions (1.5) define the class of initial values for which the direct and inverse scattering equations (2.4), (2.9)-(2.11), with time dynamics given by (2.15), are everywhere solvable and the corresponding solution v of (1.1) belongs to C ∞ (R 2 , R). We will call such solution (v(x, t), w(x, t)), constructed from (v 0 (x), w 0 (x)) via the inverse scattering method, an "inverse scattering solution" of (1.1).

The main result of this paper consists in the following: we show that for the "inverse scattering solution" v(x, t) of (1.1), (1.4), where E < 0 and v(x, 0) = v 0 (x) satisfies (1.5), the following estimate holds

|v(x, t)| const(v 0 ) ln(3 + |t|) (1 + |t|) 3/4
, t ∈ R, uniformly on x ∈ R 2 .

(1.6)

We show that this estimate is optimal in the sense that for some initial values v(x, 0) and for some lines x = ωt, ω ∈ S 1 , the exact asymptotics of v(x, t) along these lines is const (1+|t|) 3/4 as |t| → ∞ (where the constant is nonzero). Note that de facto the "inverse scattering solution" is the rapidly decaying solution in the sense of (1.2).

This work is a continuation of the studies on the large time asymptotic behavior of the solution of the Cauchy problem for the Novikov-Veselov equation started in [START_REF] Kazeykina | A large time asymptotics for transparent potentials for the Novikov-Veselov equation at positive energy[END_REF] for the case of positive energy E. It was shown in [START_REF] Kazeykina | A large time asymptotics for transparent potentials for the Novikov-Veselov equation at positive energy[END_REF] that if the initial data (v 0 (x), w 0 (x)) satisfy the following conditions:

• (v 0 (x), w 0 (x)) are sufficiently regular and decaying at |x| → ∞,

• v 0 (x) is transparent for (1.3) at E = E f ixed > 0, i.e. its scattering amplitude f is identically zero at fixed energy,

• the additional "scattering data" b for v 0 (x) is non-singular, then the corresponding solution of (1.1),(1.4) can be estimated as

|v(x, t)| const • ln(3 + |t|) 1 + |t| , t ∈ R uniformly on x ∈ R 2 .
This estimate implies, in particular, that there are no localized soliton-type traveling waves in the asymptotics of (1.1) with the"transparent" at E = E f ixed > 0 Cauchy data from the aforementioned class, in contrast with the large time asymptotics for solutions of the KdV equation with reflectionless initial data. It was shown in [N2] that all soliton-type (traveling wave) solutions of (1.1) with E > 0 must have a zero scattering amplitude at fixed energy; in addition it was proved in [N2] that for the equation (1.1) with E > 0 no exponentially localized soliton-type solutions exist (even if the scattering data are allowed to have singularities). However, in [G1], [G2] a family of algebraically localized solitons (traveling waves) was constructed de facto (see also [START_REF] Kazeykina | Large time asymptotics for the Grinevich-Zakharov potentials[END_REF]). We note that for the case E < 0, though the absence of exponentially-localized solitons has been proved (see [START_REF] Kazeykina | Absence of exponentially localized solitons for the Novikov-Veselov equation at negative energy[END_REF]), the existence of bounded algebraically localized solitons is still an open question.

Note that studies on the large time asymptotics for solutions of the Cauchy problem for the Kadomtsev-Petviashvili equations were fulfilled in [MST], [HNS], [K].

The proofs provided in the present paper are based on the scheme developed in [START_REF] Kazeykina | A large time asymptotics for transparent potentials for the Novikov-Veselov equation at positive energy[END_REF], the stationary phase method (see [Fe]). These proofs include, in particular, an analysis of some cubic algebraic equation depending on a complex parameter.

This work was fulfilled in the framework of research carried out under the supervision of R.G. Novikov.

2 Inverse "scattering" transform for the two-dimensional Schrödinger equation at a fixed negative energy

In this section we give a brief description of the inverse "scattering" transform for the twodimensional Schrödinger equation ( 1.3) at a fixed negative energy E (see [GN], [N1], [G2]).

First of all, we note that by scaling transform we can reduce the scattering problem with an arbitrary fixed negative energy to the case when E = -1. Therefore, in our further reasoning we will assume that E = -1.

Let us consider potentials v(x) for the problem (1.3) satisfying the following conditions

v = v, |v(x)| q (1 + |x|) 2+ε , x ∈ R 2 , (2.1)
for some fixed q and ε > 0. Then it is known that for λ ∈ C\(0 ∪ E), where E is the set of zeros of the modified Fredholm determinant ∆ for equation (2.6), (2.2) there exists a unique continuous solution ψ(z, λ) of (1.3) with the following asymptotics

ψ(z, λ) = e -1 2 (λz+z/λ) µ(z, λ), µ(z, λ) = 1 + o(1), |z| → ∞. (2.3)
Here the notation z = x 1 + ix 2 is used. These solutions are known as the Faddeev solutions for the Schrodinger equation (1.3), E = -1, see for example [Fa], [N1].

The function µ(z, λ) satisfies the following integral equation

µ(z, λ) = 1 + ζ∈C g(z -ζ, λ)v(ζ)µ(ζ, λ)dReζdImζ (2.4) g(z, λ) = - 1 2π 2 ζ∈C exp(i/2(ζ z + ζz)) ζ ζ + i(λ ζ + ζ/λ) dReζdImζ, (2.5) where z ∈ C, λ ∈ C\0. In terms of m(z, λ) = (1 + |z|) -(2+ε)/2 µ(z, λ) equation (2.4) takes the form m(z, λ) = (1 + |z|) -(2+ε)/2 + ζ∈C (1 + |z|) -(2+ε)/2 g(z -ζ, λ) v(ζ) (1 + |ζ|) -(2+ε)/2 m(ζ, λ)dReζdImζ, (2.6) where z ∈ C, λ ∈ C\0. In addition, A(•, •, λ) ∈ L 2 (C × C), |TrA 2 (λ)| < ∞, where A(z, ζ, λ)
is the Schwartz kernel of the integral operator A(λ) of the integral equation (2.6). Thus, the modified Fredholm determinant for (2.6) can be defined by means of the formula: ln ∆(λ) = Tr(ln(I -A(λ)) + A(λ))

(2.7)

(see [GK] for more precise sense of such definition).

Taking the subsequent members in the asymptotic expansion (2.3) for ψ(z, λ), we obtain (see [N1]):

ψ(z, λ) = exp - 1 2 λz + z λ 1 -2πsgn(1 -λ λ)× × iλa(λ) z -λ 2 z + exp - 1 2 1 λ -λ z + 1 λ -λ z λb(λ) i( λ2 z -z) + o 1 |z| , (2.8) |z| → ∞, λ ∈ C\(E ∪ 0).
The functions a(λ), b(λ) from (2.8) are called the "scattering" data for the problem (1.3), (2.1) with E = -1.

The function µ(z, λ), defined by (2.4), satisfies the following properties:

µ(z, λ) is a continuous function of λ on C\(0 ∪ E); (2.9) ∂µ(z, λ) ∂ λ = r(z, λ)µ(z, λ), (2.10a) r(z, λ) = r(λ) exp 1 2 λ - 1 λ z -λ - 1 λ z , (2.10b) r(λ) = πsgn(1 -λ λ) λ b(λ) (2.10c) for λ ∈ C\(0 ∪ E); µ → 1, as λ → ∞, λ → 0.
(2.11)

The function b(λ) possesses the following symmetries:

b - 1 λ = b(λ), b 1 λ = b(λ), λ ∈ C\0.
(2.12)

In addition, the following theorem is valid:

Theorem 2.1 (see [GN], [N1], [G2]). (ii) Let b be a function on C, such that b ∈ S( D-) and the symmetry properties (2.12) hold.

Then the equations of inverse scattering (2.16)-(2.18) are uniquely solvable and the corresponding potential v(z) satisfies the following properties:

v ∈ C ∞ (C), v = v, |v(z)| → 0 when |z| → ∞.
Let us denote by T the unit circle on the complex plane:

T = {λ ∈ C : |λ| = 1}. (2.13)
Then, in addition, it is known that under the assumptions of item (i) of Theorem 2.1 the function b is continuous on C and its derivative ∂ λ b(λ) is bounded on C, though discontinuous, in general, on T . Finally, if (v(z, t), w(z, t)) is a solution of equation (1.1) with E = -1 in the sense of (1.2), then the dynamics of the "scattering" data is described by the following equations (see [GN])

a(λ, t) = a(λ, 0), (2.14) b(λ, t) = exp λ 3 + 1 λ 3 -λ3 - 1 λ3 t b(λ, 0). (2.15)
The reconstruction of the potential v(z, t) from these "scattering" data is based on the following scheme.

1. Function µ(z, λ, t) is constructed as the solution of the following integral equation

µ(z, λ, t) = 1 - 1 π C r(z, ζ, t)µ(z, ζ, t) dReζdImζ ζ -λ . (2.16) 2. Expanding µ(z, λ, t) as λ → ∞, µ(z, λ, t) = 1 + µ -1 (z, t) λ + o 1 |λ| , (2.17) 
we define v(z, t) as v(z, t) = -2∂ z µ -1 (z, t).

(2.18)

3. It can be shown that Lψ = Eψ where

L = -4∂ z ∂ z + v(z, t), v(z, t) = v(z, t), E = -1 ψ(z, λ, t) = e -1 2 (λz+z/λ) µ(z, λ, t), λ ∈ C, z ∈ C, t ∈ R.
3 Estimate for the linearized case

Consider I(t, z) = C f (ζ) exp(S(ζ, z, t))dReζdImζ, J(t, z) = 3 C ζ ζ f (ζ) exp(S(ζ, z, t))dReζdImζ, (3.1) where z ∈ C, t ∈ R, f (ζ) ∈ L 1 (C), S is defined by S(λ, z, t) = 1 2 λ - 1 λ z -λ - 1 λ z + t λ 3 + 1 λ 3 -λ3 - 1 λ 3 . (3.2)
We will also assume that f (ζ) satisfies the following conditions

f ∈ C ∞ ( D+ ), f ∈ C ∞ ( D-), (3.3a) ∂ m λ ∂ n λ f (λ) = O (|λ| -∞ ) as |λ| → ∞, O (|λ| ∞ )
as |λ| → 0, for all m, n 0, (3.3b)

where

D + = {λ ∈ C : 0 < |λ| 1}, D -= {λ ∈ C : |λ| 1}, (3.4) and D+ = D + ∪ T , D-= D -∪ T with T defined by (2.13). Note that if v(z, t) = I(t, z), w(z, t) = J(t, z), where (|ζ| 3 + |ζ| -3 )f (ζ) ∈ L 1 (C) as a function of ζ,
and, in addition,

f (ζ) = f (-ζ) and/or f (ζ) = -|ζ| -4 f 1 ζ , then v, w satisfy the linearized Novikov-Veselov equation (1.1) with E = -1. Besides, if f (ζ) = π|1 -ζ ζ| 2|ζ| 2 b(ζ), (3.5) 
where b(ζ) is the scattering data for the initial functions (v 0 (z), w 0 (z)) of the Cauchy problem (1.1), (1.4), then the integrals I(t, z), J(t, z) of (3.1) represent the approximation of the solution (v(z, t), w(z, t)) under the assumption that v ≪ 1. The goal of this section is to give, in particular, a uniform estimate of the large-time behavior of the integral I(t, z) of (3.1).

For this purpose we introduce parameter u = z t and write the integral I in the following form

I(t, u) = C f (ζ) exp(tS(u, ζ))dReζdImζ, (3.6) 
where

S(u, ζ) = 1 2 ζ - 1 ζ ū -ζ - 1 ζ u + ζ 3 -ζ3 + 1 ζ 3 - 1 ζ3 . (3.7)
We will start by studying the properties of the stationary points of the function S(u, ζ) with respect to ζ. These points satisfy the equation

S ′ ζ = ū 2 - u 2ζ 2 + 3ζ 2 - 3 ζ 4 = 0. (3.8)
The degenerate stationary points obey additionally the equation

S ′′ ζζ = u ζ 3 + 6ζ + 12 ζ 5 = 0. (3.9) We denote ξ = ζ 2 and Q(u, ξ) = u 2 - ū 2ξ + 3ξ - 3 ξ 2 .
For each ξ, a root of the function Q(u, ξ), there are two corresponding stationary points of

S(u, ζ), ζ = ± √ ξ.
The function S ′ ζ (u, ζ) can be represented in the following form

S ′ ζ (u, ζ) = 3 ζ 4 (ζ 2 -ζ 2 0 (u))(ζ 2 -ζ 2 1 (u))(ζ 2 -ζ 2 2 (u)).
(3.10)

We will also use hereafter the following notations:

U = {u = -6(2e -iϕ + e 2iϕ ) : ϕ ∈ [0, 2π)} and U = {u = re iψ : ψ = Arg(-6(2e -iϕ + e 2iϕ )), 0 r |6(2e iϕ + e -2iϕ )|, ϕ ∈ [0, 2π)},
the domain limited by the curve U .

Lemma 3.1 (see [START_REF] Kazeykina | A large time asymptotics for transparent potentials for the Novikov-Veselov equation at positive energy[END_REF]).

1. If u = -18e 2πik 3 , k = 0, 1, 2, then ζ 0 (u) = ζ 1 (u) = ζ 2 (u) = e πik 3 (3.11)
and S(u, ζ) has two degenerate stationary points, corresponding to a third-order root of the function

Q(u, ξ), ξ 1 = e 2πik 3 . 2. If u ∈ U ( i.e. u = -6(2e -iϕ + e 2iϕ ) ) and u = -18e 2πik 3 , k = 0, 1, 2, then ζ 0 (u) = ζ 1 (u) = e -iϕ/2 , ζ 2 (u) = e iϕ .
(3.12)

Thus S(u, ζ) has two degenerate stationary points, corresponding to a second-order root of the function Q(u, ξ), ξ 1 = e -iϕ , and two non-degenerate stationary points corresponding to a first-order root, ξ 2 = e 2iϕ .

3. If u ∈ intU = U\∂U, then ζ i (u) = e -iϕ i for some real ϕ i , and

ζ i (u) = ζ j (u) for i = j. (3.13)
In this case the stationary points of S(u, ζ) are non-degenerate and correspond to the roots of the function Q(u, ξ) with absolute values equal to 1.

4. If u ∈ C\U, then ζ 0 (u) = (1 + ω)e -iϕ/2 , ζ 1 (u) = e iϕ , ζ 2 (u) = (1 + ω) -1 e -iϕ/2 (3.14)
for certain real values ϕ and ω > 0.

In this case the stationary points of the function S(u, ζ) are non-degenerate, and correspond to the roots of the function Q(u, ξ) that can be expressed as

ξ 0 = (1 + τ )e -iϕ , ξ 1 = e 2iϕ , ξ 2 = (1 + τ ) -1 e -iϕ , (1 + τ ) = (1 + ω) 2 .
Formula (3.10) and Lemma 3.1 give a complete description of the stationary points of the function S(u, ζ).

In order to estimate the large-time behavior of the integral having the form

I(t, u, λ) = C f (ζ, λ) exp(tS(u, ζ))dReζdImζ (3.15)
(where S(u, ζ) is an imaginary-valued function) uniformly on u, λ ∈ C, in the present and the following sections we will use the following general scheme.

1. Consider D ε , the union of disks with a radius of ε and centers in singular points of function f (ζ, λ) and stationary points of S(u, ζ) with respect to ζ.

2. Represent I(t, u, λ) as the sum of integrals over D ε and C\D ε :

I(t, u, λ) = I int + I ext , where 
I int = Dε f (ζ, λ) exp(tS(u, ζ))dReζdImζ, I ext = C\Dε f (ζ, λ) exp(tS(u, ζ))dReζdImζ.
(3.16)

3. Find an estimate of the form

|I int | = O (ε α ) , as ε → 0 (α 1)
uniformly on u, λ, t.

4. Integrate I ext by parts using Stokes formula

I ext = - 1 2it ∂Dε f (ζ, λ) exp(tS(u, ζ)) S ′ ζ (u, ζ) d ζ- - 1 2it T \Dε (f + (ζ, λ) -f -(ζ, λ)) exp(tS(u, ζ)) S ′ ζ (u, ζ) d ζ - 1 t C\Dε f ′ ζ (ζ, λ) exp(tS(u, ζ)) S ′ ζ (u, ζ) dReζdImζ+ + 1 t C\Dε f (ζ, λ) exp(tS(u, ζ))S ′′ ζζ (u, ζ) (S ′ ζ (u, ζ)) 2 dReζdImζ = - 1 t (I 1 + I 2 + I 3 -I 4 ), (3.17) where f ± (ζ, λ) = lim δ→0 f (ζ(1 ∓ δ), λ), ζ ∈ T and
T is defined by (2.13).

5.

For each I i find an estimate of the form

|I i | = O 1 ε β , as ε → 0. 6. Set ε = 1 (1 + |t|) k , where k(α + β) = 1, which yields the overall estimate |I(t, u, λ)| = O 1 (1 + |t|) α α+β , as |t| → ∞.
Using this scheme we obtain, in particular, the following result Lemma 3.2. Let a function f satisfy assumptions (3.3) and, additionally,

f | T ≡ 0, T = {λ ∈ C : |λ| = 1}.
(3.18)

Then the integral I(t, u) of (3.6) can be estimated

|I(t, u)| const(f ) ln(3 + |t|) (1 + |t|) 3/4 for t ∈ R (3.19)
uniformly on u ∈ C.

Note that condition (3.18) is satisfied if f has the special form (3.5). A detailed proof of Lemma 3.2 is given in Section 6.

Estimate for the non-linearized case

In this section we prove estimate (1.6) for the solution v(x, t) of the Cauchy problem for the Novikov-Veselov equation at negative energy with the initial data v(x, 0) satisfying properties (1.5).

We proceed from the formulas (2.17), (2.18) for the potential v(z, t) and the integral equation (2.16) for µ(z, λ, t).

We write (2.16) as µ(z, λ, t) = 1 + (A z,t µ)(z, λ, t), (4.1)

where

(A z,t f )(λ) = ∂ -1 λ (r(λ) exp(itS(u, λ))f (λ)) = - 1 π C r(ζ) exp(tS(u, ζ))f (ζ) ζ -λ dReζdImζ and S(u, ζ) is defined by (3.7), u = z t .
Equation (4.1) can be also written in the form

µ(z, λ, t) = 1 + A z,t • 1 + (A 2 z,t µ)(z, λ, t). (4.2)
According to the theory of the generalized analytic functions (see [V]), equations (4.1), (4.2) have a unique bounded solution for all z, t. This solution can be written as

µ(z, λ, t) = (I -A 2 z,t ) -1 (1 + A z,t • 1). (4.3)
Equation ( 4.3) implies the following formal asymptotic expansion

µ(z, λ, t) = (I + A 2 z,t + A 4 z,t + . . .)(1 + A z,t • 1). (4.4)
We also introduce functions ν(z, λ, t) = ∂ z µ(z, λ, t) and η(z, λ, t) = ∂ z µ(z, λ, t). In terms of these functions the potential v(z, t) is obtained by the formula v(z, t) = -2ν -1 (z, t), (4.5)

where ν -1 (z, t) is defined by expanding ν(z, λ, t) as |λ| → ∞:

ν(z, λ, t) = ν -1 (z, t) λ + o 1 |λ| , |λ| → ∞.
The pair of function ν(z, λ, t), η(z, λ, t) satisfy the following system of differential equations:

     ∂ν(z, λ, t) ∂ λ = ∂ z r(z, λ, t)µ(z, λ, t) + r(z, λ, t)η(z, λ, t), ∂η(z, λ, t) ∂ λ = ∂ z r(z, λ, t)µ(z, λ, t) + r(z, λ, t)ν(z, λ, t).
(4.6)

Equations (4.6) can also be written in the integral form

ν(z, λ, t) = (B z,t µ)(z, λ, t) + (A z,t η)(z, λ, t), η(z, λ, t) = (B z,t µ)(z, λ, t) + (A z,t ν)(z, λ, t), (4.7)
where operator B z,t is defined

(B z,t f )(λ) = ∂ -1 λ (∂ z r(z, λ, t)f (λ)) = - 1 π C ∂ z r(z, ζ, t)f (ζ) ζ -λ dReζdImζ. (4.8)
Thus for the function ν(z, λ, t) we obtain equation

ν = (B z,t + A z,t B z,t )µ + A 2 z,t ν,
or the following formal asymptotic expansion

ν = (I + A 2 z,t + A 4 z,t + . . .)((B z,t + A z,t B z,t )(I + A 2 z,t + A 4 z,t + . . .)(1 + A z,t • 1)).
(4.9)

We will write this formula in the form

ν = B z,t • 1 + A z,t B z,t • 1 + R z,t (λ).
Lemma 4.1. Let f (λ, z, t) be an arbitrary testing function such that

|f | c f (1 + |t|) δ , |∂ λ f | c f (1 + |t|) δ ∀λ ∈ C, z ∈ C, t ∈ R
with some positive constant c f independent of λ, z, t and some δ 0. Then:

1. The following estimates hold for B z,t • f :

(B z,t • f )(λ) = β 1 (z, t) λ + o 1 |λ| for λ → ∞,
where

β 1 (z, t) = 1 π C ∂ z r(z, ζ, t)f (ζ, z, t)dReζdImζ,
and

|β 1 (z, t)| β1 c f ln(3 + |t|) (1 + |t|) 3/4+δ ; (4.10) in addition, |(B z,t • f )(λ)| β2 c f ln(3 + |t|) (1 + |t|) 1/2+δ for λ ∈ T, (4.11)
where T is defined by (2.13), and

|(B z,t • f )(λ)| β3 c f (1 + |t|) 1/4+δ ∀λ ∈ C.
(4.12)

The following estimates hold for

A z,t • B z,t • f : (A z,t • B z,t • f )(λ) = α 1 (z, t) λ + o 1 |λ| for λ → ∞,
where

α 1 (z, t) = - 1 π 2 C dReζdImζ r(z, ζ, t) C ∂ z r(z, η, t) η -ζ f (η, z, t)dReη dImη, (4.13) and |α 1 (z, t)| α1 c f (1 + |t|) 3/4+δ ; (4.14)
in addition,

|(A z,t • B z,t • f )(λ)| α2 c f (1 + |t|) 1/2+δ ∀λ ∈ C.
(4.15)

3. The following estimates for A n z,t • f hold:

(A n z,t • f )(λ) = γ n (z, t) λ + o 1 |λ| for λ → ∞, where γ n (z, t) = 1 π C r(z, ζ, t)(A n-1 z,t • f )(ζ)dReζdImζ and |γ n (z, t)| (γ 1 ) n c f (1 + |t|) δ+ 1 5 ⌈ n-1 2 ⌉+ 2 5 , (4.16)
where ⌈s⌉ denotes the smallest integer following s. In addition,

|(A n z,t • f )(λ)| (γ 2 ) n c f (1 + |t|) δ+ 1 5 ⌈ n 2 ⌉ ∀λ ∈ C. (4.17)
4. The following estimate holds for R z,t :

R z,t (λ) = q(z, t) λ + o 1 |λ| for λ → ∞, (4.18) and |q(z, t)| q(c f ) (1 + |t|) 9/10 . (4.19)
A detailed proof of Lemma 4.1 is given in Section 6.

From formulas (4.5), (4.9) and Lemma 4.1 follows immediately the following theorem.

Theorem 4.1. Let v(x, t) be the "inverse scattering solution" of the Cauchy problem for the Novikov-Veselov equation (1.1) with E = -1 and the initial data v(x, 0) = v 0 (x) satisfying (1.5). Then

| v(x, t)| const(v 0 ) ln(3 + |t|) (1 + |t|) 3/4 , x ∈ R 2 , t ∈ R.
5 Optimality of estimates (1.6) and (3.19)

In this section we show that estimates (1.6) and (3.19) are optimal in the following sense: there exists such a line z = ût that along this line I(z, t) from (3.19) behaves asymptotically as const (1+|t|) 3/4 with come nonzero constant; there exist such initial data satisfying (1.5) that the corresponding solution v(z, t) behaves asymptotically as const (1+|t|) 3/4 as |t| → ∞, where the constant is nonzero.

Optimality of the estimate for the linearized case

Let us consider the integral To calculate the exact asymptotic behavior of I(t, û) we will use the classic stationary method as described in [Fe]. First of all, we note that f (ζ) is continuous, but not continuously differentiable on C. Thus we will consider separately the integrals

I(t, u) = C f (ζ) exp(tS(u, ζ))dReζdImζ, ( 5 
I + (t) = D + f (ζ) exp(tS(ζ))dReζdImζ, I -(t) = D - f (ζ) exp(tS(ζ))dReζdImζ,
where D + and D -are defined in (3.4).

Let us introduce the partition of unity

ψ 1 (ζ) + ψ 0 (ζ) + ψ -1 (ζ) ≡ 1, such that 0 ψ i 1, ψ i ∈ C ∞ (C), ψ ±1 (ζ) ≡ 1 in some neighborhood of ζ = ±1
, respectively, and ψ ±1 (ζ) ≡ 0 everywhere outside some neighborhood of ζ = ±1 respectively. Then it is known (see [Fe]) that

I + (t) = D + f (ζ)ψ 1 (ζ) exp(tS(ζ))dReζdImζ+ D + f (ζ)ψ -1 (ζ) exp(tS(ζ))dReζdImζ+O 1 |t| = = I + + (t) + I - + (t) + O 1 |t| as |t| → ∞.
First we will estimate I + + (t). We note that for the phase S 

I + + (t) = ∆ + f (x + iy) ψ1 (x + iy) exp(3itxy(x 2 -y 2 ))|∂ η ϕ(x + iy)| 2 dxdy,
where f = f • ϕ, ψ1 = ψ 1 • ϕ and ∆ + = {(x, y) ∈ R 2 : x < 0}, i.e. ∆ + is the half-plane containing the image of D + ∩ B ε (1) under the transformation x + iy = ϕ -1 (ζ).

The integral I + + (t) can be written in the form

I + + (t) = +∞ -∞ dc exp(3itc) γc∩∆ + f (x + iy) ψ1 (x + iy)|∂ η ϕ(x + iy)| 2 dω S ,
where dω S is the Gelfand-Leray differential form, defined as

dS ∧ dω S = dx ∧ dy (5.4)
and in the particular case under study equal to

dω S = -(x 3 -3xy 2 )dx + (3x 2 y -y 3 )dy (x 2 + y 2 ) 3 ;
γ c is an oriented contour consisting of points of the set {S(x, y) = c} with the orientation chosen so that (5.4) holds.

As ψ1 (x + iy) is equal to zero outside some B R (0), a disk of radius R centered in the origin, then there exists such c * > 0 that the set {S(x, y) = c} lies outside B R (0) for any c < -c * , c > c * . Thus the integral I + + (t) can be written

I + + (t) = c * -c * dc exp(3itc) γc∩∆ + f (x + iy) ψ1 (x + iy)|∂ η ϕ(x + iy)| 2 dω S .
Performing the change of variables

x → c 1/4 x, y → c 1/4 y for c > 0, x → (-c) 1/4 x, y → (-c) 1/4 y for c < 0 yields

I + + (t) = c * 0 dc exp(3itc) c 1/2 F + (c) + 0 -c * dc exp(3itc) (-c) 1/2 F -(c),
where

F + (c) = γ + ∩{c 1/4 (x,y)∈∆ + } F(c, x, y)dω S , F -(c) = γ -∩{(-c) 1/4 (x,y)∈∆ + } F(-c, x, y)dω S ,
(5.5) γ + , γ -are oriented sets consisting of points of the sets {S(x, y) = 1}, {S(x, y) = -1} correspondingly with orientation chosen so that (5.4) holds and

F(c, x, y) = f (c 1/4 (x + iy)) ψ1 (c 1/4 (x + iy))|∂ η ϕ(c 1/4 (x + iy))| 2 .
For any fixed positive c the integrals in (5.5) converge because the set {S(x, y) = 1} is separated from zero and, consequently, the denominator does not vanish, and because ψ1 is a function with a bounded support and thus the domains of integration in (5.5) are, in fact, bounded. Besides, since ∆ + is a conic set, the functions F + (c) and F -(c) can be expressed as follows (5.6) In some neighborhood U 0 of c 1/4 (x + iy) = 0 containing the support of ψ1 the function f (c 1/4 (x + iy)) can be represented as

F + (c) = γ + ∩∆ + F(c, x, y)dω S , F -(c) = γ -∩∆ + F(-c, x, y)dω S ,
f (c 1/4 (x + iy)) = f (1) + 6 -1/4 [∂ ζ f D + (1)(x + iy) + ∂ζf D + (1)(x -iy)]c 1/4 + g(c 1/4 (x + iy)),
where

∂ ζ f D + (1) = lim ζ∈D + ζ→1 ∂ ζ f , ∂ζf D + (1) = lim ζ∈D + ζ→1
∂ζf and, in addition, g is a function that can be estimated |g(c 1/4 (x + iy))| K|c 1/4 (x + iy)| 1+α , c 1/4 (x + iy) ∈ U 0 (5.7)

with some constants α > 0, K > 0. Using (5.2), we note that f (1) = 0,

∂ ζ f D + (1) = ∂ζf D + (1) def = f ′ D + (1) and thus f (c 1/4 (x + iy)) = 6 -1/4 f ′ D + (1)xc 1/4 + g(c 1/4 (x + iy)), c 1/4 (x + iy) ∈ U 0 .
Taking into account (5.3) we obtain (5.8) where γ = 6 -3/4 and g is a function satisfying an estimate similar to (5.7).

F(c, x, y) = γf ′ D + (1)xc 1/4 + g(c 1/4 (x + iy)), c 1/4 (x + iy) ∈ U 0 ,
It follows then that the functions F ± (c) behave asymptotically as

F ± (c) = γf ′ D + (1)J ± ∆ + (±c) 1/4 + R(c), when c → 0, where J + ∆ + = γ + ∩∆ + xdω S , J - ∆ + = γ -∩∆ + xdω S
and R(c) denotes the remainder. The integrals J ± ∆ + converge because the set {S(x, y) = ±1} represents a combination of curves which do not pass through zero and converge either to the lines |y| = |x| or to the coordinate axes with velocities |y| = 1 |x| 3 and |x| = 1 |y| 3 correspondingly. The remainder R(c) behaves asymptotically as o c 1/4 because we can estimate

|R(c)| Kc 1/4(1+α) (γ + ∪γ -)∩∆ + |x + iy| 1+α |dω S |.
and the integral converges due to the properties of the set {S(x, y) = ±1} explained above. Thus I + + (t) behaves asymptotically as (see [START_REF] Fedoryuk | Asymptotics: integrals and series[END_REF]Chapter III,§1])

I + + (t) = γ 3 3/4 f ′ D + (1)Γ 3 4 J + ∆ + exp iπ3 8 + J - ∆ + exp - iπ3 8 1 t 3/4 + o 1 t 3/4 ,
where Γ is the Gamma function.

Let us perform the same procedure for I - + (t). In this case we will define P (ζ) as

P (ζ) = -9ζ -9 ζ + ζ 3 + 1 ζ 3 -16 and obtain P (ζ) = ρ(ζ)(ζ + 1) 4 , ρ(ζ) = ζ 2 -4ζ + 1 ζ 3 .
Since ρ(-1) = -6, we will define the following transformation ζ → η in the neighborhood of ζ = -1: η = (-ρ(ζ)) 

I - + (t) = ∆ - f (x + iy) ψ-1 (x + iy) exp(-3itxy(x 2 -y 2 ))|∂ η ϕ(x + iy)| 2 dxdy,
where ∆ -= {(x, y) ∈ R 2 : x > 0} and the functions f , ψ-1 , ϕ are defined similarly to the case of I + + (t). The integral I - + (t) can also be written

I - + (t) = +∞ -∞ dc exp(-3itc) γc∩∆ - f (x + iy) ψ1 (x + iy)|∂ η ϕ(x + iy)| 2 dω S ,
where γ c and dω S are the same as for the case of I + + (t). Performing further the same procedure as for the case of I + + (t) and taking into account that

J + ∆ + = -J + ∆ -, J - ∆ + = -J - ∆ -,
we obtain the following asymptotic expansion for I - + (t):

I - + (t) = - γ 3 3/4 f ′ D + (-1)Γ 3 4 J + ∆ + exp - iπ3 8 + J - ∆ + exp iπ3 8 1 t 3/4 + o 1 t 3/4 .
Considering the case of I -(t) we note that in order to get an asymptotic representation for

I + -(t) and I - -(t) we need to replace D + → D -, ∆ + → ∆ -, ∆ -→ ∆ + in the formulas for I + + (t) and I - + (t) correspondingly. Taking into account that f ′ D + (1) = -f ′ D -(1), f ′ D + (-1) = -f ′ D -(-1
), we obtain

I(t) = C t 3/4 + o 1 t 3/4 , where C = 2γ 3 3/4 Γ 3 4 f ′ D + (1) J + ∆ + exp iπ3 8 + J - ∆ + exp - iπ3 8 - f ′ D + (-1) J + ∆ + exp - iπ3 8 + J - ∆ + exp iπ3 8 .
(5.9)

Thus we have shown that the linear approximation of the solution v(z, t) of (1.1), when z = -18t, behaves asymptotically as C t 3/4 when t → ∞. Note that on the set γ + ∪γ -the differential form dω S is positive. Thus J ± ∆ + are some negative constants, and expressions

J + ∆ + exp iπ3 8 + J - ∆ + exp -iπ3 8 , J + ∆ + exp -iπ3 8 + J - ∆ + exp iπ3 8
do not vanish. On the other hand, from (2.12) and (5.2) it follows that 1). Thus, in the general case the constant C from (5.9) is nonzero. We have proved the optimality of the estimate (1.6) in the linear approximation.

f ′ D + (1)/f ′ D + (-1) = b(1)/b(

Optimality of the estimate for the non-linear case

Now we show that for certain initial values v(z, 0) the corresponding solution v(z, t) of (1.1) behaves asymptotically as c t 3/4 along the line z = -18t for some c = 0. Let us show that the integral (4.13) with f ≡ 1 and z = -18t behaves as const t 3/4 .

We can represent α 1 (-18t, t) in the form (5.1) with f

(ζ, t) = r(ζ, t)ρ(ζ, t), where ρ(ζ, t) = - 1 π 2 C ∂ z r(η, z, t)| z=-18t η -ζ dReηdReζ.
In other terms,

f (ζ) = f (ζ, t) = sgn(1 -ζ ζ) ζ b(ζ)∂ -1 ζ π|1 -ζ ζ| 2|ζ| 2 b(ζ) exp(tS(ζ)) .
We proceed following the scheme of estimate for I(t) until formula (5.7). Then we represent

ψ1 (c 1/4 (x + iy))|∂ η ϕ(c 1/4 (x + iy))| 2 = 1 √ 6 + kc 1/4 (x + iy) + h(c 1/4 (x + iy)),
where k is some coefficient and h(c 1/4 (x + iy)) satisfies an estimate of type (5.7). Consequently, for F(c, x, y) we can write

F(c, x, y) = f (1)(6 -1/2 +kc 1/4 (x+iy))+6 -1/4 [∂ ζ f D + (1)(x+iy)+∂ζ f D + (1)(x-iy)]c 1/4 +g(c 1/4 (x+iy)),
where g(c 1/4 (x + iy)) satisfies an estimate of type (5.7). This allows us to obtain in the end

α 1 (-18t, t) = l 1 (f (±1)) t 1/2 1 + const t 1/4 + l 2 (f ζ (±1), fζ (±1)) t 3/4 + o 1 t 3/4 , t → ∞, (5.10) 
where l 1 (f (±1)) is a linear combination of the limit values of f as ζ tends to 1 and -1 from inside and outside of the unit circle, and l 2 (f ζ (±1), fζ(±1)) is a linear combination of the limit values of f ζ and fζ as ζ tends to 1 and -1 from inside and outside of the unit circle. Now let us consider the potential v θ corresponding to the scattering data θb, where θ ∈ R is some small parameter. In a way similar to which (5.10) was obtained it can be shown that

|f (±1, t)| c 1 θ 2 t 1/2 , |f ζ (±1, t)| c 2 θ 2 , |fζ(±1, t)| c 2 θ 2
for sufficiently large values of t, where c 1 , c 2 , c 3 are some constants independent of t and θ. When θ → 0 and t → ∞, the linear approximation of v θ behaves as O θ t 3/4 , while the expression α 1 (-18t, t) behaves as O θ 2 t 3/4 (it can be shown that the member o 1 t 3/4 in (5.10) depends quadratically on θ).

Finally, from (4.9) and Lemma 4.1 it follows that for θ small enough and for z = -18t,

v θ (z, t) = C θ t 3/4 + o 1 t 3/4 , t → ∞,
where C θ is some nonzero constant. Thus we have shown that the estimate (1.6) is optimal.

6 Proofs of Lemma 3.2 and Lemma 4.1

Proof of Lemma 3.2. The proof follows the scheme described in Section 3 and is carried out separately for four cases depending on the values of the parameter u. In all the reasonings that follow we denote by D ε the union of disks with the radius ε centered in the stationary points of S(u, ζ) and we denote by T the unit circle on the complex plane:

T = {λ ∈ C : |λ| = 1}; (6.1)
in addition, const will denote an independent constant and const(f ) will denote a constant depending only on function f . Case 1. u ∈ U In this case all the stationary points belong to T and due to assumptions (3.3) and (3.18) of Lemma 3.2 we can estimate

|f (ζ)| const(f )ε for ζ ∈ D ε . (6.2)
Now we estimate the integral I int (as in (3.16)) as follows

|I int | = Dε f (ζ) exp(tS(u, ζ))dReζdImζ const(f ) • ε Dε dReζdImζ const(f )ε 3 .
The estimate for I ext (as in (3.16)) is proved as follows.

We note that the function S ′ ζ (u, ζ) can be estimated as

|S ′ ζ (u, ζ)| const ε 3 0 |ζ| 4 for ζ ∈ C\D ε 0 , and 
|S ′ ζ (u, ζ)| const ρ 3 |ζ| 4 for ζ ∈ ∂D ρ , ε ρ ε 0 . (6.3)
Similarly, we can estimate

S ′′ ζζ (u, ζ) (S ′ ζ (u, ζ)) 2 const |ζ| 4 ε 4 0 for ζ ∈ C\D ε 0 , and 
S ′′ ζζ (u, ζ) (S ′ ζ (u, ζ)) 2 const |ζ| 4 ρ 4 0 for ζ ∈ ∂D ρ , ε ρ ε 0 .
(6.4)

Thus we obtain the following estimate for I 1 from (3.17)

|I 1 | 1 2 ∂Dε |f (ζ)| |S ′ ζ (u, ζ)| |d ζ| const ε ε 3 ∂Dε |ζ| 4 |d ζ| const(f ) ε ε 2 (1 + ε) 4 const(f ) ε .
Due to assumption (3.18) of Lemma 3.2 the integral I 2 from (3.17) is equivalent to zero. When estimating I 3 and I 4 from (3.17) we fix some independent ε 0 > 0 and integrate separately over D ε 0 \D ε and C\D ε 0 :

|I 3 | Dε 0 \Dε f ′ ζ (ζ) exp(tS(u, ζ)) S ′ ζ (u, ζ) dReζdImζ + C\Dε 0 f ′ ζ (ζ) exp(tS(u, ζ)) S ′ ζ (u, ζ) dReζdImζ const(f ) ε 0 ε ρ ρ 3 dρ + const C\Dε 0 |f ′ ζ (ζ)||ζ 4 |dReζdImζ const(f ) ε , |I 4 | Dε 0 \Dε f (ζ) exp(tS(u, ζ))S ′′ ζζ (u, ζ) (S ′ ζ (u, ζ)) 2 dReζdImζ+ + C\Dε 0 f (ζ) exp(tS(u, ζ))S ′′ ζζ (u, ζ) (S ′ ζ (u, ζ)) 2 dReζdImζ const(f ) ε 0 ε ρ 2 ρ 4 dρ + const C\Dε 0 |f (ζ)||ζ 3 |dReζdImζ const(f ) ε .
Setting finally ε =

1 (1+|t|) 1/4 yields I(t, u) const(f ) (1 + |t|) 3/4
uniformly on u ∈ U.

Case 2. u ∈ C\U and ω from (3.14) satisfies ω 0 < ω 1+ω < 1ω 1 for some fixed independent positive constants ω 0 and ω 1 (i.e. the roots ζ 0 , ζ 2 from (3.14) are separated from T , defined by (6.1), and the root ζ 2 is separated from the origin)

In this case the we can estimate

|S ′ ζ (u, ζ)| constρ |ζ| 4 for ζ ∈ ∂D ρ , S ′′ ζζ (u, ζ) (S ′ ζ (u, ζ)) 2 const|ζ| 4 ρ 2 for ζ ∈ ∂D ρ .
Using these estimates and proceeding as in case 1, we obtain

|I int | const(f )ε 2 , |I 1 | const(f ), I 2 ≡ 0, |I 3 | const(f ), |I 4 | const(f ) ln 1 ε .
Setting ε = 1 1+|t| , we obtain that

I(t, u) const(f ) ln(3 + |t|) 1 + |t|
uniformly for the considered values of the parameter u. Case 3. u ∈ C\U and ω 1+ω < ω 0 (i.e. the roots ζ 0 and ζ 2 from (3.14) lie in some neighborhood of T from (6.1)) Lemma 6.1. For any t t 0 with some fixed t 0 > 0 and any ω > 0 one of the following conditions holds

(a) 0 < ω < 2 (1+|t|) 1/4 ; (b) ω > 1 (1+|t|) 1/8 ; (c) ∃n : 1 (1+|t|) γ n+1 /(2+2γ n+1 ) < ω < 2 (1+|t|) γn /(2+2γ n+1 ) , where γ n+1 = 2 3 γ n + 1 3 , γ 1 = 1 3 .
Proof. We note that

γ n+1 2 + 2γ n+1 → 1 4 , n → ∞; γ n 2 + 2γ n+1 < γ n 2 + 2γ n ; γ 1 2 + 2γ 2 < 1 8 .
Thus the intervals from the cases (a), (b), (c) ∀n ∈ N cover the whole range 0 < ω < +∞.

We will prove the result separately for three different cases depending on the value of parameter ω

(a) 0 < ω < 2ε = 2 (1+|t|) 1/4
In this case estimates (6.2), (6.3), (6.4) hold and so the reasoning of the case 1 can be carried out to obtain that

I(t, u) const(f ) (1 + |t|) 3/4
uniformly for the considered values of the parameter u satisfying

0 < ω < 2 (1 + |t|) 1/4 . (6.5) (b) ω > ε 1/3 = 1 (1+|t|) 1/8
In this case we estimate |I int | const(f )ε 2 . Further, we note that the derivative of the phase is estimated as

|S ′ ζ (u, ζ)| const εω 2 |ζ| 4 for ζ ∈ ∂D ε . (6.6)
Thus for I 1 we obtain |I 1 | const(f ) 1 ε 2/3 . In order to estimate the integral I 3 we use the following estimate of the derivative S ′ ζ for ζ ∈ ∂D ρ when ε ρ ε 0 :

|S ′ ζ (u, ζ)| constρω 2 |ζ| 4 , if ρ < ω, |S ′ ζ (u, ζ)| constρ 3 |ζ| 4 , if ρ > ω. (6.7) It allows to derive |I 3 | const(f ) 1 ε 2/3
. Finally, we proceed to the study of the integral I 4 . We use the following estimates

S ′′ ζζ (u, ζ) (S ′ ζ (u, ζ)) 2 const|ζ| 4 ρ 2 ω 2 and |f (ζ)| const(f ) ω, if ρ < ω, |f (ζ)| const(f ) ρ, if ρ > ω. (6.8)
After integration we obtain the estimate

|I 4 | const(f ) 1 ε 2/3 .
Setting finally ε = 1 (1+|t|) 3/8 , we obtain

I(t, u) const(f ) (1 + |t|) 3/4
uniformly for the considered values of the parameter u satisfying

ω > 1 (1 + |t|) 1/8 . (6.9) (c) ε γ n+1 < ω < 2ε γn , where ε = 1 (1+|t|) 1/(2+2γ n+1 ) and γ n+1 = 2 3 γ n + 1 3 , γ 1 = 1 3 (note that γ n → 1)
We proceed similarly to the case (b). Evidently, I int can be estimated |I int | const(f )ε 2+γn . Employing the estimate (6.6) we obtain |I 1 | const(f ) ε γn ε 2γ n+1 . Using (6.7) in order to estimate I 3 we obtain |I 3 | const(f ) 1 ε γ n+1 . Finally, to estimate I 4 we use (6.8) and

S ′′ ζζ (S ′ ζ (u, ζ)) 2 const|ζ| 4 ρ 2 ω 2 , ρ < ω, const|ζ| 4 ρ 3 ω , ρ > ω to obtain |I 4 | const(f ) ε γn ln(1/ε) ε 2γ n+1 . Setting ε = 1 (1+|t|) 1/(2+2γ n+1 ) yields |I(t, u)| const(f ) ln(3 + |t|)) (1 + |t|) 3/4
uniformly for the considered values of the parameter u satisfying

1 (1 + |t|) γ n+1 /(2+2γ n+1 ) < ω < 2 (1 + |t|) γn/(2+2γ n+1 ) .
(6.10)

Finally, from Lemma 6.1 it follows that we have proved the required estimate uniformly on the values of parameter u ∈ C\U such that ω 1+ω < ω 0 . Case 4. u ∈ C\U and ω 1+ω > 1ω 1 (i.e. the roots ζ 2 , -ζ 2 lie in the ω 1 -neighborhood of the origin)

This case is treated similarly to the previous one. We denote ω = Proof of Lemma 4.1.

1. The proof of inequality (4.10) repeats the proof of Lemma 3.2. The proof of inequality (4.11) also follows the scheme of the proof of Lemma 3.2. In this case we take D ε to be the union of disks of the radius ε with centers in the stationary points of S(u, ζ) and in the point λ.

For the case when λ ∈ T , where T is defined by (6.1), an estimate weaker than (4.11) can be obtained via a simplified reasoning. Indeed, I int , as in (3.16) 2. In order to obtain estimates (4.14), (4.15) we proceed according to the scheme outlined in Section 3. In this case the integral I 2 does not annul. On the other hand, when the variable of integration belongs to T , the estimate (4.11) on the integrand of I 2 is stronger than the estimate (4.12) for the general case. Thus we obtain for α 1 (z, t)

|I int | O ε 2 (1 + |t|) δ+ 1 4 , |I 1 | O 1 (1 + |t|) δ+ 1 4 ε 2 , |I 2 | O 1 (1 + |t|) δ+ 1 4 ε 3 , |I 3 | O 1 (1 + |t|) δ ε , |I 4 | O 1 (1 + |t|) δ+ 1 4 ε 2 .
Setting ε = 1 (1+|t|) 1/4 yields the required estimate. The estimate (4.15) is obtained similarly.

3. We will give the scheme of the proof for estimate (4.16). The estimate (4.17) is obtained similarly.

We will prove (4.16) by induction. Suppose that (4.16) holds for all n = 1, 2, . . . , N .

Then following the scheme of Section 3 and taking into account that ∂ λ (A n z,t • f )(λ) = (A n-1 z,t • f )(λ), we obtain for n = N + 1:

|I int | O ε (1 + |t|) δ+ 1 5 ⌈ n-1 2 ⌉ , |I 1 | O 1 (1 + |t|) δ+ 1 5 ⌈ n-1 2 ⌉ ε 3 , |I 2 | O 1 (1 + |t|) δ+ 1 5 ⌈ n-1 2 ⌉ ε 4 , |I 3 | O 1 (1 + |t|) δ+ 1 5 ⌈ n-2 2 ⌉ ε 3 , |I 4 | O 1 (1 + |t|) δ+ 1 5 ⌈ n-1 2 ⌉ ε 3
.

Setting ε = 1 (1+|t|) 1/5 we obtain the required estimate. 4. We represent R z,t (λ) as the sum of the following members R z,t (λ) = B(A + A 2 + A 3 + . . .) • 1 + AB(A + A 2 + A 3 + . . .) • 1+ + (A + A 2 + A 3 + . . .)AB(I + A + A 2 + . . .) • 1 = R 1 z,t (λ) + R 2 z,t (λ) + R 3 z,t (λ). The convergence of the series at sufficiently large times follows from the estimate (4.17). Now let

R i z,t (λ) = q i (z, t) λ + o 1 |λ| , as λ → ∞.
From (4.10) and (4.17) it follows that |q 1 (z, t)| q1 (c f ) ln(3+|t|) (1+|t|) 3/4+1/5 . From (4.14) and (4.17) we obtain that |q 2 (z, t)| q2 (c f ) (1+|t|) 3/4+1/5 . Finally, from (4.15), (4.16) and (4.17) it follows that |q 3 (z, t)| q3 (c f ) (1+|t|) 1/2+2/5 . This yields the required estimate.

( i )

 i Let v satisfy (1.5). Then the scattering data b(λ) for the potential v(z) satisfy properties (2.12) and b ∈ S( D-), where D -= {λ ∈ C : |λ| > 1}, D-= D -∪ ∂D -and S denotes the Schwartz class.

  .1) where f (ζ) = π|1ζ ζ| 2|ζ| 2 b(ζ), (5.2) with b(ζ) satisfying (3.3), and S(u, ζ) is defined by (3.7), for u = û = -18. As shown in Lemma 3.1 for this value of parameter u the phase S(û, ζ) = S(ζ) has two degenerate stationary points ζ = ±1 of the third order.

  (ζ) the following representation is valid S(ζ) = P (ζ) -P ( ζ), where P (ζ) is a holomorphic function defined by P (ζ) = -9ζ -P ζ (ζ) = S ζ (ζ) = 3 ζ 4 (ζ -1) 3 (ζ + 1) 3 . Note that P (ζ) can be written in the form P (ζ) = ρ(ζ)(ζ -1) 4 , where ρ(ζ) = ζ 2 +4ζ+1 ζ 3 and lim ζ→1 ρ(ζ) = 0. For the function ρ(ζ) the expression (ρ(ζ)) 1/4 can be uniquely defined in some neighborhood of ζ = 1. Further, we define the transformation ζ → η: η = (ρ(ζ)) 1/4 (ζζ = ϕ(η) is defined in some small neighborhood of η = 0. In terms of the new variable η the phase can be represented S(ζ) = η 4 -η4 . Now if we denote x = Reη, y = Imη, the integral I + + (t) becomes

  ζ ∈ D ρ , to obtain the necessary estimates.

  , can be estimated |I int | O ε (1+|t|) δ . Using estimates (6.3), (6.4) and |ζ -λ| ρ for ζ ∈ ∂D ρ (6.11) we obtain that |I ext | O

	1 (1+|t|) 1+δ ε 3 . Setting ε =	1 (1+|t|) 1/4 we get the estimate (4.12).
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