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Abstract

The absorption of CO2 from a CO2/N2 mixture is investigated using a membrane gas absorption 
process. In order to avoid any wetting problem and maintain optimal the removal efficiency, 

composite membranes, with a porous support coated by a dense layer, are used. Two composite 

membranes are studied: Oxyplus
®

and a polypropylene (PP) porous fiber coated by poly(1-
trimethylsilyl-1-propyne) (PTMSP). The influence of some parameters on the CO2 removal 

efficiency is explored.

A lower removal efficiencies is obtained with a PP-PTMSP fiber compared with Oxyplus
®

because of a PTMSP layer thickness four times larger than the dense layer of Oxyplus
®

fibers.

Indeed, this dense layer is the key parameter which controls the membrane resistance. 

Experiments achieved validate the resistance of the membrane to the wettability. Increasing the 

liquid flow raises the removal efficiency of at least 5 %. This one is higher than 90 %. In the 
Oxyplus

®
module case, similar removal efficiencies are obtained, around 99 %, with the blend of 

methyldiethanolamine and triethylene tetramine (MDEA+TETA) and with monoethanolamine 

(MEA) for gas velocities lower than 0.84 m.s
-1

. A 363 K regeneration temperature of liquid phase 
and 2 bar is sufficient to maintain a 90 % CO2 removal efficiency.
© 2010 Elsevier Ltd. All rights reserved
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_________________________________________________________________________

1. Introduction

Reduction of greenhouse gas concentration in atmosphere, especially CO2, is one of the great 

aims of the XXI
th

century. The capture is the most expensive step of the capture storage chain 

(CCS). And it has been the object of many projects developed during the last two decades. Thus, 
hollow fiber membrane contactors (HFMC) have been investigated as an alternative processes to
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packed columns [1, 5]. Indeed, the HFMC interfacial area is easily known and remains constant.
Thus, the process is easier to scale-up because it does not depend on the operating conditions 

such as the temperature or the flow rate. The HFMC is a compact process which should help to 

reduce both absorber and stripper units size by 65 % [11, 16]. The gas and the liquid phases are 
controlled independently. Thus, the operational flexibility is higher for the HFMC than the 

packed columns. Nevertheless, HFMC is not a selective process by itself [1-5], that is why it is 

combined with a chemical absorption in case of the postcombustion capture.

The liquid phase is generally an aqueous solution of alkanolamine, mainly MEA solutions. Thus, 
it is the liquid phase and especially reaction with CO2 which is the driving force of the mass 

transfer. Moreover, the conventional microporous fibers are very sensitive to pores wetting by the

liquid phase. The membrane wetting leads to a decrease of the removal efficiency [6-10]. This is 
why composite dense membranes have been investigated. They avoid the pore wetting by using a 

porous support coated by a dense layer which is totally impermeable to the liquid phase and does

not react with it.

2. Experimental section

A commercial composite membrane, commercialized by Membrana (Oxyplus
®
), is used as 

reference. A dense outer layer in polymethylpentene (PMP) coats a support of polypropylene 

(PP). Results obtained are compared with a composite membrane developed by LGC and LRGP. 

A support of PP is coated by a dense outer layer of poly(1-trimethylsilyl-1-propyne) (PTMSP), 
(PP-PTMSP). The support is a microporous hollow fiber also commercialized by Membrana 

(Oxyphan
®

). Hollow fiber modules have been prepared at the LGC at a laboratory scale. Table 1 

presents the geometrical characteristics of membrane modules which are studied.

Table 1: Data on hollow fiber modules

Oxyplus®

210

Oxyplus®

290

Oxyplus®

463

Oxyplus®

579

PP-

PTSMP

Number of fibers 210 290 463 579 210

Shell i.d. (m) 0.013 0.013 0.013 0.013 0.013

Fiber o.d (μm) 380 380 380 380 385

Fiber thickness (μm) 90 90 90 90 52.5

Layer thickness (μm) ~0.5 ~0.5 ~0.5 ~0.5 2.5

Support thickness (μm) ~86.5 ~86.5 ~86.5 ~86.5 50

Fiber Length (m) 0.240 0.205 0.143 0.120 0.286

Interfacial area (m2/m3) 0.75 1.21 2.77 4.12 0.64

Packing fraction, φ 0.18 0.25 0.40 0.50 0.18

The experimental set-up is shown in Fig. 1 [14]. The dense layer keeps the non-wetted condition 
necessary to have the optimal removal efficiency [11]. The gas stream is introduced in the lumen 

side of fibers [12, 13] in counter-current flow to have the optimal removal efficiency [6, 11]. CO2

transfers from CO2/N2 mixture through the membrane into the liquid in the shell side where it is 
absorbed. The CO2 concentration is measured at the outlet of the module by gas chromatography

(GC). A by-pass system is used to measure the CO2 concentration inlet of the module. The loaded 

solvent is regenerated in a boiler and used for a new absorption-desorption cycle. 30 min are 
required to reach the steady state of the liquid phase before absorption starts. The CO2 absorption 

follows during 50 min. Three types of liquid solvents are considered: an aqueous solution of a 

primary alkanolamine: MEA (20 and 30 %wt.), an aqueous solution of a tertiary alkanolamine: 
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MDEA (25 and 50 %wt.) and an aqueous blend developed by CEP: MDEA (18 and 25 %wt.) 
with a primary alkanolamine: TETA (6 %wt.) (Fig. 2).

Fig. 1: Experimental set-up Fig. 2: Chemical solvents structures

3. Results and discussions

A series of experiments are conducted to study CO2 removal for postcombustion capture. The 
influence of some parameters is investigated: gas and liquid velocities, solvent concentration, 

module packing fraction, layer type or the regeneration temperature. The removal efficiency is 

expressed as:

η = 
( )

in
CO

out
CO

in
CO

C
CC

2

22

−
x 100

Where in
COC

2

and out
COC

2

are the CO2 concentration in the gas stream inlet and outlet of the hollow 

fiber membrane contactor.

3.1. Influence of velocities
The influence of the velocity and the amine mass fraction are presented in Figs. 3 and 4. A 5%
CO2 volume fraction in feed gas is applied.

Results obtained with a 20 %wt. MEA (Fig. 3.) solution show a significant decrease of the 

removal efficiency at a low liquid velocity (0.006 m.s
-1

) and a gas velocity higher than 0.50 m.s
-1

. 
But the removal efficiency is higher than 90 %. In fact, the liquid mass transfer resistance is low

for the high liquid velocity (0.017 m.s
-1

) because of a lowest limit liquid layer thickness. The high 

liquid velocity can also lead to a better distribution of the liquid phase in the shell side.

Nevertheless, rising gas velocity reduces the removal efficiency because of a lower contact time 
between the two phases. This effect is more significant with MDEA solution. This is due to a 

lower kinetic reaction with CO2 than the MEA.

It can be clearly seen on Fig. 4 that the higher removal efficiencies are obtained with the blend 
than with MDEA solutions. The TETA activator action on the CO2 removal efficiency is 

demonstrated.

Regarding the alkanolamine, increasing the MDEA mass fraction in blend has no significant 
effect on the removal efficiency because the CO2 mass transfer is governed by the reaction CO2-

TETA. Furthermore, the CO2 removal efficiency measured with the blend is equivalent to the

efficiency measured with MEA aqueous solutions. No significant effect is observed with increase 

the MEA mass fraction. But, in case of MDEA aqueous solution, increased the alkanolamine 
mass fraction allows rising the removal efficiency. This is because a higher MDEA quantity is 
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free to react with CO2. A raise by two of the MDEA mass fraction raises the CO2 removal 
efficiency by a factor of 1.5.

Fig 3: Influence of the gas and liquid velocities on the CO2 removal efficiency with MEA, 

Oxyplus
®

210 module, CO2= 5 %, T = 295 K, P = 200 kPa.

Fig 4: Influence of the phase velocities on the CO2 removal efficiency with MDEA and MDEA + TETA, 

Oxyplus
®

210 module, CO2= 5 %, T = 295 K, P = 200 kPa.

3.2. Influence of packing fraction
The same liquid cross section for all modules is required to study influence of the packing 

fraction on the CO2 removal efficiency. Experiments are conducted with a 5% CO2 volume 

fraction in the gas phase and a 1.05 m.s
-1

gas velocity. Two liquid phases (a 30%wt MEA solution

and a (18+6) %wt MDEA+TETA solution) and two liquid velocities (0.006 and 0.017 m.s
-1

) are 
investigated. The modules characteristics are presented in Table 1.

Fig.5: Influence of the module packing fraction on the CO2 removal efficiency,

Oxyplus
®

modules, liquid phase: MEA= 30%wt., T = 295K, P = 200 kPa

Results obtained (Fig. 5) for a packing fraction between 18 and 40 % allows having CO2 removal 
efficiency higher than 90 %. But, if the packing fraction is higher than 40 % then the removal 

efficiency decreases. This can be explained by the creation of preferential channels around fibers 

bundles which decrease the overall mass transfer coefficient and the removal efficiency. These 
results are confirmed by results obtained with the blend of alkanolamines presented in Fig.6.
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Fig.6: Influence of the packing fraction on the CO2 removal efficiency with blend ,

Oxyplus
®

modules, liquid phase: MDEA+TETA= (18+6) %wt., T = 295K, P = 200 kPa

3.3. Influence of CO2 fraction in the gas phase

Two CO2 volume fractions (5 and 15 %), a 0.006 m.s
-1

liquid velocity and three liquid phases 
(MEA, MDEA and MDEA+TETA) are considered.

The CO2 removal efficiency is equivalent for a gas velocity range from 0.40 to 0.9 m.s
-1

for both 

MEA and MDEA+TETA liquid phase (Fig. 9) and whatever the CO2 volume fraction. A gas 
velocity higher than 0.9 m.s

-1
leads to a reduce of the CO2 removal efficiency which is more 

significant for a 15 % CO2 volume fraction. But the results are still equivalent for MEA and 

MDEA+TETA solutions; the CO2 removal efficiencies are higher than 80 %.

Regarding MDEA aqueous solution, the removal efficiency is higher for the lower CO2 volume 
fraction due to a lower kinetic reaction between CO2 and MDEA. But for both CO2 volume 

fraction used, the removal efficiency decreases with the raise of the gas velocity (Fig. 7).

Fig.7: Influence of the feed CO2 volume fraction on the removal efficiency, 

Oxyplus® 210 module, T = 295 K, P = 200 kPa, vliq= 0.006m.s
-1

.

3.4. Influence of regeneration temperature
Experimental set-up allows measuring continuous absorption-desorption of CO2 cycle. Influence 

of the regeneration temperature on the removal efficiency is investigated. A 30%wt. MEA 
solution beforehand loaded with CO2 is used as liquid phase. For 7 hours, CO2 absorption-

desorption is measured by determination of carbonatation ratio, which is the amine fraction 

reacting with CO2, using a correlation presented by [15]:

α ı  ı 0.28315 pH ı 0.005663 ı T ı 273.15ı ı 0.021375 ı wı ı ı ı 12.1046ı ı 3.33843 (1)

Where α is the carbonatation ratio (-), pH is the pH of liquid phase (-), T is the liquid temperature 

(K), and wMEA is the MEA mass fraction in liquid phase (%w/w).
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A 15 % CO2 volume fraction in the gas phase, a 1.05 m.s
-1

gas velocity and a 0.017 m.s
-1

liquid 
velocity are considered. Three regeneration temperatures are studied: 363, 373 and 383 K.

Fig. 8: Influence of the loaded liquid regeneration on the carbonatation ratio, P = 200 kPa.

Oxyplus® 210 module ,MEA = 30 %wt. CO2 = 15 %, vgas= 1.05 m.s
-1

, vliq= 0.017 m.s
-1

Fig.8. shows the influence of temperature on the loaded liquid regeneration. A 383 K temperature 
allowed a complete regeneration of the liquid phase with a 0.4 initial carbonatation ratio. The 

removal efficiency was 89 %. A similar value is obtained for non-loaded conditions.

But a 363 or 373 K temperature leads to a decrease of the carbonation ratio up to a limit value 

which corresponds to the residual carbonatation ratio. In both cases, a 90 % removal efficiency is 
measured which is equivalent to results obtained in non-loaded conditions. 

So, a 363 K regeneration temperature is enough to maintain a residual carbonation ratio and the 

CO2 removal efficiency obtained in non-loaded conditions.

3.5. Nature of dense outer layer.
Two dense layers are investigated: a PTMSP layer and a PMP layer. Both have been coated on a 

PP support. The PTMSP is a polymer which is highly permeable to CO2 (around 20 000 Barrer 

against 500 Barrer for PMP).
Fig. 9 shows a high removal efficiency for the lowest CO2 fraction in the gas phase, similarly to

Oxyplus
®

modules. Results obtained show that for the high gas velocities, the decrease of the 

CO2 removal efficiency is more significant compared to Oxyplus
®

modules. This is probably due 

to the fact that thickness of PTMPS is around four times larger than thickness of PMP on the 
same support. The membrane resistance is thus governed by the layer thickness. As this is a 

dense material, the most important parameter is its permeability coefficient to CO2.

Fig.9: Influence of the CO2 volume fraction and phases velocities on the CO2 removal efficiency,

PP-PTMSP module, MEA = 30 %wt., T = 295 K, P = 200 kPa

4. Conclusion

These preliminary results show that composite membranes can achieve promising performance 

for CO2 postcombustion capture. These fibers are composed of a porous support coated by a 
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dense outer layer. The influence of several parameters on CO2 removal efficiency has been
studied: phase compositions, phase velocities, packing fraction and nature of layer. Three liquid 

phases has been used: MEA, MDEA and MDEA+TETA.

The influence of each parameter on the CO2 removal efficiency obtained is in accordance with 
the results expected: higher removal efficiency for a high liquid velocity, a high alkanolamine 

mass fraction in the liquid phase, a low CO2 volume fraction in the gas phase. Furthermore, CO2

removal efficiencies obtained are equivalent for MEA aqueous solution and blend solution.

Influence of regeneration temperature is studied and has shown that 263 K is sufficient to have 
similar removal efficiency with fresh alkanolamine and a good regeneration of loaded liquid 

phase.

The resistance to wettability of composites membranes used has been validated. In fact, no 
wetting problem has occurred and CO2 removal efficiency is maintained higher than 90 %.

Moreover, experiments have shown that dense layers governed the CO2 mass transfer in the 

membrane. Thus, a particular attention must be brought to select the polymer which will be the 
dense layer and to coat porous support in order to maintain its physical-chemical properties.

5. Nomenclature

C Concentration (mol.m-3)

P Pressure (kPa)

T Temperature (K)

v Velocity (m.s-1)

w Mass fraction (%w/w)

Subscripts

CO2 Carbon dioxide

in Inner

liq Liquid

out Outer

Greek letter

η Removal efficiency (-)

Abbreviations

MEA Monoethanolamine

MDEA Methyldiethanolamine

TETA Triethylene Tetramine

PP Polypropylene

PMP Polymethylpentene

PTMSP Polytrimethylsilylpropyne
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