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I. Introduction

L'approche de commande H ∞ est un outil efficace pour améliorer les performances d'un système en boucle fermée dans les gammes de fréquence prédéfinies. L'étape clé de la conception du contrôleur H ∞ repose sur la sélection de fonctions de pondération qui dépend de la compétence et de l'expérience des ingénieurs. Cependant, ce n'est pas toujours une tâche facile même pour de bons ingénieurs. Dans beaucoup d'applications, la difficulté dans le choix des fonctions de pondération augmente encore parce que la spécification de performance n'est pas définie avec précision et il est tout simplement impossible d'atteindre les meilleures performances (conception optimale) ou d'améliorer en même temps plus d'un objectif (conception multiobjectif). Ainsi, l'optimisation des fonctions de pondération pour satisfaire les performances souhaitées est encore un problème ouvert.

Dans la littérature, quelques travaux orientés vers cet objectif ( [START_REF] Beaven | Weighting function selection in the H∞ design process[END_REF], [START_REF] Hu | Systematic H∞ weighting function selection and its application to the real-time control of a vertical take-off aircraft[END_REF]...) proposent de considérer chaque système, si complexe soit-il, comme une combinaison de sous-systèmes du premier et second ordre, pour lesquels il est facile de trouver les fonctions de pondération. Cependant, il n'y a aucune méthode explicite pour retrouver ces fonctions dans le cas général. Une manière de faire est de procéder par essai/erreur. Une solution au problème est de faire appel à un outil d'optimisation, c'est ce qui est proposé pour le système LTI dans [START_REF] Alfaro-Cid | Optimisation of the weighting functions of an H∞ controller ternational[END_REF]. Nous allons voir ici que le choix des Algorithmes Génétiques (GAs) semble naturel, leur formulation étant bien adaptée pour ce type de problématique.

Dans cette communication, nous cherchons les meilleures fonctions de pondération pour obtenir un contrôleur stabilisant un système de type LPV et garantissant un performance prédéfinie du système en boucle fermée. Il est important de noter que ce problème est plus général que le problème H ∞ où le contrôleur ne garantit que la stabilité et la performance H ∞ . Pour illustrer cette idée, le cas particulier de commande de suspensions semi-actives est étudié. Tout d'abord, à partir de critères de performance industriels des systèmes de suspension tels que ceux définis dans [START_REF] Sammier | Skyhook and H∞ control of active vehicle suspensions : some practical aspects[END_REF], une fonction objectif appropriée est formulée. Cette fonction se compose de deux objectifs antagonistes : le confort et la tenue de route. Deuxièmement, les fonctions de pondération sont ensuite réglées par l'algorithme génétique SPEA2 [START_REF] Zitzler | SPEA2 : Improving the strength pareto evolutionary algorithm[END_REF] de façon à minimiser la fonction objectif. Enfin, les meilleures fonctions de pondération sont choisies pour la synthèse de contrôleur LP V . Il est important de noter que cette méthode fournit un nouvel outil efficace et générique pour la conception de commande de suspension, où les objectifs de performance industrielle sont inclus directement dans la procédure de conception, et non pas dans l'objectif de performance H ∞ comme dans les études précédentes [START_REF] Sammier | Skyhook and H∞ control of active vehicle suspensions : some practical aspects[END_REF], [START_REF] Poussot-Vassal | New semi-active suspension control strategy through LPV technique[END_REF]. La section 2 est consacrée à l'introduction de l'algorithme génétique et le SPEA2. Dans la 3 eme section, on présente la formulation du modèle LPV pour l'étude de la dynamique verticale de véhicule. Dans la section 4, la nouvelle méthode de synthèse du contrôleur LPV avec l'aide de SPEA2 est détaillée. Les simulations et les résultats obtenus sont donnés dans la section 5. Quelques conclusions et perspectives terminent cette communication.

II. Algorithmes génétiques

A. Introduction

Les algorithmes génétiques ont connu un fort développement depuis la première étude de Holland [START_REF] Holland | Adaptation in natural and artificial systems, an introductory analysis with application to biology, control and artificial intelligence[END_REF], l'ouvrage orienté pour la théorie de Goldberg [START_REF] Goldberg | Genetic Algorithms in Searching Optimisation and Machine Learning[END_REF] et l'ouvrage orienté pour l'application de Davis [START_REF] Davis | Handbook of genetic algorithms[END_REF]. Les algorithmes sont basés sur le mécanisme de la sélection naturelle et se sont révélés très efficaces dans l'optimisation avec beaucoup d'applications réelles comme dans les stratégies de financement et d'investissement, la robotique, l'ingénierie de conception, les télécommunications... Ils peuvent conduire à des techniques d'optimisation globale (malgré le coût élevé de calcul) (voir [START_REF] Marler | Survey of multi-objective optimization mehtods for engineering[END_REF]) en utilisant l'approche probabiliste, la re-cherche de multi-points, la combinaison aléatoire (croisement, mutation) et de l'information de l'itération précédente pour évaluer et améliorer la population. Un grand avantage des GAs par rapport à d'autres méthodes de recherche (les méthodes de gradient par exemple), est qu'ils cherchent sans considérer la nature des fonctions d'objectif et des contraintes. Les GAs sont initialisés avec une population aléatoire. Par les opérations génétiques : la sélection, le croisement et la mutation, une nouvelle population est obtenue. En utilisant le processus de sélection, les individus les plus "convenables" qui sont basés sur la valeur de la fonction d'adaptation sont choisis ; le croisement et la mutation s'appliquent alors pour créer la nouvelle population. L'opération génétique sur les individus de population continue jusqu'à ce que le critère d'optimisation soit satisfait ou qu'un certain nombre de générations soit atteint.

B. Optimisation multi-objectif

Une application bien connue des GAs est de trouver la solution optimale pour le problème d'optimisation multiobjectif comportant des objectifs multiples et conflictuels. C'est un problème très populaire dans la pratique et peut être décrit comme suit :

min x∈C F (x) =      f 1 (x) f 2 (x)
. . . 

f n obj (x)      , n obj 2, (1) 
∀i ∈ {1, 2, ..., n obj } : f i (a) f i (b) ∃j ∈ {1, 2, ..., n obj } : f j (a) < f j (b) (2) 
Tous les vecteurs de décision qui ne sont pas dominés par un vecteur de décision sont appelés non-dominés ou Paretooptimal. La famille de vecteurs non-dominés est notée par Ensemble-Pareto. Dans l'Ensemble-Pareto, on ne peut pas améliorer l'un des objectifs sans dégrader au moins un autre.

C. SPEA2 -Strength Pareto Evolutionary Algorithm 2

Comme mentionné dans [START_REF] Zitzler | Comparison of multiobjective evolutionary algorithms : Empirical results[END_REF], deux problèmes majeurs doivent être abordés quand un algorithme génétique est appliqué à l'optimisation multi-objectif :

-Comment faire pour choisir la "meilleure" fonction d'adaptation et de sélection, respectivement, afin d'orienter la recherche vers l'Ensemble-Pareto ? -Comment maintenir une population diversifiée, afin d'éviter la convergence prématurée et réaliser un Ensemble-Pareto bien réparti ?

Il est prouvé que les algorithmes élitistes (par exemple PESA [START_REF] Corne | The pareto enveloppe-based selection algorithm for multiobjective optimization[END_REF], SPEA2 [START_REF] Zitzler | SPEA2 : Improving the strength pareto evolutionary algorithm[END_REF], NSGA-II [START_REF] Deb | A fast elitist multi-objective genetic algorithm : NSGA-II[END_REF]) contribuent à améliorer la convergence du problème MOEAs-Multi-Objective Evolutionary Algorithms [START_REF] Zitzler | Comparison of multiobjective evolutionary algorithms : Empirical results[END_REF]. Les points communs de ces MOEAs élitistes sont les suivants : (1) la valeur de la fonction d'adaptation de chacun de membres de la population est calculée grâce au tri non-dominé et (2) la diversité de la solution est conservée (parce que la distance des individus est maximisée dans le processus d'optimisation).

Dans cet article, le SPEA2 est utilisé parce qu'il est très efficace pour l'optimisation multi-objectif [START_REF] Bleuler | Multiobjective genetic programming : Reducing bloat using SPEA2[END_REF], [START_REF] Li | Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II[END_REF]. Les idées principales du SPEA2 sont :

-Parallèlement à l'ensemble de population 

m s zs = -F spring -F mr m us zus = F spring + F mr -k t (z us -z r ) (3) 
Les efforts (F spring , F mr ) dans les équations dynamiques ci-dessus sont les parties dynamiques des efforts réels. F spring = k s z def et F mr est donnée par

F mr = a 2 ( żdef + v 0 x 0 z def ) + a 1 (I) tanh(a 3 ( żdef + v 0 x 0 z def )) (4) 
où z def = z sz us et żdef = żs -żus et où a 2 , a 3 , v 0 et x 0 sont des paramètres constants et a 1 dépend du courant électrique (0 < a 1min ≤ a 1 ≤ a 1max ). Le quart de véhicule étudié dans cet article correspond à la "Renault Mégane Coupé" (voir [START_REF] Zin | A nonlinear vehicle bicycle model for suspension and handling control studies[END_REF]). Les paramètres sont m s = 315 kg, m us = 37.5 kg, k s = 29500 N/m, k t = 210000 N/m.

Les paramètres du modèle de l'amortisseur ont été choisis comme ceux de [START_REF] Nino-Juarez | Minimizing the frequency in a black box model of a MR damper[END_REF] : a 2 = 1500 Ns/m, a 3 = 129 s/m, v 0 = 0.788x10 -3 m/s, x 0 = 1.195x10 -3 m, a 1min = 0 N, a 1max = 400 N. Deux paramètres pour la conception du contrôleur (voir [START_REF] Do | An LPV control approach for semi-active suspension control with actuator constraints[END_REF]) sont F 0 = (a 1max + a 1min )/2=200 N,

F 1 = (a 1max -a 1min )/2=200 N.
En définissant ρ 1 = tanh(a 3 ( żdef + v0 x0 z def )), la représentation d'état du modèle 1/4 de véhicule peut être écrite comme suit : 

ẋs = A s x s + B s ρ 1 I + B s1 w y = C s x s (5) 
    , B s1 =     0 0 0 kt mus     , C s =     1 0 -1 0     T B.

Formulation de modèle LPV

La formulation LPV du modèle de suspension semiactive est présentée en détail dans [START_REF] Do | An LPV control approach for semi-active suspension control with actuator constraints[END_REF]. Ici, on ne donne que le résultat final. Le modèle non-linéaire (5) se ré-écrit dans le cadre de l'approche LPV

ẋ = A (ρ 1 * , ρ 2 * ) x + Bu c + B 1 w y = Cx (6) où x = x s T x f T T A (ρ * 1 , ρ * 2 ) = A s + ρ * 2 B s2 C s2 ρ * 1 B s C f 0 A f , B = 0 B f , B 1 = B s1 0 , C = C s 0 T B s2 = 0; -F0 ms ; 0; F0 mus T , C s2 = a3v0 x0 ; a 3 ; -a3v0 x0 ; -a 3 T ,
x f est le vecteur d'état d'un filtre strictement propre F f défini par

F f : ẋf u = A f B f C f 0 x f u c (7) 
où A f , B f , C f sont les matrices constantes. Deux paramètres variants sont définis par

ρ 1 * = tanh(C s2 x s ) tanh( C f x f F 1 ) F 1 C f x f (8) ρ 2 * = tanh(C s2 x s ) C s2 x s (9) 
On note également que ρ * 1 et ρ * 2 ne sont pas indépendants (voir Fig. 2). 

C. Objectifs de performance pour la suspension

Les objectifs de performance pour le confort et la tenue de route sont issus des idées de [START_REF] Sammier | Skyhook and H∞ control of active vehicle suspensions : some practical aspects[END_REF].

-Confort dans les hautes fréquences ([3 -10] Hz) : min 

IV. Optimisation de contrôleur LPV utilisant SPEA2

La structure de commande proposée dans [START_REF] Do | An LPV control approach for semi-active suspension control with actuator constraints[END_REF] se retrouve dans la Fig. 3.

Les filtres utilisés pour la synthèse sont définis comme suit : 

F f = Ω f s + Ω f ( 10 
)
W zs = k zs s 2 +
W zus z r u z def żdef ρ 1 * , ρ 2 * K(ρ 1 * , ρ 2 * ) P F f z 1 z 2 - - - W zr - w 1 u f u c
Fig. 3. Schéma bloc pour la commande de suspension semi-active .

Le système augmenté du système en boucle ouverte (5) avec les filtres ( 10)-( 12) est représenté par

ξ = A(ρ * , ν)ξ + B 1 (ρ * , ν)w + B 2 u c z = C 1 (ρ * , ν)ξ + D 11 (ρ * , ν)w + D 12 u c (14) y = Cξ
où ξ se compose des états des systèmes ( 5),( 10)-( 12),

z = z 1 z 2 T et ρ * = ρ * 1 ρ * 2 T .
Objectif -Chercher un contrôleur LP V qui stabilise le système ( 6) et qui satisfait les objectifs de performance de suspension spécifiés dans III-C.

A. Synthèse du contrôleur stabilisant

Considérons un contrôleur LP V associé au système [START_REF] Deb | A fast elitist multi-objective genetic algorithm : NSGA-II[END_REF] et décrit par les équations d'état

K c (ρ * ) : ẋc u c = A c (ρ * ) B c (ρ * ) C c (ρ * ) D c (ρ * )
x c y (15) où x c , y et u sont l'état, l'entrée et la sortie du contrôleur, respectivement.

Selon [START_REF] Scherer | Multiobjective outputfeedback control via LMI optimization[END_REF] et [START_REF] Apkarian | A convex characterization of gain scheduled H∞ controllers[END_REF], s'il existe Â, B, Ĉ D, X, Y satisfaisant les LMIs suivantes

M 11 (ρ * i , ν) M 12 (ρ * i , ν) M T 12 (ρ * i , ν) M 22 (ρ * i , ν) ≺ 0 ( 16 
) pour i = 1 : 4 où M 11 (ρ * i , ν) = A(ρ * i , ν)X + XA(ρ * i , ν) T + B 2 Ĉ(ρ * i , ν) + Ĉ(ρ * i , ν) T B T 2 M 12 (ρ * i , ν) = Â(ρ * i , ν) + A(ρ * i , ν) T + C T D(ρ * i , ν) T B T 2 M 22 (ρ * i , ν) = Y A(ρ * i , ν) + A(ρ * i , ν) T Y + B(ρ * i , ν)C + C T B(ρ * i , ν) T
alors le contrôleur LP V (15) qui stabilise le système (14) est donné par :

K c (ρ * ) = Co{ A c (ρ * i ) B c (ρ * i ) C c (ρ * i ) D c (ρ * i ) } (17) 
avec

Dc(ρ * i ) = D(ρ * i ) Cc(ρ * i ) = Ĉ(ρ * i ) -Dc(ρ * i )C 2 X M -T Bc(ρ * i ) = N -1 B(ρ * i ) -Y B 2 Dc(ρ * i ) Ac(ρ * i ) = N -1 Â(ρ * i ) -Y A(ρ * i )X -Y B 2 Dc(ρ * i )C 2 X M -T -Bc(ρ * i )C 2 XM -T -N -1 Y B 2 Cc(ρ * i ) (18) 
i = 1 : 4 correspond aux 4 sommets du polytope (P 1 , P 2 , P 3 , P 4 ) (voir fig. 2). M et N sont définies telles que M N T = I n -XY soit résolue par une décomposition en valeurs singulières et une factorisation de Cholesky.

Jusqu'ici, une question peut être posée : comme le but original est de synthétiser un contrôleur qui stabilise le système [START_REF] Zitzler | SPEA2 : Improving the strength pareto evolutionary algorithm[END_REF], quelle est l'utilité des filtres (10)-( 12) ? En fait, chaque valeur possible des filtres pourra donner un contrôleur qui stabilise le système [START_REF] Zitzler | SPEA2 : Improving the strength pareto evolutionary algorithm[END_REF]. L'algorithme génétique SPEA2 va choisir les meilleurs parmi ces contrôleurs. Alors, les filtres sont des outils utilisés par l'algorithme génétique SPEA2 pour la recherche de meilleurs contrôleurs, satisfaisant les objectifs de performance décrit dans III-C.

B. Optimisation du contrôleur

On n'utilise pas la méthode conventionnelle H ∞ /LP V proposée dans [START_REF] Scherer | Multiobjective outputfeedback control via LMI optimization[END_REF] et [START_REF] Apkarian | A convex characterization of gain scheduled H∞ controllers[END_REF] où le niveau d'atténuation de perturbation γ est l'objectif à minimiser ; ici l'objectif de performance est celui de la suspension, défini par

J = J Confort J Tenue de route (19) 
où J Confort et J Tenue de route sont des indices de performance correspondant au sommet P 3 (Remarquons que les solutions à P 3 et P 4 sont identiques en raison de la propriété symétrique du polytope (P 1 , P 2 , P 3 , P 4 )). Il est important de noter qu'en basses fréquences l'amélioration (réduction de gain) de zs /z r implique une amélioration de z s /z r . Avec cette remarque et la définition de critère de performance dans la section III-C, J Confort et J Tenue de route sont définis par

J Confort = 10 1 zs /z r (f )df (20) 
J Tenue de route = σ

f ∈ [START_REF] Davis | Handbook of genetic algorithms[END_REF][START_REF] Marler | Survey of multi-objective optimization mehtods for engineering[END_REF][START_REF] Zitzler | Comparison of multiobjective evolutionary algorithms : Empirical results[END_REF][START_REF] Corne | The pareto enveloppe-based selection algorithm for multiobjective optimization[END_REF][START_REF] Deb | A fast elitist multi-objective genetic algorithm : NSGA-II[END_REF][START_REF] Bleuler | Multiobjective genetic programming : Reducing bloat using SPEA2[END_REF][START_REF] Li | Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II[END_REF][START_REF] Zin | A nonlinear vehicle bicycle model for suspension and handling control studies[END_REF][START_REF] Nino-Juarez | Minimizing the frequency in a black box model of a MR damper[END_REF][START_REF] Scherer | Multiobjective outputfeedback control via LMI optimization[END_REF][START_REF] Apkarian | A convex characterization of gain scheduled H∞ controllers[END_REF] (z us /z r (f ))

Remarque 1 : Pour le système de suspension semi-active étudiée, il y a des parties non-linéaires (saturation d'entrée a 1 , la partie non-linéaire hyperbolique tangente de la suspension semi-active), et les contrôleurs LP V stables sont préférés. La solution théorique de l'existence d'un contrôleur LP V stable n'est pas donnée ici. Pour garantir un contrôleur LP V stable, il suffit que tous les contrôleurs locaux à chaque sommet du polytope soient stables. Par algorithme génétique, on peur obtenir ce type des contrôleurs en éliminant les "solutions instables" correspondant à au moins un contrôleur local instable lors de la synthèse. Ceci peut être obtenu simplement en choisissant J = ∞ pour les "solutions instables". Alors, la fonction objectif est choisie comme suit. Algorithme 1 : Affectation de valeur de fonction d'objectif si (16) est faisable alors tous les contrôleurs locaux K ci sont stables alors Calculer J en utilisant les Eq. ( 19) -( 21)

sinon J = ∞ fin sinon J = ∞ fin.
Méthode proposée pour optimiser la commande LP V de suspension semi-active -Etape 1 : Initialiser la première génération avec des valeurs positives aléatoires des paramètres des filtres (10)-( 12). -Etape 2 : Résoudre les LMI [START_REF] Li | Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II[END_REF] 

V. Résultats

Pour la simulation, la force du ressort k s (Fig. 1) est une fonction non-linéaire de z def (voir [START_REF] Zin | A nonlinear vehicle bicycle model for suspension and handling control studies[END_REF]) et la force de l'amortisseur est donné par (4). Dans la suite, les différents cas sont considérés pour l'évaluation de la performance de la méthodologie proposée :

-"Soft MRD" = Renault Mégane Car avec un amortisseur MR passif avec a 1 = a 1min = 0 N . -"Hard MRD" = Renault Mégane Car avec un amortisseur MR passif avec a 1 = a 1max = 400 N . -"H ∞ /LP V (ACC 2010)" = Renault Mégane Car avec un amortisseur MR dont le coefficient d'amortissement est piloté par l'algorithme H ∞ /LP V proposé dans [START_REF] Do | An LPV control approach for semi-active suspension control with actuator constraints[END_REF]. -"LP V /SPEA2" = Renault Mégane Car avec un amortisseur contrôlé par la méthodologie proposée. Les paramètres des filtres utilisés pour la synthèse de H ∞ /LP V dans [START_REF] Do | An LPV control approach for semi-active suspension control with actuator constraints[END_REF] et les paramètres obtenus par la méthode proposée LP V /SP EA2 sont donnés dans le Tableau I. Notons que pour les deux méthodes, la même structure de filtre a été choisie.

Dans les Fig. 4-8, globalement, la méthode proposée offre le meilleur compromis : une très bonne performance pour le confort en hautes fréquences et la force de contact (tenue de route) ; une bonne performance pour le confort en basses fréquences et le rebond de la roue (tenue de route).

VI. Conclusion

Nous avons proposé une nouvelle méthode de type LP V avec l'aide de l'algorithme génétique SPEA2 pour la commande de suspensions semi-actives (plus généralement, cette méthode peut être étendue pour la commande de systèmes représentés par des modèles LPV). Les simulations ont été faites avec un modèle vertical, non-linéaire, simplifié. Les résultats fréquentiels montrent l'efficacité de la méthode pour obtenir un contrôleur "optimal". Dans les travaux futurs, la réduction du conservatisme de la solution concernant la synthèse de contrôleur LP V stable ou "stabilisation forte" sera étudiée. using genetic algorithms and structured genetic algorithms. In-

  où x est le vecteur de décision, C l'ensemble des vecteurs de décision (ou l'espace de recherche), et F (x) le vecteur des objectifs. L'existence d'une solution idéale x * qui permet de minimiser simultanément toutes les fonctions objectif f 1 , f 2 ...f n obj est en fait rarement possible. Ainsi, dans ce cas, le concept de Pareto-optimal est habituellement utilisée pour décrire la solution du problème d'optimisation multi-objectif et elle est définie comme suit :Considérons deux vecteurs de décision a, b ∈ C. Le vecteur a domine b si et seulement si :

Fig. 1 .

 1 Fig. 1. Modèle 1/4 de véhicule avec un amortisseur MR semi-actif.

  où x s =(z s , żs , z us , żus )T , w=z r , y=z s -z us .

Fig. 2 .

 2 Fig. 2. Ensemble de (ρ 1 * , ρ 2 * ) (zone grisée).

10 3

 10 zs /z r (f )df . -Confort dans les basses fréquences ([0 -4] Hz) : min σ(z s /z r )(f ). -La tenue de route ([0 -20] Hz) : min σ(z us /z r (f )) (rebond de la roue) et de 20 0 (z usz r )/z r (f )df (Force de contact).

Fig. 4 .

 4 Fig. 4. Accélération zs/zr.

Fig. 5 .

 5 Fig. 5. Déplacement du chassis zs/zr.

Fig. 6 .

 6 Fig. 6. Rebond du pneu zus/zr.

Fig. 7 .

 7 Fig. 7. Force de contact (zszr)/zr .

Fig. 8 .

 8 Fig. 8. Comparaison des performances.

  Considérons un modèle simple 1/4 de véhicule se composant d'une masse suspendue (m s ) et d'une masse nonsuspendue (m us ), reliées par un ressort de raideur k s et un amortisseur semi-actif. La roue est représentée par un ressort de raideur k t . Dans ce modèle, z s (z us , respectivement) est le déplacement vertical de m s (m us , respectivement) autour de sa position statique, z r représente le profil vertical du sol. Le contact roue-route est supposé permanent. Les dynamiques du quart de véhicule sont données par :

	P , à chaque génération, une archive ensemble P de taille fixe est
	utilisée pour stocker des solutions non dominées.
	-La fonction d'adaptation de chaque solution est défi-
	nie par la valeur "strength" (basée sur la relation de
	Pareto-dominance) et l'estimation de la densité (fonc-
	tion de la distance au k-ème point le plus proche). La
	solution non-dominée a une valeur de fonction d'adap-
	tation inférieure à 1.

-La sélection de l'environnement (environmental selection) est appliquée pour les deux ensembles de la population et d'archive P + P . Les solutions non-dominées sont choisies et sont copiées vers l'archive P . Si le nombre de solutions non-dominées s'adapte à la taille de l'archive, l'étape de sélection de l'environnement est terminée. S'il est plus petit, un nombre approprié d'individus les mieux dominés dans P + P est ajouté à P . Sinon, une procédure de troncature de l'archive est utilisée, c.à.d, la solution qui a la distance minimale aux autres solutions est éliminée.

-La sélection par tournoi binaire (binary tournament selection) est appliquée sur P pour créer une génération intermédiaire (matting pool). Ensuite, les opérateurs de recombinaison et de mutation sont appliqués à la génération intermédiaire, afin de créer la nouvelle population de P .

III. Formulation LPV du modèle de suspension semi-active

A. Description du système

  2ξ 11 Ω 11 s + Ω 11

	2 2 s 2 + 2ξ 21 Ω 21 s + Ω 21 s 2 + 2ξ 12 Ω 12 s + Ω 12 W zus = k zus s 2 + 2ξ 22 Ω 22 s + Ω 22 Définissons ν = [ Ω zs z us W zs	2 2	(11) (12)

f Ω 11,12 ξ 11,12 k zs Ω 21,22 ξ 21,22 k zus ] T (13) le vecteur de décision qui est optimisé par le SPEA2.

  Paramètres des filtres pour la synthèse LP V .

	Contrôleurs	Filtre			W zs					Wz us		
		Ω f	Ω 11	Ω 12	ξ 11	ξ 12	k zs	Ω 21	Ω 22	ξ 21	ξ 22	kz us
	H∞/LPV (ACC 2010)	50	125.7	125.7	20	1	1	69.1	69.1	20	1	1
	LPV/SPEA2 (proposée)	9.3	50.71	0.012	55.39	78.4	68.96	94.39	28.23	81.52	48.21	21
					TABLE I							
									Références