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algorithms in H∞/LPV control of
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A. L. Do, O. Sename, L. Dugard and B. Soualmi

GIPSA-lab, Control Systems Dept, CNRS-Grenoble INP, ENSE3, BP
46, F-38402 St Martin d’Hères cedex, France (e-mail: {anh-lam.do,

olivier.sename, luc.dugard}@gipsa-lab.grenoble-inp.fr).

Abstract: In semi-active suspension control, comfort and road holding are two essential
but conflicting performance objectives. In a previous work, the authors proposed an LPV
formulation for semi-active suspension control of a realistic nonlinear suspension model where
the nonlinearities (i.e the bi-viscous and the hysteresis) were taken into account; an H∞/LPV
controller to handle the comfort and road holding was also designed. The present paper aims
at improving the method of Do et al. (2010) by using Genetic Algorithms (GAs) to select
the optimal weighting functions for the H∞/LPV synthesis. First, a general procedure for the
optimization of the weighting functions for the H∞/LPV synthesis is proposed and then applied
to the semi-active suspension control. Thanks to GAs, the comfort and road holding are handled
using a single high level parameter and illustrated via the Pareto optimality. The simulation
results performed on a nonlinear vehicle model emphasize the efficiency of the method.
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1. INTRODUCTION

The H∞ control design approach is an efficient tool to
improve the performances of a closed-loop system in pre-
defined frequency ranges. The key step of the H∞ control
design relies on the selection of the weighting functions
which depends on the engineer skill and experience. In
many real applications, the difficulty in choosing the
weighting functions increases because the performance
specification is not accurately defined, i.e., it is simply to
achieve the best possible performances (optimal design)
or to achieve an optimally joint improvement of more
than one objective (multi-objective design). So it is still
interesting to optimise the selection of the weighting
functions to get the desired closed-loop performances,
as studied in Beaven et al. (1996), Hu et al. (2000) ...
They propose to consider each system, no matter how
complex it is, as a combination of sub-systems of the
first and second order, for which it is easy to find the
good weighting functions to be used in the H∞ control
methodology. However, there is no explicit method to find
these functions in the general case. The usual way is to
proceed by trial-and-error. Recently, the idea to use an
optimization tool was proposed in Alfaro-Cid et al. (2008).
The choice of GAs seems natural because their formulation
is well suited for this type of problematic.

The semi-active control problem has been studied during
the recent decades (see Savaresi et al. (2010) and reference
therein) and H∞ control is one of the most investigated
approaches. This paper aims at using GAs to obtain opti-
mal weighting functions for the H∞/LPV control of semi-
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active suspension systems. First, from the frequency based
industrial performance criteria of suspension systems as
defined in Sammier et al. (2003), an appropriate cost
function is formulated. This cost function is in fact a con-
vex combination of two specifications: passenger comfort
and road holding, allowing to tune the suspension system
using a single high level parameter. Second, the weighting
functions are then tuned by GAs in such a way that
the cost function is minimized. Finally, the best weight-
ing functions are obtained are used for the synthesis of
H∞/LPV controller. For illustration, the performances of
the closed-loop semi-active suspension system associated
with the controller obtained with GAs will be analyzed to
emphasize the efficiency of the approach. It is important
to note that this methodology provides a new efficient and
generic tool for suspension control design, where the in-
dustrial performance objectives are included in the design
procedure (and not evaluated a posteriori).

The outline is as follows. In Section 2, a brief introduc-
tion about multi-objective optimization using GAs is pre-
sented. The procedure for the optimization of the weight-
ing functions for H∞/LPV problem using GAs is then
introduced in Section 3. In Section 4, the H∞/LPV control
synthesis for semi-active suspensions, presented in Do et al.
(2010), is recalled. In Section 5, the application of weight-
ing function selection using GAs on the H∞/LPV control
problem formulated in Section 4 is presented. The results
obtained in simulations with a nonlinear quarter car model
are discussed in Section 6. Finally, some conclusions and
perspectives are given in Section 7.



2. GENETIC ALGORITHMS AND
MULTI-OBJECTIVE OPTIMIZATION

2.1 Genetic algorithms

Genetic algorithms have now grown strongly from the first
study of Holland (1975), a popular theory-oriented book
of Goldberg (1989) and an application-oriented book of
Davis (1991). The algorithms are based on the mechanism
of the natural selection and have been proven to be very
effective in optimization with many real applications such
as in finance and investment strategies, robotics, engineer-
ing design, telecommunications... They are likely global
optimization techniques (despite the high computational
expense) (see Marler and Arora (2004)) using probabilis-
tic, multi-points search, random combination (crossover,
mutation) and information of previous iterations to eval-
uate and improve the population. A great advantage of
GAs compared to other searching methods (for example
gradient methods) is that they search regardless of the
nature of the objective functions and constraints.

GAs initialize with a random population. Through the
genetic operation: selection, crossover and mutation, a new
population is obtained. By using the selection process,
the fittest individuals based on their fitness values will
be chosen; crossover and mutation will be then applied
to create the new population. The genetic operation on
individuals of population continues until the optimization
criterion is satisfied or a certain number of generations is
reached.

2.2 Multi-objective optimization

One well-known application of the GAs is to find the opti-
mal solution for the multi-objective optimization problem
involving multiple and conflicting objectives. This is a
very popular problem in practice and can be described
as follows

min
x∈C

F (x) =









f1 (x)
f2 (x)

...
fnobj

(x)









, nobj > 2, (1)

where x is called the decision vector, C the set of possible
decision vectors (or the searching space), and F (x) the
objective vector. The existence of an ideal solution x∗

that can minimize simultaneously all objective functions
f1, f2... fnobj

is in fact rarely feasible. Hence, in this case,
the concept of Pareto-optimal or Pareto-set is usually used
to describe the solution of multi-objective optimization
problem (see Marler and Arora (2004)).

There are many formulations to solve the problem (1)
like weighted min-max method, weighted global criterion
method, goal programming methods... see Marler and
Arora (2004) and references therein. One of the most pop-
ular and simple approaches is the weighted sum method
which converts the multi-objective problem into a single
objective problem. In this paper, a particular case of the
weighted sum method is used, where the multi-objective
function F is replaced by the convex combination of ob-
jectives

min J =

nobj
∑

i=1

αifi (x), s.t x ∈ C (2)

where
nobj
∑

i=1

αi = 1. The vector α = (α1, α2, ...αnobj
) repre-

sents the gradient of function J . By using various sets of
α, one can generate several points in the Pareto set.

3. OPTIMIZATION OF WEIGHTING FUNCTIONS
FOR LPV/H∞ SYNTHESIS USING GENETIC

ALGORITHM

3.1 General H∞/LPV problem

Consider a general LPV system

ẋ = A(ρ(t))x + B1(ρ(t))w + B2(ρ(t))u

z = C1(ρ(t))x + D11(ρ(t))w + D12(ρ(t))u

y = C2(ρ(t))x + D21(ρ(t))w + D22(ρ(t))u

(3)

where x ∈ R
n, u ∈ R

m, w ∈ R
q, z ∈ R

r and y ∈ R
p are

the state, the input, the disturbance vectors, the control
output and the measured output, respectively. ρ(t) ∈ R

k

is a vector of scheduling parameters and assumed to be
known (measured or estimated). From now on, ρ(t) is
simply denoted as ρ.
It is well-known that, to satisfy some required closed-loop
performance, one must select suitable weighting functions.
While the weights on disturbance inputs are always de-
fined thanks to the knowledge about their bandwidth and
magnitude, the selection of weighting functions on control
outputs is more difficult and play a key role in the synthesis
procedure. Without loss of generality, it is assumed that
there is no weight on disturbance inputs. The control
outputs are weighted as zw(s) = W (s)z(s) where the
weighting function matrix W (s) has the following state-
space representation

ẋw = Aw(ν)xw + Bw(ν)z

zw = Cw(ν)xw + Dw(ν)z
(4)

where ν is the vector of the weighting functions parameters
which need to be found through optimization using GAs.

From (3) and (4), the augmented system used for the
controller synthesis is written as

ξ̇ =A(ρ, ν)ξ + B1(ρ, ν)w + B2(ν)u

zw = C1(ρ, ν)ξ + D11(ρ, ν)w + D12(ν)u (5)

y = C2ξ + D21w

where ξ =
(

xT xw
T

)T

A(ρ, ν) =

[

A(ρ) 0
Bw(ν)C1(ρ) Aw(ν)

]

, B1(ρ, ν) =

[

B1(ρ)
Bw(ν)D11(ρ)

]

,

B2(ν) =

[

B2

Bw(ν)D12

]

, C1(ρ, ν) =
[

Dw(ν)C1(ρ) Cw(ν)
]

, C2 = C2

D11(ρ, ν) = Dw(ν)D11(ρ), D12(ν) = Dw(ν)D12, D21 = D21.

The LPV controller is defined as follows

K(ρ) :

(

ẋc

u

)

=

(

Ac(ρ) Bc(ρ)
Cc(ρ) Dc(ρ)

) (

xc

y

)

(6)

where xc, y and u are respectively the state, the input
and output of the controller, respectively, of the controller
associated with the system (5). Ac ∈ R

n×n, Bc ∈ R
n×ny ,



Cc ∈ R
nu×n and Dc ∈ R

nu×ny .
H∞/LPV problem - The objective of the synthesis is to
find an LPV controller K(ρ) of the form (6) such that the
closed-loop system is quadratically stable and that, for a
given positive real γ, the L2-induced norm of the operator
mapping w into zw is bounded by γ i.e

‖zw‖2

‖w‖2
≤ γ (7)

for all possible trajectories of ρ.
In this paper, the polytopic approach with quadratic
Lyapunov function is employed for the synthesis of a
H∞/LPV controller. The following is assumed: ρ ∈
conv{ρ1, ...ρk}, the matrices B2, D12, C2, D21 are pa-
rameter independent and D22 = 0. For known weighting
functions and a suitable pre-defined real positive scalar γ,
the sufficient condition that solves the H∞/LPV problem
is given by Eq. (8)-(9) (see the detail of the solution in
Scherer et al. (1997)). It is worth noting that, unlike the
original solution, the weighting function parameters are
present in the LMIs problem and will be optimized by
genetic algorithm.





M11 (ρi, ν) ∗ ∗ ∗

M21 (ρi, ν) M22 (ρi, ν) ∗ ∗

M31 (ρi, ν) M32 (ρi, ν) −γIm ∗

M41 (ρi, ν) M42 (ρi, ν) M43 (ρi, ν) −γIp



 ≺ 0 (8)

[

X I

I Y

]

≻ 0 (9)

for i = 1 : k

where
M11(ρi, ν) = A(ρi, ν)X + XA(ρi, ν)T + B2Ĉ(ρi) + Ĉ(ρi)

T
B

T
2

M21(ρi, ν) = Â(ρi) + A(ρi, ν)T + C
T
2

D̂(ρi)
T
B

T
2

M22(ρi, ν) = Y A(ρi, ν) + A(ρi, ν)T Y + B̂(ρi)C2 + C
T
2

B̂(ρi)
T

M31(ρi, ν) = B1(ρi, ν)T + D
T
21

D̂(ρi)
T
B

T
2

M32(ρi, ν) = B1(ρi, ν)T Y + D
T
21

B̂(ρi)
T

M41(ρi, ν) = C1(ρi, ν)X + D12Ĉ(ρi)

M42(ρi, ν) = C1(ρi, ν) + D12D̂(ρi)C2

M43(ρi, ν) = D11(ρi, ν) + D12D̂(ρi)D21

The controller Kci
at vertex i is then reconstructed as

Dc(ρi) = D̂(ρi)

Cc(ρi) =
(

Ĉ(ρi) − Dc(ρi)C2X
)

M−T

Bc(ρi) = N−1
(

B̂(ρi) − Y B2Dc(ρi)
)

Ac(ρi) = N−1
(

Â(ρi) − Y A(ρi)X − Y B2Dc(ρi)C2X
)

M−T

−Bc(ρi)C2XM−T
− N−1Y B2Cc(ρi)

(10)

where M , N are defined such that MNT = In−XY which
can be solved through a singular value decomposition and
a Cholesky factorization. The global H∞/LPV controller
is the convex combination of these local controllers.

3.2 Optimizing the weighting functions

Decision vector - Certainly ν is one element of the decision
vector. Besides, the authors observed that the real positive
scalar γ must be taken into account in the decision vector
as well. Indeed one aims at optimizing a predefined multi-
objective function J (see below) and not γ.

To avoid the infeasibility of the LMIs (8)-(9) resulting from
the bad (i.e too small) value of γ generated by GAs, γ
will be split into two positive real elements γmin and γga

where γmin is the minimal γ satisfying the LMIs (8)-(9),
and γga is tuned by GAs. Due to the convexity of the LMIs
problem, the existence of γmin will ensure the feasibility
of LMIs (8)-(9) with γ = γmin + γga for any positive real
γga. The minimal value γmin can be found by using LMIs
toolbox like Yalmip & Sedumi.

Objective functions - In this paper, the frequency-based
objective functions are considered. With the remarks
above, the performance of the closed-loop system depends
on the choice of weighting functions and the real positive
scalar γ. Hence, to refer to these implicit dependencies,
the objective function can be written as J = J(ν, γ).

Proposed weighting function optimization procedure for
H∞/LPV synthesis

• Step 1: Initialize with random positive weighting
functions ν = ν0 and random positive real γga = γ0

ga.
• Step 2: Solve the minimization problem of γ subject

to the LMIs (8)-(9) to compute the minimal real
scalar γmin. Solve again the the LMIs (8)-(9) with
the couple (ν, γ) where γ = γmin + γga. At the end of
this step, compute the objective function J(ν, γ).

• Step 3: Select the individuals.
• Step 4: Apply crossover and mutation to generate a

new generation: ν = νnew and γga = γnew
ga .

• Step 5: Evaluate the new generation: If the criteria
of interest (for example, reaching the limit number
of generation) are not satisfied, go to Step 2 with
ν = νnew and γga = γnew

ga ; else, stop and save the

best individual νopt = νnew and γopt = γnew
ga .

4. SEMI-ACTIVE SUSPENSION CONTROL

4.1 System description

Consider a simple quarter vehicle model (see Fig. 1) made
up of a sprung mass (ms) and an unsprung mass (mus)
connected by a spring with the stiffness coefficient ks and a
semi-active damper. The wheel tire is modeled by a spring
with the stiffness coefficient kt. In this model, zs (respec-
tively zus) is the vertical position of ms (respectively mus)
and zr is the road profile. It is assumed that the wheel-road
contact is ensured. The dynamical equations of a quarter

f

zs

zus

zr

ms

mus

ks
Semi-active
damper

kt

Fig. 1. Model of quarter vehicle with a semi-active damper.

vehicle are governed by:
{

msz̈s = −Fspring − Fmr

musz̈us = Fspring + Fmr − kt (zus − zr)
(11)

where Fspring = kszdef is the spring force, zdef = zs − zus

the damper deflection (assumed to be measured or esti-
mated), and żdef = żs − żus the deflection velocity (can
be directly computed from zdef ).



In this paper, the behavior of the semi-active suspension
is modeled by the following nonlinear equation, as in Do
et al. (2010):

Fmr = a2(żdef +
v0

x0
zdef ) + a1 tanh(a3(żdef +

v0

x0
zdef))

(12)

where a2, a3, v0 and x0 are constant parameters and
a1 is varying according to the electrical current in coil
(0 < a1min ≤ a1 ≤ a1max). This model allows fulfilling
the dissipativity constraint of the semi-active damper.
The quarter vehicle used in this paper is the ”Renault
Mégane Coupé” model (see Zin et al. (2004)) whose
specific parameters are: ms = 315 kg, mus = 37.5 kg,
ks = 29500 N/m, kt = 210000 N/m. The damper model
parameters have been chosen according to the MR damper
in Nino-Juarez et al. (2008): a2 = 1500 Ns/m, a3 = 129
s/m, v0 = 0.788x10−3 m/s, x0 = 1.195x10−3 m, a1min = 0
N, a1max = 400 N, F1 = (a1max − a1min)/2 = 200.

After some mathematical transformations as in Do et al.
(2010), a control oriented LPV model with input satura-
tion is obtained with two scheduling parameters ρ∗1 and
ρ∗2

{

ẋ = A (ρ1
∗, ρ2

∗)x + Buc + B1w
y = Cx

(13)

where

x =

(

xs

xf

)T

, A (ρ1, ρ2) =

(

As + ρ2Bs2Cs2 ρ1BsCf

0 Af

)

,

B =

(

0
Bf

)

, B1 =

(

Bs1

0

)

, C =

(

Cs

0

)T

ρ1
∗ = tanh(Cs2xs) tanh(

Cf xf

F1
) F1

Cf xf
, ρ2

∗ = tanh(Cs2xs)
Cs2xs

.

xs, As, Bs, Bs1, Cs are state and matrices of a state-space
representation of the plant (11); xf , Af , Bf , Cf are state
and matrices of a representation of the following low-pass

filter Wfilter =
Ωf

s+Ωf
. This filter is added to the plant to

make the control input matrices parameter independent.
Notice also that ρ∗1 and ρ∗2 are not independent and the
relation between them is presented in Fig. 2. For the
polytopic approach, the polytope P1P2P3P4 that contains
the set of (ρ∗1, ρ

∗

2) will be considered. While P3 and P4 are
related to the real set of (ρ∗1, ρ

∗

2), P1 and P2 in fact do not
belong to the set.

Fig. 2. Set of (ρ1
∗, ρ2

∗) (shaded area + curved line) and
set of (ρ1, ρ2) (curved line).

4.2 Suspension Performance Objectives

The performance objectives for comfort and road holding
are obtained following ideas from Sammier et al. (2003).

• Comfort in high frequencies ([3 − 10] Hz):

min
∫ 10

3
z̈s/zr(f)df .

• Comfort in low frequencies ([0−4] Hz): min σ(zs/zr)(f).
• Road holding ([0 − 20] Hz): min σ(zus/zr(f)) (Re-

bound of wheel) and
∫ 20

0
(zus − zr)/zr(f)df (Contact

force).

5. SEMI-ACTIVE SUSPENSION CONTROL USING
GENETIC ALGORITHMS

The procedure for optimizing the weighting functions in
Sec. 3.2 is now applied to the LPV semi-active suspension
system (13) with the following specifications.

5.1 Parameterizing weighting functions

Along with the bounded real positive scalar γ, the fol-
lowing weighting functions are used for the H∞/LPV
synthesis

Wfilter =
Ωf

s + Ωf

(14)

Wz̈s
= kz̈s

s2 + 2ξ11Ω11s + Ω11
2

s2 + 2ξ12Ω12s + Ω12
2 (15)

Wzus
= kzus

s2 + 2ξ21Ω21s + Ω21
2

s2 + 2ξ22Ω22s + Ω22
2 (16)

The decision vector is as follows

ν = [ γ Ωf Ω11,12 ξ11,12 kz̈s
Ω21,22 ξ21,22 kzus ]T (17)

It is worth noting that the structures of these weighting
functions are the same as in Do et al. (2010).
The parameter (i.e. each element in the decision vector)
encoding is defined as follows

Parameter Value = (a + 0.1b + 0.01c + 0.001d)× 10
e
3−2

(18)
where a, b, c, d, e are natural number and (a, b, c, d, e) ∈
[0; 9]5. This encoding covers the range (0; 100).

5.2 Objective and fitness function

Objective function - The objective function is as follows

J = αJComfort + (1 − α)JRoad Holding (19)

where JComfort and JRoad Holding are performance indices
corresponding to vertex P3 (Note that solutions at P3 and
P4 are identical because of the symmetric property of the
polytope (P1, P2, P3, P4) and defined as follows (according
to Sec. 4.2)

JComfort =

∫ 10

1 z̈s/zr(f)df
∫ 10

1
(z̈s/zr)Passive

(f)df
(20)

JRoad Holding =

σ̄
f∈[10−20]

(zus/zr(f))

σ̄
f∈[10−20]

(zus/zr(f))Passive

(21)

Note that the criteria with “passive” are computed for the
open-loop system (13) with uc = 0.



Remark 1 : The feasibility of the new generated elements is
not guaranteed because of the possible infeasibility of the
LMIs (8)-(9). The problem can be overcome by repeating
the crossover or mutation until the feasible solution is
obtained. However, a simpler way is to assign a large
objective value (for instant J = ∞) to these infeasible
solutions and as a consequence, they will be eliminated by
the selection procedure after some generations.

Remark 2 : In many cases, to preserve the performance
of the closed-loop system with input saturation, a stable
stabilizing controller is required. A stable LPV controller
can be obtained by eliminating the “unstable solutions”
corresponding to at least one unstable local controller
during the synthesis.

To sum up, the objective function is chosen as follows.
Algorithm 1: Objective value assignment

if (8)-(9) is feasible then
if all local controllers Kci

are stable then
Calculate J using Eq. 19, 20 and 21

else
J = ∞

end
else

J = ∞
end.

Fitness function - Because the working principle of GAs is
the maximization of fitness, the following fitness function
is used

Ffitness = 10 − 10
1 − 5e−12(J−0.6)

1 + 5e−12(J−0.6)
(22)

5.3 Genetic operation

The selection method used in this paper is the proportion-
ate selection developed by Holland (1975). This method
assigns to each individual a probability of selection pro-
portional to its relative fitness. Proportionate selection can
be illustrated by a roulette wheel. The crossover happens
with a probability of 0.9 and the mutation happens with
a very small probability 0.095.

5.4 Design results

The result of the optimization procedure using GAs is
given in Fig. 3. Some points in the Pareto-Set are depicted.
In the next section, we validate this linear design result on
a nonlinear quarter car model.
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Fig. 3. Performance indices of the closed-loop linear system
corresponding to vertex P3 (with different values of
α).

6. SIMULATION RESULTS

The nonlinear frequency responses using the “variance
gain” algorithm by Savaresi et al. (2005) are presented
in Fig. 5 - 7.

In Fig. 4, the performance indices JComfort and JRoad Holding

are computed for a nonlinear quarter car model with the
H∞/LPV controllers corresponding to each value of α
with different values of α in the range of [0.1; 0.99]. As
expected, with α = 0.99, the smallest JComfort is obtained;
with α = 0.1, the smallest JRoad Holding is obtained.

Three stable H∞/LPV controllers C1, C2, C3 correspond-
ing to α = 0.99, α = 0.55, α = 0.1 (respectively) syn-
thesized with the optimized weighting functions (whose
parameters are presented in Tab. 1) are chosen for the
analysis. Their performances are compared with those of
the H∞/LPV controller obtained in Do et al. (2010), of
the passive soft MR Damper (a1 = a1min = 0 N) and of
the passive hard MR Damper (a1 = a1max = 400 N).

• The comfort oriented controller C1 is the best one for
comfort but not good for road holding.

• The road holding (rebound of wheel) oriented con-
troller C3 is the best for preventing the rebound of
wheel in high frequency. It can be seen that this con-
troller has the same behavior as that of the hard MR
damper. However, a good comfort in high frequency.

• The intermediate controller C2 turns out to be the
best one. It guarantees a road holding, a good com-
fort improvement in high frequency and a medium
comfort improvement in low frequency.

To summarize, the overall evaluation of performance based
on the criteria given in Sec. 4.2 is depicted in Fig. 8.
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Fig. 4. Performance indices of the closed-loop nonlinear
system (with different values of α).

7. CONCLUSION

In this paper, a weighting function optimization using
GAs for H∞/LPV semi-active control problem has been
proposed. The input used for this optimization procedure
is a frequency-based objective function, instead of the dis-
turbance attenuation level γ as in conventional H∞/LPV
design. The simulation results have shown the efficiency
of GAs in finding a suitable controller to satisfy some
performance objectives. For future work, powerful GAs in
multi-objective optimization like SPEA2 or NSGA-II will
be considered and compared with the simple weighted sum
of objectives method used in this paper.



Controllers bounded real scalar Filter Wz̈s
Wzus

γmin − γga Ωf Ω11 Ω12 ξ11 ξ12 kz̈s
Ω21 Ω22 ξ21 ξ22 kzus

ACC 2010 363-0 50 125.7 125.7 20 1 1 69.1 69.1 20 1 1
C1 (α = 0.99) 456-463 51.1 33.29 28.54 52.32 5.26 1.95 1.29 0.072 4.09 0.136 0.152
C2 (α = 0.55) 320-163 8.3 0.48 4.66 37.95 0.76 3.77 0.87 3.3 0.19 1.8 8.1
C3 (α = 0.1) 93.9-0.11 1.4 2.373 0.66 0.222 33.87 0.22 24.81 0.49 7.14 5.75 0.343

Table 1. Parameters for H∞/LPV semi-active suspension design.
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Fig. 5. Comfort in high frequencies z̈s/zr.
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