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Abstract. We study an integral non coercive functional defined
on H

1

0
(Ω), proving the existence of a minimum in W

1,1

0
(Ω).

In this paper we study a class of integral functionals defined on
H1

0 (Ω), but non coercive on the same space, so that the standard ap-
proach of the Calculus of Variations does not work. However, the
functionals are coercive on W

1,1
0 (Ω) and we will prove the existence of

minima, despite the non reflexivity of W 1,1
0 (Ω), which implies that, in

general, the Direct Methods fail due to lack of compactness.

Let J be the functional defined as

J(v) =

∫

Ω

j(x,∇v)

[1 + b(x)|v|]2
+

1

2

∫

Ω

|v|2 −

∫

Ω

f v , v ∈ H1
0 (Ω) .

We assume that Ω is a bounded open set of R
N , N > 2, that j :

Ω×R
N → R is such that j(·, ξ) is measurable on Ω for every ξ in R

N ,
j(x, ·) is convex and belongs to C1(RN) for almost every x in Ω, and

(1) α|ξ|2 ≤ j(x, ξ) ≤ β|ξ|2 ,

(2) |jξ(x, ξ)| ≤ γ|ξ| ,

for some positive α, β and γ, for almost every x in Ω, and for every ξ

in R
N . We assume that b is a measurable function on Ω such that

(3) 0 ≤ b(x) ≤ B , for almost every x in Ω,

where B > 0, while f belongs to some Lebesgue space. For k > 0 and
s ∈ R, we define the truncature function as Tk(s) = max(−k,min(s, k)).

In [3] the minimization in H1
0 (Ω) of the functional

I(v) =

∫

Ω

j(x,∇v)

[1 + |v|]θ
−

∫

Ω

f v , 0 < θ < 1, f ∈ Lm(Ω) ,

was studied. It was proved that I(v) is coercive on the Sobolev space
W

1,q
0 (Ω), for some q = q(θ,m) in (1, 2), and that I(v) achieves its

minimum on W
1,q
0 (Ω). This approach does not work for θ > 1 (see

Remark 7 below). Here we will able to overcome this difficulty thanks
to the presence of the lower order term

∫

Ω
|v|2, which will yield the

coercivity of J on W
1,1
0 (Ω); then we will prove the existence of minima

in W
1,1
0 (Ω), even if it is a non reflexive space.

Integral functionals like J or I are studied in [1], in the context of
the Thomas-Fermi-von Weizsäcker theory.
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We are going to prove the following result.

Theorem 1. Let f ∈ L2(Ω). Then there exists u in W
1,1
0 (Ω) ∩ L2(Ω)

minimum of J , that is,

(4)
∫

Ω

j(x,∇u)

[1 + b(x)|u|]2
+
1

2

∫

Ω

|u|2−

∫

Ω

fu ≤

∫

Ω

j(x,∇v)

[1 + b(x)|v|]2
+
1

2

∫

Ω

|v|2−

∫

Ω

fv,

for every v in H1
0 (Ω). Moreover Tk(u) belongs toH

1
0 (Ω) for every k > 0.

In [2] we studied the following elliptic boundary problem:

(5)















−div

(

a(x)∇u

(1 + b(x)|u|)2

)

+ u = f in Ω,

u = 0 on ∂Ω,

under the same assumptions on Ω, b and f , with 0 < α ≤ a(x) ≤ β.
It is easy to see that the Euler equation of J , with j(x, ξ) = 1

2
a(x)|ξ|2,

is not equation (5). Therefore Theorem 1 cannot be deduced from [2].
Nevertheless some technical steps of the two papers (for example, the
a priori estimates) are similar.

We will prove Theorem 1 by approximation. Therefore, we begin
with the case of bounded data.

Lemma 2. If g belongs to L∞(Ω), then there exists a minimum w

belonging to H1
0 (Ω) ∩ L∞(Ω) of the functional

v ∈ H1
0 (Ω) 7→

∫

Ω

j(x,∇v)

[1 + b(x)|v|]2
+

1

2

∫

Ω

|v|2 −

∫

Ω

g v .

Proof. Since the functional is not coercive onH1
0 (Ω), we cannot directly

apply the standard techniques of the Calculus of Variations. Therefore,
we begin by approximating it. Let M > 0, and let JM be the functional
defined as

JM(v) =

∫

Ω

j(x,∇v)

[1 + b(x)|TM (v)|]2
+

1

2

∫

Ω

|v|2 −

∫

Ω

g v , v ∈ H1
0 (Ω) .

Since JM is both weakly lower semicontinuous (due to the convexity of
j and to De Giorgi’s theorem, see [4]) and coercive on H1

0 (Ω), for every
M > 0 there exists a minimum wM of JM onH1

0 (Ω). Let A = ‖g‖
L∞(Ω)

,

letM > A, and consider the inequality JM(wM) ≤ JM(TA(wM)), which
holds true since wM is a minimum of JM . We have
∫

Ω

j(x,∇wM)

[1 + b(x)|TM (wM)|]2
+

1

2

∫

Ω

|wM |2 −

∫

Ω

g wM

≤

∫

Ω

j(x,∇TA(wM))

[1 + b(x)|TM(TA(wM))|]2
+

1

2

∫

Ω

|TA(wM)|2 −

∫

Ω

g TA(wM)

=

∫

{|wM |≤A}

j(x,∇wM)

[1 + b(x)|TM(wM)|]2
+

1

2

∫

Ω

|TA(wM)|2 −

∫

Ω

gTA(wM) ,
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where, in the last passage, we have used that TM(TA(wM)) = TM(wM)
on the set {|wM | ≤ A}, and that j(x, 0) = 0. Simplifying equal terms,
we thus get

∫

{|wM |≥M}

j(x,∇wM)

[1 + b(x)|TM(wM)|]2

+
1

2

∫

Ω

[|wM |2 − |TA(wM)|2] ≤

∫

Ω

g [wM − TA(wM)] .

Dropping the first term, which is nonnegative, we obtain

1

2

∫

Ω

[wM − TA(wM)] [wM + TA(wM)] ≤

∫

Ω

g [wM − TA(wM)] ,

which can be rewritten as

1

2

∫

Ω

[wM − TA(wM)] [wM + TA(wM)− 2g] ≤ 0 .

We then have, since wM = TA(wM) on the set {|wM | ≤ A},

1

2

∫

{wM>A}

[wM−A][wM+A−2g]+
1

2

∫

{wM<−A}

[wM+A][wM−A−2g] ≤ 0 .

Since |g| ≤ A, we have A− 2g ≥ −A, and −A− 2g < A, so that

0 ≤
1

2

∫

{wM>A}

[wM − A]2 +
1

2

∫

{wM<−A}

[wM + A]2 ≤ 0 ,

which then implies that meas({|wM | ≥ A}) = 0, and so |wM | ≤ A

almost everywhere in Ω. Recalling the definition of A, we thus have

(6) ‖wM‖
L∞(Ω)

≤ ‖g‖
L∞(Ω)

.

Since M > ‖g‖
L∞(Ω)

, we thus have TM(wM) = wM . Starting now from

JM(wM) ≤ JM(0) = 0 we obtain, by (6),
∫

Ω

j(x,∇wM)

[1 + b(x)|wM |]2
+

1

2

∫

Ω

|wM |2 ≤

∫

Ω

g wM ≤ meas(Ω) ‖g‖2
L∞(Ω)

,

which then implies, by (1) and (3), and dropping the nonnegative sec-
ond term,

α

[1 +B‖g‖
L∞(Ω)

]2

∫

Ω

|∇wM |2 ≤ meas(Ω) ‖g‖2
L∞(Ω)

.

Thus, {wM} is bounded in H1
0 (Ω)∩L∞(Ω), and so, up to subsequences,

it converges to some function w in H1
0 (Ω) ∩ L∞(Ω) weakly in H1

0 (Ω),
strongly in L2(Ω), and almost everywhere in Ω. We prove now that

(7)

∫

Ω

j(x,∇w)

[1 + b(x)|w|]2
≤ lim inf

M→+∞

∫

Ω

j(x,∇wM)

[1 + b(x)|wM |]2
.
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Indeed, since j is convex, we have
∫

Ω

j(x,∇wM)

[1 + b(x)|wM |]2

≥

∫

Ω

j(x,∇w)

[1 + b(x)|wM |]2
−

∫

Ω

jξ(x,∇w)

[1 + b(x)|wM |]2
· ∇[wM − w] .

Using assumption (1), the fact that w belongs to H1
0 (Ω), the almost

everywhere convergence of wM to w and Lebesgue’s theorem, we have

(8) lim
M→+∞

∫

Ω

j(x,∇w)

[1 + b(x)|wM |]2
=

∫

Ω

j(x,∇w)

[1 + b(x)|w|]2
.

Using assumption (2), the fact that w belongs toH1
0 (Ω), and the almost

everywhere convergence of wM to w, we have by Lebesgue’s theorem
that

lim
M→+∞

jξ(x,∇w)

[1 + b(x)|wM |]2
=

jξ(x,∇w)

[1 + b(x)|w|]2
, strongly in (L2(Ω))N .

Since ∇wM tends to ∇w weakly in the same space, we thus have that

(9) lim
M→+∞

∫

Ω

jξ(x,∇w)

[1 + b(x)|wM |]2
· ∇[wM − w] = 0 .

Using (8) and (9), we have that (7) holds true. On the other hand,
using (1) and Lebesgue’s theorem again, it is easy to see that

lim
M→+∞

∫

Ω

j(x,∇v)

[1 + b(x)|TM(v)|]2
=

∫

Ω

j(x,∇v)

[1 + b(x)|v|]2
, ∀v ∈ H1

0 (Ω) .

Thus, starting from JM(wM) ≤ JM(v), we can pass to the limit as
M tends to infinity (using also the strong convergence of wM to w in
L2(Ω)), to have that w is a minimum. �

As stated before, we prove Theorem 1 by approximation. More in
detail, if fn = Tn(f) then Lemma 2 with g = fn implies that there
exists a minimum un in H1

0 (Ω) ∩ L∞(Ω) of the functional

Jn(v) =

∫

Ω

j(x,∇v)

[1 + b(x)|v|]2
+

1

2

∫

Ω

|v|2 −

∫

Ω

fn v , v ∈ H1
0 (Ω) .

In the following lemma we prove some uniform estimates on un.

Lemma 3. Let un in H1
0 (Ω) ∩ L∞(Ω) be a minimum of Jn. Then

(10)

∫

Ω

|∇un|
2

(1 + b(x)|un|)2
≤

1

2α

∫

Ω

|f |2 ;

(11)

∫

Ω

|∇Tk(un)|
2 ≤

(1 +B k)2

2α

∫

Ω

|f |2 ;

(12)

∫

Ω

|un|
2 ≤ 4

∫

Ω

|f |2 ;
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(13)

∫

Ω

|∇un| ≤

[

1

2α

∫

Ω

|f |2
]

1

2

(

meas(Ω)
1

2 + 2B

[
∫

Ω

|f |2
]

1

2

)

;

(14)

∫

Ω

|Gk(un)|
2 ≤ 4

∫

{|un|≥k}

|f |2 ,

where Gk(s) = s− Tk(s) for k ≥ 0 and s in R.

Proof. The minimality of un implies that Jn(un) ≤ Jn(0), that is,

(15)

∫

Ω

j(x,∇un)

[1 + b(x)|un|]2
+

1

2

∫

Ω

u2
n ≤

∫

Ω

fn un .

Using (1) on the left hand side, and Young’s inequality on the right
hand side gives

α

∫

Ω

|∇un|
2

[1 + b(x)|un|]2
+

1

2

∫

Ω

u2
n ≤

1

2

∫

Ω

u2
n +

1

2

∫

Ω

f 2
n ,

which then implies (10). Let now k ≥ 0. The above estimate, and (3),
give

1

(1 +Bk)2

∫

Ω

|∇Tk(un)|
2 ≤

∫

{|un|≤k}

|∇un|
2

[1 + b(x)|un|]2
≤

1

2α

∫

Ω

|f |2 ,

and therefore (11) is proved. On the other hand, dropping the first
positive term in (15) and using Hölder’s inequality on the right hand
side, we have

1

2

∫

Ω

|un|
2 ≤

∫

Ω

|fnun| ≤

[
∫

Ω

|fn|
2

]
1

2

[
∫

Ω

|un|
2

]
1

2

,

that is, (12) holds. Hölder’s inequality, assumption (3), and estimates
(10) and (12) give (13):

(16)

∫

Ω

|∇un| ≤

[
∫

Ω

|∇un|
2

[1 + b(x)|un|]2

]
1

2

[
∫

Ω

[1 + b(x)|un|]
2

]
1

2

≤

[

1

2α

∫

Ω

|f |2
]

1

2

(

meas(Ω)
1

2 + 2B

[
∫

Ω

|f |2
]

1

2

)

.

We are left with estimate (14). Since Jn(un) ≤ Jn(Tk(un)) we have

1

2

∫

Ω

j(x,∇un)

[1 + b(x)|un|]2
+

1

2

∫

Ω

|un|
2−

∫

Ω

fnun

≤
1

2

∫

Ω

j(x,∇Tk(un))

[1 + b(x)|Tk(un)|]2
+

1

2

∫

Ω

|Tk(un)|
2 −

∫

Ω

fnTk(un) .

Recalling the definition of Gk(s), and using that |s|2 − |Tk(s)|
2 ≥

|Gk(s)|
2, the last inequality implies

1

2

∫

Ω

j(x,∇Gk(un))

[1 + b(x)|un|]2
+

1

2

∫

Ω

|Gk(un)|
2 ≤

∫

Ω

fnGk(un) .
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Dropping the first term of the left hand side and using Hölder’s in-
equality on the right one, we obtain

1

2

∫

Ω

|Gk(un)|
2 ≤

[
∫

{|un|≥k}

|f |2
]

1

2

[
∫

Ω

|Gk(un)|
2

]
1

2

,

that is, (14) holds. �

Lemma 4. Let un in H1
0 (Ω) ∩ L∞(Ω) be a minimum of Jn. Then

there exists a subsequence, still denoted by {un}, and a function u in

W
1,1
0 (Ω) ∩ L2(Ω), with Tk(u) in H1

0 (Ω) for every k > 0, such that un

converges to u almost everywhere in Ω, strongly in L2(Ω) and weakly

in W
1,1
0 (Ω), and Tk(un) converges to Tk(u) weakly in H1

0 (Ω). Moreover,

(17) lim
n→+∞

∇un

1 + b(x)|un|
=

∇u

1 + b(x)|u|
weakly in (L2(Ω))N .

Proof. By (13), the sequence un is bounded in W
1,1
0 (Ω). Therefore, it is

relatively compact in L1(Ω). Hence, up to subsequences still denoted by
un, there exists u in L1(Ω) such that un almost everywhere converges to
u. From Fatou’s lemma applied to (12) we then deduce that u belongs
to L2(Ω).

We are going to prove that un strongly converges to u in L2(Ω). Let
E be a measurable subset of Ω; then by (14) we have

∫

E

|un|
2≤ 2

∫

E

|Tk(un)|
2 + 2

∫

E

|Gk(un)|
2

≤ 2k2meas(E) + 2

∫

Ω

|Gk(un)|
2

≤ 2k2meas(E) + 8

∫

{|un|≥k}

|f |2 .

Since un is bounded in L2(Ω) by (12), we can choose k large enough so
that the second integral is small, uniformly with respect to n; once k

is chosen, we can choose the measure of E small enough such that the
first term is small. Thus, the sequence {u2

n} is equiintegrable and so,
by Vitali’s theorem, un strongly converges to u in L2(Ω).

Now we to prove that un weakly converges to u in W
1,1
0 (Ω). Let E

be a measurable subset of Ω. By Hölder’s inequality, assumption (3),
and (10), one has, for i ∈ {1, . . . , N},

∫

E

∣

∣

∣

∣

∂un

∂xi

∣

∣

∣

∣

≤

∫

E

|∇un| ≤

[
∫

E

|∇un|
2

[1 + b(x)|un|]2

]
1

2

[
∫

E

[1 + b(x)|un|]
2

]
1

2

≤

[

1

2α

∫

Ω

|f |2
]

1

2

[
∫

E

[1 +B|un|]
2

]
1

2

.

Since the sequence {un} is compact in L2(Ω), this estimate implies
that the sequence {∂un

∂xi
} is equiintegrable. Thus, by Dunford-Pettis
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theorem, and up to subsequences, there exists Yi in L1(Ω) such that
∂un

∂xi
weakly converges to Yi in L1(Ω). Since ∂un

∂xi
is the distributional

partial derivative of un, we have, for every n in N,
∫

Ω

∂un

∂xi

ϕ = −

∫

Ω

un

∂ϕ

∂xi

, ∀ϕ ∈ C∞
0 (Ω) .

We now pass to the limit in the above identities, using that ∂iun weakly
converges to Yi in L1(Ω), and that un strongly converges to u in L2(Ω):
we obtain

∫

Ω

Yi ϕ = −

∫

Ω

u
∂ϕ

∂xi

, ∀ϕ ∈ C∞
0 (Ω) .

This implies that Yi =
∂u
∂xi

, and this result is true for every i. Since Yi

belongs to L1(Ω) for every i, u belongs to W
1,1
0 (Ω), as desired.

Since by (11) it follows that the sequence {Tk(un)} is bounded in
H1

0 (Ω), and since un tends to u almost everywhere in Ω, then Tk(un)
weakly converges to Tk(u) in H1

0 (Ω), and Tk(u) belongs to H1
0 (Ω) for

every k ≥ 0.
Finally, we prove (17). Let Φ be a fixed function in (L∞(Ω))N . Since

un almost everywhere converges to u in Ω, we have

lim
n→+∞

Φ

1 + b(x)|un|
=

Φ

1 + b(x)|u|
almost everywhere in Ω.

By Egorov’s theorem, the convergence is therefore quasi uniform; i.e.,
for every δ > 0 there exists a subset Eδ of Ω, with meas(Eδ) < δ, such
that

(18) lim
n→+∞

Φ

1 + b(x)|un|
=

Φ

1 + b(x)|u|
uniformly in Ω \ Eδ.

We now have
∣

∣

∣

∣

∫

Ω

∇un

1 + b(x)|un|
· Φ−

∫

Ω

∇u

1 + b(x)|u|
· Φ

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Ω\Eδ

∇un ·
Φ

1 + b(x)|un|
−

∫

Ω\Eδ

∇u ·
Φ

1 + b(x)|u|

∣

∣

∣

∣

+‖Φ‖
L∞(Ω)

∫

Eδ

[|∇un|+ |∇u|] .

Using the equiintegrability of |∇un| proved above, and the fact that
|∇u| belongs to L1(Ω), we can choose δ such that the second term of
the right hand side is arbitrarily small, uniformly with respect to n,
and then use (18) to choose n large enough so that the first term is
arbitrarily small. Hence, we have proved that

(19) lim
n→+∞

∇un

1 + b(x)|un|
=

∇u

1 + b(x)|u|
weakly in (L1(Ω))N .

On the other hand, from (10) it follows that the sequence ∇un

1+b(x)|un|
is

bounded in (L2(Ω))N , so that it weakly converges to some function σ
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in the same space. Since (19) holds, we have that σ = ∇u
1+b(x)|u|

, and

(17) is proved. �

Remark 5. The fact that we need to prove (17) is one of the main
differences with the paper [2].

Proof of Theorem 1. Let un be as in Lemma 4. The minimality of un

implies that

(20)

∫

Ω

j(x,∇un)

[1 + b(x)|un|]2
+

1

2

∫

Ω

|un|
2 −

∫

Ω

fnun

≤

∫

Ω

j(x,∇v)

[1 + b(x)|v|]2
+

1

2

∫

Ω

|v|2 −

∫

Ω

fnv

for every v in H1
0 (Ω). The result will then follow by passing to the

limit in the previous inequality. The right hand side of (20) is easy to
handle since fn converges to f in L2(Ω). Let us study the limit of the
left hand side of (20). The convexity of j implies that

∫

Ω

j(x,∇un)

[1 + b(x)|un|]2
≥

∫

Ω

j(x,∇Tk(u))

[1 + b(x)|un|]2

−

∫

Ω

jξ(x,∇Tk(u))

[1 + b(x)|un|]
·

(

∇un

[1 + b(x)|un|]
−

∇Tk(u)

[1 + b(x)|un|]

)

.

By (17), assumptions (1) and (2), and Lebesgue’s theorem, we have

lim inf
n→+∞

∫

Ω

j(x,∇un)

[1 + b(x)|un|]2
≥

∫

Ω

j(x,∇Tk(u))

[1 + b(x)|u|]2

−

∫

Ω

jξ(x,∇Tk(u))

[1 + b(x)|u|]
·
∇[u− Tk(u)]

[1 + b(x)|u|]
,

that is, since jξ(x,∇Tk(u)) · ∇(u− Tk(u)) = 0,
∫

Ω

j(x,∇Tk(u))

[1 + b(x)|u|]2
≤ lim inf

n→+∞

∫

Ω

j(x,∇un)

[1 + b(x)|un|]2
.

Letting k tend to infinity, and using Levi’s theorem, we obtain

(21)

∫

Ω

j(x,∇u)

[1 + b(x)|u|]2
≤ lim inf

n→+∞

∫

Ω

j(x,∇un)

[1 + b(x)|un|]2
.

Inequality (21) and Lemma 4 imply that

lim inf
n→+∞

∫

Ω

j(x,∇un)

[1 + b(x)|un|]2
+

1

2

∫

Ω

|un|
2 −

∫

Ω

fnun

≥

∫

Ω

j(x,∇u)

[1 + b(x)|u|]2
+

1

2

∫

Ω

|u|2 −

∫

Ω

fu .

Thus, for every v in H1
0 (Ω),

∫

Ω

j(x,∇u)

[1 + b(x)|u|]2
+
1

2

∫

Ω

|u|2−

∫

Ω

fu ≤

∫

Ω

j(x,∇v)

[1 + b(x)|v|]2
+
1

2

∫

Ω

|v|2−

∫

Ω

fv ,
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so that u is a minimum of J ; its regularity has been proved in Lemma
4. �

Remark 6. If we suppose that the coefficient b(x) satisfies the stronger
assumption

0 < A ≤ b(x) ≤ B , almost everywhere in Ω,

it is possible to prove that J(u) ≤ J(w) not only for every w in H1
0 (Ω),

but also for the test functions w such that

(22)











Tk(w) belongs to H1
0 (Ω) for every k > 0,

log(1 + A|w|) belongs to H1
0 (Ω),

w belongs to L2(Ω).

Indeed, if w is as in (22), we can use Tk(w) as test function in (4) and
we have

J(u) ≤ J(Tk(w)) =

∫

Ω

j(x,∇Tk(w))

[1 + b(x)|Tk(w)|]2
+

1

2

∫

Ω

|Tk(w)|
2 −

∫

Ω

fTk(w).

In the right hand side is possible to pass to the limit, as k tends to
infinity, so that we have J(u) ≤ J(w), for every test function w as in
(22).

Remark 7. We explicitly point out the differences, concerning the
coercivity, between the functionals studied in [3] and the functionals
studied in this paper. Indeed, let 0 < ρ < N−2

2
, and consider the

sequence of functions

vn = exp

[

Tn

(

1

|x|ρ
− 1

)]

− 1 ,

defined in Ω = B1(0). Then

log(1 + |vn|) = Tn

(

1

|x|ρ
− 1

)

,

is bounded in H1
0 (Ω) (since the function v(x) = 1

|x|ρ
− 1 belongs to

H1
0 (Ω) by the assumptions on ρ), but, by Levi’s theorem,

lim
n→+∞

∫

Ω

|∇vn| = ρ

∫

Ω

exp
[

1
|x|ρ

− 1
]

|x|ρ+1
= +∞ .

Hence, the functional

v ∈ H1
0 (Ω) 7→

∫

Ω

|∇v|2

(1 + |v|)2
=

∫

Ω

|∇ log(1 + |v|)|2 ,

which is of the type studied in [3], is non coercive on W
1,1
0 (Ω). On the

other hand, recalling (16), we have
∫

Ω

|∇v| =

∫

Ω

|∇v|

1 + |v|
(1 + |v|) ≤

1

2

∫

Ω

|∇v|2

(1 + |v|)2
+

1

2

∫

Ω

(1 + |v|)2 .
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Thus, the functional

v ∈ H1
0 (Ω) 7→

∫

Ω

|∇v|2

(1 + |v|)2
+

∫

Ω

|v|2 ,

which is of the type studied here, is coercive on W
1,1
0 (Ω).
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P.le A. Moro 2, 00185 Roma (ITALY)

E-mail address : orsina@mat.uniroma1.it


