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NONLINEAR DEGENERATE ELLIPTIC PROBLEMS WITH W 1,1 0 (Ω) SOLUTIONS

We study a nonlinear equation with an elliptic operator having degenerate coercivity. We prove the existence of a unique W 1,1 0 (Ω) distributional solution under suitable summability assumptions on the source in Lebesgue spaces. Moreover, we prove that our problem has no solution if the source is a Radon measure concentrated on a set of zero harmonic capacity.

Introduction and statement of the results

In this paper we are going to study the nonlinear elliptic equation

(1.1)      -div a(x, ∇u) (1 + |u|) γ + u = f in Ω, u = 0 on ∂Ω,
under the following assumptions. The set Ω is a bounded, open subset of R N , with N > 2, γ > 0, f belongs to some Lebesgue space, and a : Ω × R N → R N is a Carathéodory function (i.e., a(•, ξ) is measurable on Ω for every ξ in R N , and a(x, •) is continuous on R N for almost every x in Ω) such that

(1.2) a(x, ξ) • ξ ≥ α |ξ| 2 , (1.3) |a(x, ξ)| ≤ β |ξ| , (1.4) [a(x, ξ) -a(x, η)] • (ξ -η) > 0 ,
for almost every x in Ω and for every ξ and η in R N , ξ = η, where α and β are positive constants. We are going to prove that, under suitable assumptions on γ and f , problem (1.1) has a unique distributional solution u obtained by approximation, with u belonging to the (nonreflexive) Sobolev space W 1,1 0 (Ω). Furthermore, we are going to prove that problem (1.1) does not have a solution if γ > 1 and the datum f is a bounded Radon measure concentrated on a set of zero harmonic capacity.

Problems like (1.1) have been extensively studied in the past. In [START_REF] Boccardo | Existence and regularity results for some elliptic equations with degenerate coercivity, dedicated to[END_REF] (see also [START_REF] Giachetti | Existence results for some non uniformly elliptic equations with irregular data[END_REF], [START_REF] Giachetti | Elliptic equations with degenerate coercivity: gradient regularity[END_REF], [START_REF] Porretta | Uniqueness and homogenization for a class of noncoercive operators in divergence form, dedicated to Prof. C. Vinti[END_REF]), existence and regularity results were proved, under the assumption that a(x, ξ) = A(x) ξ, with A a uniformly elliptic bounded matrix, and 0 < γ ≤ 1, for the problem (1.5)

     -div A(x) ∇u (1 + |u|) γ = f in Ω, u = 0 on ∂Ω,
where f belongs to L m (Ω) for some m ≥ 1.

The main difficulty in dealing with problem (1.5) (or (1.1)) is that the differential operator, even if well defined between H 1 0 (Ω) and its dual H -1 (Ω), is not coercive on H 1 0 (Ω) due to the fact that if u is large, 1 (1+|u|) γ tends to zero (see [START_REF] Porretta | Uniqueness and homogenization for a class of noncoercive operators in divergence form, dedicated to Prof. C. Vinti[END_REF] for an explicit example). This lack of coercivity implies that the classical methods used in order to prove the existence of a solution for elliptic equations (see [START_REF] Leray | Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder[END_REF]) cannot be applied even if the datum f is regular. However, in [START_REF] Boccardo | Existence and regularity results for some elliptic equations with degenerate coercivity, dedicated to[END_REF], a whole range of existence results was proved, yielding solutions belonging to some Sobolev space W 1,q 0 (Ω), with q = q(γ, m) ≤ 2, if f is regular enough. Under weaker summability assumptions on f , the gradient of u (and even u itself) may not be in L 1 (Ω): in this case, it is possible to give a meaning to solutions of problem (1.5), using the concept of entropy solutions which has been introduced in [START_REF] Bénilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF].

If γ > 1, a non existence result for problem (1.5) was proved in [START_REF] Alvino | Existence results for nonlinear elliptic equations with degenerate coercivity[END_REF] (where the principal part is nonlinear with respect to the gradient), even for L ∞ (Ω) data f . Therefore, if the operator becomes "too degenerate", existence may be lost even for data expected to give bounded solutions. However, as proved in [START_REF] Boccardo | Some remarks on a class of elliptic equations[END_REF], existence of solutions can be recovered by adding a lower order term of order zero. Indeed, if we consider the problem

(1.6)      -div A(x)∇u (1 + |u|) γ + u = f in Ω, u = 0 on ∂Ω,
with f in L m (Ω), then the following results can be proved in the case γ > 1 (see [START_REF] Boccardo | Some remarks on a class of elliptic equations[END_REF] and [START_REF] Croce | The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity[END_REF]): i) if m > γ N 2 , then there exists a weak solution in

H 1 0 (Ω) ∩L ∞ (Ω); ii) if m ≥ γ+2, then there exists a weak solution in H 1 0 (Ω)∩L m (Ω); iii) if γ+2 2 < m < γ + 2, then there exists a distributional solution in W 1, 2m γ+2 0 (Ω) ∩ L m (Ω); iv) if 1 ≤ m ≤ γ+2
2 , then there exists an entropy solution in L m (Ω) whose gradient belongs to the Marcinkiewicz space M 2m γ+2 (Ω). Note that if γ + 2 ≤ m < γ N 2 and m tends to γ N 2 , the summability result of ii) is not "continuous" with the boundedness result of i), according to the following example (see also Example 3.3 of [START_REF] Boccardo | Some remarks on a class of elliptic equations[END_REF]).

Example 1.1. If 2 γ < σ < N -2, then u(x) = 1 |x| σ -1 is a distributional solution of (1.6) with A(x) ≡ I, and f (x) = σ(N -2+σ(γ-1)) |x| 2-σ(γ-1) + 1 |x| σ -1.
Due to the assumptions on σ, both f and u belong to L m (Ω), with m < γ N 2 . If m tends to γ N 2 , i.e., if σ tends to 2 γ , the solution u does not become bounded.

As stated before, this paper is concerned with two borderline cases connected with point iv) above:

A. if m = γ+2
2 , we will prove in Section 2 the existence of W 1,1 0 (Ω) distributional solutions, and in Section 3 their uniqueness; B. if f is a bounded Radon measure concentrated on a set E of zero harmonic capacity and γ > 1, we will prove in Section 4 non existence of solutions. In the linear case, i.e., for the boundary value problem (1.6), a simple proof of the existence result is given in [START_REF] Boccardo | A semilinear problem with a W 1[END_REF].

Remark 1.2. Let a(x, ξ) = A(x) ξ, with A a bounded and measurable uniformly elliptic matrix, and let u ≥ 0 be a solution of

-div A(x)∇u (1 + u) γ + u = f , with γ > 1 and f ≥ 0. If we define z = 1 γ -1 1 - 1 (1 + u) γ-1 , then z is a solution of -div(A(x)∇z) + 1 (1 -(γ -1)z) 1 γ-1 -1 = f ,
which is an equation whose lower order term becomes singular as z tends to the value 1 γ-1 . For a study of these problems, see [START_REF] Boccardo | On the regularizing effect of strongly increasing lower order terms, dedicated to Philippe Bénilan[END_REF] and [START_REF] Dupaigne | Elliptic equations with vertical asymptotes in the nonlinear term[END_REF]. Remark 1.3. We explicitely state that our existence results can be generalized to equations with differential operators defined on W 1,p 0 (Ω), with p > 1: if γ ≥ (p-2) + p-1 and if m = γ(p-1)+2 p , then it is possible to prove the existence of a distributional solution u in W 1,1 0 (Ω) ∩ L m (Ω) of the boundary value problem

(1.7)      -div a(x, ∇u) (1 + |u|) γ(p-1) + u = f in Ω, u = 0 on ∂Ω,
where a(x, ξ) satisfies (1.2), (1.3) and (1.4) with p instead of 2 (in (1.3), a grows as |ξ| p-1 ).

2. Existence of a W 1,1 0 (Ω) solution In this section we prove the existence of a W 1,1 0 (Ω) solution to problem (1.1). Our result is the following.

Theorem 2.1. Let γ > 0, and let f be a function in L γ+2 2 (Ω). Then there exists a distributional solution

u in W 1,1 0 (Ω) ∩ L γ+2 2 (Ω) of (1.1), that is, (2.1) Ω a(x, ∇u) • ∇ϕ (1 + |u|) γ + Ω u ϕ = Ω f ϕ , ∀ϕ ∈ W 1,∞ 0 (Ω) .
Remark 2.2. The previous result gives existence of a solution u in W 1,1 0 (Ω) to (1.6) for every γ > 0. If 0 < γ ≤ 1 existence results for (1.1) can also be proved by the same techniques of [START_REF] Boccardo | Existence and regularity results for some elliptic equations with degenerate coercivity, dedicated to[END_REF]. More precisely, if f belongs to L m (Ω) with m > N N (1-γ)+1+γ then (1.1) has a solution in W 1,q 0 (Ω), with q = N m(1-γ) N -m(1+γ) . Note that when m tends to N N (1-γ)+1+γ , then q tends to 1. We have now two cases:

if γ+2 2 > N N (1-γ)+1+γ , that is, if 0 < γ < 2
N -1 , our result is weaker than the one in [START_REF] Boccardo | Existence and regularity results for some elliptic equations with degenerate coercivity, dedicated to[END_REF]. On the other hand, if 2 N -1 ≤ γ ≤ 1, then our result, which strongly uses the lower order term of order zero, is better.

Remark 2.3. The same existence result, with the same proof, holds for the following boundary value problem

-div(b(x, u, ∇u)) + u = f in Ω, u = 0 on ∂Ω, with b : Ω × R × R N → R N a Carathéodory function such that α|ξ| 2 (1 + |s|) γ ≤ b(x, s, ξ) • ξ ≤ β|ξ| 2 ,
where α, β, γ are positive constants.

To prove Theorem 2.1 we will work by approximation. First of all, let g be a function in L ∞ (Ω). Then, by the results of [START_REF] Boccardo | Some remarks on a class of elliptic equations[END_REF], there exists a solution v in

H 1 0 (Ω) ∩ L ∞ (Ω) of (2.2)      -div a(x, ∇v) (1 + |v|) γ + v = g in Ω, v = 0 on ∂Ω.
In order for this paper to be self contained, we give here the easy proof of this fact. Let M = g L ∞ (Ω) + 1, and consider the problem

(2.3)      -div a(x, ∇v) (1 + |T M (v)|) γ + v = g in Ω, v = 0 on ∂Ω.
Here and in the following we define T k (s) = max(-k, min(s, k)) for k ≥ 0 and s in R. Since the differential operator is pseudomonotone and coercive thanks to the assumptions on a and to the truncature, by the results of [START_REF] Leray | Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder[END_REF] there exists a weak solution v in H 1 0 (Ω) of (2.3). Choosing (|v|g L ∞ (Ω) ) + sgn(v) as a test function we obtain, dropping the nonnegative first term,

Ω |v| (|v| -g L ∞ (Ω) ) + ≤ Ω g L ∞ (Ω) (|v| -g L ∞ (Ω) ) + .
Thus,

Ω (|v| -g L ∞ (Ω) ) (|v| -g L ∞ (Ω) ) + ≤ 0 , so that |v| ≤ g L ∞ (Ω) < M. Therefore, T M (v) = v,
and v is a bounded weak solution of (2.2).

Let now f n be a sequence of L ∞ (Ω) functions which converges to f in L 

     -div a(x, ∇u n ) (1 + |u n |) γ + u n = f n in Ω, u n = 0 on ∂Ω. A solution u n in H 1 0 (Ω) ∩ L ∞ (Ω) exists choosing g = f n in (2.
2). We begin with some a priori estimates on the sequence {u n }.

Lemma 2.4. If u n is a solution to problem (2.4), then, for every k ≥ 0, (2.5)

{|un|≥k} |u n | γ+2 2 ≤ {|un|≥k} |f | γ+2 2 ; 
(2.6)

{|un|≥k} |∇u n | 2 (1 + |u n |) γ+2 2 ≤ C {|un|≥k} |f | γ+2 2 2 γ+2 ; (2.7) {|un|≥k} |∇u n | ≤ C {|un|≥k} |f | γ+2 2 1 γ+2 ; (2.8) α Ω |∇T k (u n )| 2 ≤ k (1 + k) γ Ω |f | .
Here, and in the following, C denotes a positive constant depending on α, γ, meas(Ω), and the norm of

f in L γ+2 2 (Ω).
Proof. Let k ≥ 0, h > 0, and let ψ h,k (s) be the function defined by

ψ h,k (s) =        0 if 0 ≤ s ≤ k, h (s -k) if k < s ≤ k + 1 h , 1 if s > k + 1 h , ψ h,k (s) = -ψ h,k (-s) if s < 0. -k k ψ h,k -1 1 -k -1 h k + 1 h Note that lim h→+∞ ψ h,k (s) =    1 if s > k, 0 if |s| ≤ k, -1 if s < -k. Let ε > 0, and choose (ε + |u n |) γ 2 ψ h,k (u n ) as a test function in (2.4); such a test function is admissible since u n belongs to H 1 0 (Ω) ∩ L ∞ (Ω)
and ψ h,k (0) = 0. We obtain (2.9)

γ 2 Ω a(x, ∇u n ) • ∇u n (ε + |u n |) γ 2 -1 (1 + |u n |) γ |ψ h,k (u n )| + Ω a(x, ∇u n ) • ∇u n (1 + |u n |) γ ψ ′ h,k (u n ) (ε + |u n |) γ 2 + Ω u n (ε + |u n |) γ 2 ψ h,k (u n ) = Ω f n (ε + |u n |) γ 2 ψ h,k (u n ) .
By (1.2), and since ψ ′ h,k (s) ≥ 0, the first two terms are nonnegative, so that we obtain, recalling that

|f n | ≤ |f |, Ω u n (ε + |u n |) γ 2 ψ h,k (u n ) ≤ Ω |f | (ε + |u n |) γ 2 |ψ h,k (u n )| .
Letting ε tend to zero and h tend to infinity, we obtain, by Fatou's lemma (on the left hand side) and by Lebesgue's theorem (on the right hand side, recall that

u n belongs to L ∞ (Ω)), {|un|≥k} |u n | γ+2 2 ≤ {|un|≥k} |f | |u n | γ 2 .
Using Hölder's inequality on the right hand side we obtain

{|un|≥k} |u n | γ+2 2 ≤ {|un|≥k} |f | γ+2 2 2 γ+2 {|un|≥k} |u n | γ+2 2 γ γ+2
.

Simplifying equal terms we thus have

{|un|≥k} |u n | γ+2 2 ≤ {|un|≥k} |f | γ+2 2 ,
which is (2.5). Note that from (2.5), written for k = 0, it follows (2.10)

Ω |u n | γ+2 2 ≤ Ω |f | γ+2 2 = f γ+2 2 L γ+2 2 (Ω)
. Now we consider (2.9) written for ε = 1. Dropping the nonnegative second and third terms, and using that

|f n | ≤ |f |, we have γ 2 Ω a(x, ∇u n ) • ∇u n (1 + |u n |) γ+2 2 |ψ h,k (u n )| ≤ Ω |f |(1 + |u n |) γ+2 2 |ψ h,k (u n )| .
Using (1.2), and letting h tend to infinity, we get (using again Fatou's lemma and Lebesgue's theorem)

α γ 2 {|un|≥k} |∇u n | 2 (1 + |u n |) γ+2 2 ≤ {|un|≥k} |f |(1 + |u n |) γ 2 .
Hölder's inequality on the right hand side then gives

α γ 2 {|un|≥k} |∇u n | 2 (1 + |u n |) γ+2 2 ≤ {|un|≥k} |f | γ+2 2 2 γ+2 {|un|≥k} (1 + |u n |) γ+2 2 γ γ+2 ≤ {|un|≥k} |f | γ+2 2 2 γ+2 Ω (1 + |u n |) γ+2 2 γ γ+2
, so that, by (2.10),

α γ 2 {|un|≥k} |∇u n | 2 (1 + |u n |) γ+2 2 ≤ C {|un|≥k} |f | γ+2 2 2 γ+2 , which is (2.6).
Then, again by Hölder's inequality, and by (2.6) and (2.10),

(2.11)

{|un|≥k} |∇u n | = {|un|≥k} |∇u n | (1 + |u n |) γ+2 4 (1 + |u n |) γ+2 4 ≤ {|un|≥k} |∇u n | 2 (1 + |u n |) γ+2 2 1 2 {|un|≥k} (1 + |u n |) γ+2 2 1 2 ≤ C {|un|≥k} |f | γ+2 2 1 γ+2 Ω (1 + |u n |) γ+2 2 1 2 ≤ C {|un|≥k} |f | γ+2 2 1 γ+2
, so that (2.7) is proved.

Finally, choosing T k (u n ) as a test function in (2.4) we get, dropping the nonnegative linear term, and using (1.2),

α Ω |∇T k (u n )| 2 ≤ k(1 + k) γ Ω |f | , which is (2.8).
Lemma 2.5. If {u n } is the sequence of solutions to (2.4), there exists a subsequence, still denoted by {u n }, and a function u in L γ+2 2 (Ω), with T k (u) belonging to H 1 0 (Ω) for every k > 0, such that u n almost everywhere converges to u in Ω, and T k (u n ) weakly converges to T k (u) in H 1 0 (Ω). Proof. Consider (2.6) written for k = 0:

(2.12)

Ω |∇u n | 2 (1 + |u n |) γ+2 2 ≤ C f L γ+2 2 (Ω)
.

Since (if γ = 2)

|∇u n | 2 (1 + |u n |) γ+2 2 = 16 (2 -γ) 2 |∇[(1 + |u n |) 2-γ 4 -1]| 2 , the sequence v n = 4 2-γ [(1 + |u n |) 2-γ 4 -1]sgn(u n ) is bounded in H 1 0 (Ω) by (2.12). If γ = 2 we have |∇u n | 2 (1 + |u n |) 2 = |∇ log(1 + |u n |)| 2 , so that v n = [log(1 + |u n |)]sgn(u n ) is bounded in H 1 0 (Ω).
In both cases, up to a subsequence still denoted by v n , v n converges to some function v weakly in H 1 0 (Ω), strongly in L 2 (Ω), and almost everywhere in Ω. If γ < 2, define

u(x) = 2 -γ 4 |v(x)| + 1 4 2-γ -1 sgn(v(x)) , if γ > 2 define u(x) =          2-γ 4 |v(x)| + 1 4 2-γ -1 sgn(v(x)) if |v(x)| < 4 γ-2 , +∞ if v(x) = 4 γ-2 , -∞ if v(x) = -4 γ-2 , while if γ = 2, define u(x) = [e |v(x)| -1]sgn(v(x)) .
Thus, u n almost everywhere converges, up to a subsequence still denoted by u n , to u. From now on, we will consider this particular subsequence, for which it holds that u n almost everywhere converges to u.

We use now (2.5) written for k = 0:

Ω |u n | γ+2 2 ≤ Ω |f | γ+2 2 ≤ C .
Since u n almost everywhere converges to u, we have from Fatou's lemma that

Ω |u| γ+2 2 ≤ C .
Hence u belongs to L γ+2 2 (Ω), which implies that u is almost everywhere finite (note that if γ > 2 this fact did not follow from the definition of u, since |v| could have assumed the value 4 γ-2 on a set of positive measure).

Let now k > 0; since from (2.8) it follows that the sequence {T k (u n )} is bounded in H 1 0 (Ω), there exists a subsequence T k (u n j ) which weakly converges to some function v k in H 1 0 (Ω). Using the almost everywhere convergence of u n to u, we have that v k = T k (u). Since the limit is independent on the subsequence, then the whole sequence {T k (u n )} weakly converges to T k (u), for every k > 0.

Remark 2.6. Using the fact that T k (u) is in H 1 0 (Ω) for every k > 0, and the results of [START_REF] Bénilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF], we have that there exists a unique measurable function v with values in R N , such that

∇T k (u) = v χ {|u|≤k}
almost everywhere in Ω, for every k > 0.

Following again [START_REF] Bénilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF], we will define ∇u = v, the approximate gradient of u.

Remark 2.7. We emphasize that if γ = 2, then (2.11), written for k = 0, becomes

Ω |∇u n | ≤ Ω |∇u n | 2 (1 + |u n |) 2 1 2 Ω (1 + |u n |) 2 1 2 . Since |∇u n | 2 (1 + |u n |) 2 = |∇ log(1 + |u n |)| 2 ,
a nonlinear interpolation result follows: let A be in R + and let v in L 2 (Ω) be such that log(A + |v|) belongs to H 1 0 (Ω). Then v belongs to W 1,1 0 (Ω), and

Ω |∇v| ≤ log(A + |v|) H 1 0 (Ω) Ω (A + |v|) 2 1 2 
.

Our next result deals with the strong convergence of T k (u n ) in H 1 0 (Ω). Proposition 2.8. Let u n and u be the sequence of solutions to problems (2.4) and the function in L γ+2 2 (Ω) given by Lemma 2.5. Then, for every fixed k > 0, T k (u n ) strongly converges to T k (u) in H 1 0 (Ω), as n tends to infinity.

Proof. We follow the proof of [START_REF] Leone | Entropy solutions for nonlinear elliptic equations in L 1[END_REF].

Let h > k and choose

T 2k [u n -T h (u n ) + T k (u n ) -T k (u)] as a test function in (2.4). We have (2.13) Ω a(x, ∇u n ) • ∇T 2k [u n -T h (u n ) + T k (u n ) -T k (u)] (1 + |u n |) γ = - Ω (u n -f n ) T 2k [u n -T h (u n ) + T k (u n ) -T k (u)] .
We observe that the right hand side converges to zero as first n and then h tend to infinity, since u n converges to u almost everywhere in Ω and u n and f n are bounded in L γ+2 2 (Ω). Thus, if we define ε(n, h) as any quantity such that

lim h→+∞ lim n→+∞ ε(n, h) = 0 , then Ω (u n -f n ) T 2k [u n -T h (u n ) + T k (u n ) -T k (u)] = ε(n, h) . Let M = 4k+h. Observing that ∇T 2k [u n -T h (u n )+T k (u n )-T k (u)] = 0 if |u n | ≥ M, by (2.13) we have ε(n, h) = {|un|<k} a(x, ∇T M (u n )) • ∇[u n -T h (u n ) + T k (u n ) -T k (u)] (1 + |u n |) γ + {|un|≥k} a(x, ∇T M (u n )) • ∇[u n -T h (u n ) + T k (u n ) -T k (u)] (1 + |u n |) γ . Since u n -T h (u n ) = 0 in {|u n | ≤ k} and ∇T k (u n ) = 0 in {|u n | ≥ k}, we have, using that a(x, 0) = 0, ε(n, h) = Ω a(x, ∇T k (u n )) • ∇[T k (u n ) -T k (u)] (1 + |u n |) γ + {|un|≥k} a(x, ∇T M (u n )) • ∇[u n -T h (u n )] (1 + |u n |) γ - {|un|≥k} a(x, ∇T M (u n )) • ∇T k (u) (1 + |u n |) γ .
The second term of the right hand side is positive, so that

ε(n, h) ≥ Ω [a(x, ∇T k (u n )) -a(x, ∇T k (u))] • ∇[T k (u n ) -T k (u)] (1 + k) γ + Ω a(x, ∇T k (u)) • ∇[T k (u n ) -T k (u)] (1 + |u n |) γ - {|un|≥k} a(x, ∇T M (u n )) • ∇T k (u) (1 + |u n |) γ = I n + J n -K n .
The last two terms tend to zero as n tends to infinity. Indeed

lim n→+∞ J n = lim n→+∞ Ω a(x, ∇T k (u)) • ∇[T k (u n ) -T k (u)] (1 + |u n |) γ = 0 , since T k (u n ) converges to T k (u)
weakly in H 1 0 (Ω) and a(x,∇T k (u)) (1+|un|) γ is strongly compact in (L 2 (Ω)) N by the growth assumption (1.3) on a.

The last term can be rewritten as

K n = Ω a(x, ∇T M (u n )) • ∇T k (u)χ {|un|≥k} (1 + |u n |) γ .
Since M is fixed with respect to n, then the sequence {a(x, ∇T M (u n ))} is bounded in (L 2 (Ω)) N . Hence, there exists σ in (L 2 (Ω)) N , and a subsequence {a(x, ∇T M (u n j ))}, such that

lim j→+∞ a(x, ∇T M (u n j )) = σ ,
weakly in (L 2 (Ω)) N . On the other hand,

lim n→+∞ ∇T k (u)χ {k≤|un|} (1 + |u n |) γ = ∇T k (u)χ {k≤|u|} (1 + |u|) γ = 0 ,
strongly in (L 2 (Ω)) N , and so lim j→+∞

K n j = lim j→+∞ {|un j |≥k} a(x, ∇T M (u n j )) • ∇T k (u) (1 + |u n j |) γ = 0 .
Since the limit does not depend on the subsequence, we have

lim n→+∞ K n = lim n→+∞ {|un|≥k} a(x, ∇T M (u n )) • ∇T k (u) (1 + |u n |) γ = 0 , as desired. Therefore, ε(n, h) ≥ I n = Ω [a(x, ∇T k (u n )) -a(x, ∇T k (u))] • ∇[T k (u n ) -T k (u)] (1 + k) γ , so that, thanks to (1.4), lim n→+∞ Ω [a(x, ∇T k (u n )) -a(x, ∇T k (u))] • ∇[T k (u n ) -T k (u)] = 0 .
Using this formula, (1.4) and the results of [START_REF] Browder | Existence theorems for nonlinear partial differential equations[END_REF] and [START_REF] Boccardo | Resultats d'existence pour certains problèmes elliptiques quasi linéaires[END_REF], we then conclude that T k (u n ) strongly converges to T k (u) in H 1 0 (Ω), as desired. Corollary 2.9. Let u n and u be as in Proposition 2.8. Then ∇u n converges to ∇u almost everywhere in Ω, where ∇u has been defined in Remark 2.6.

Lemma 2.10. Let u n and u be as in Proposition 2.8. Then ∇u n strongly converges to ∇u in (L 1 (Ω)) N . Moreover u n strongly converges to u in L γ+2 2 (Ω).

Proof. We begin by proving the convergence of ∇u n to ∇u. Let ε > 0, and let k > 0 be sufficiently large such that (2.14)

{|un|≥k} |f | γ+2 2 1 γ+2 < ε ,
uniformly with respect to n. This can be done thanks to (2.10) and to the absolute continuity of the integral. Let E be a measurable set. Writing

E |∇u n | = E |∇T k (u n )| + E∩{|un|≥k} |∇u n |
we have, by (2.7), and by (2.14),

E |∇u n | ≤ E |∇T k (u n )| + Cε .
Using Hölder's inequality and (2.8), we obtain

E |∇u n | ≤ C meas(E) 1 2 k 1 2 (1 + k) γ 2 Ω |f | 1 2 + Cε .
Choosing meas(E) small enough (recall that k is now fixed) we have

E |∇u n | ≤ Cε ,
uniformly with respect to n, where C does not depend on n or ε. Since ∇u n almost everywhere converges to ∇u by Corollary 2.9, we can apply Vitali's theorem to obtain the strong convergence of ∇u n to ∇u in (L 1 (Ω)) N .

As for the second convergence, by (2.5) we have

E |u n | γ+2 2 ≤ E∩{|un|≤k} |u n | γ+2 2 + E∩{|un|≥k} |u n | γ+2 2 ≤ k γ+2 2 meas(E) + {|un|≥k} |f | γ+2 2 .
As before, we first choose k such that the second integral is small, uniformly with respect to n, and then the measure of E small enough such that the first term is small. The almost everywhere convergence of u n to u, and Vitali's theorem, then imply that u n strongly converges to u in L γ+2 2 (Ω).

Remark 2.11. Since we have proved that ∇u n strongly converges to ∇u in (L 1 (Ω)) N , so that u belongs to W 1,1 0 (Ω), then the approximate gradient ∇u of u is nothing but the distributional gradient of u (see [START_REF] Bénilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF]).

Proof of Theorem 2.1. Using the previous results, we pass to the limit, as n tends to infinity, in the weak formulation of (2.4). Starting from

Ω a(x, ∇u n ) • ∇ϕ (1 + |u n |) γ + Ω u n ϕ = Ω f n ϕ , ϕ ∈ W 1,∞ 0 (Ω) ,
the limit of the second and the last integral is easy to compute; indeed, recall that by Lemma 2.10, and by definition of f n , the sequences {u n } and {f n } strongly converge to u and f respectively in L γ+2 2 (Ω), hence in L 1 (Ω). For the first integral, we have that a(x, ∇u n ) converges almost everywhere in Ω to a(x, ∇u) thanks to Corollary 2.9, and the continuity assumption on a(x, •); furthermore, (1.3) implies that

|a(x, ∇u n )| ≤ β|∇u n | ,
and the right hand side is compact in L 1 (Ω) by Lemma 2.10. Thus, by Vitali's theorem a(x, ∇u n ) strongly converges to a(x, ∇u) in (L 1 (Ω)) N , so that

lim n→+∞ Ω a(x, ∇u n ) • ∇ϕ (1 + |u n |) γ = Ω a(x, ∇u) • ∇ϕ (1 + |u|) γ ,
where we have also used that u n almost everywhere converges to u, and Lebesgue's theorem. Thus, we have that

Ω a(x, ∇u) • ∇ϕ (1 + |u|) γ + Ω u ϕ = Ω f ϕ , ∀ϕ ∈ W 1,∞ 0 (Ω) , i.e., u satisfies (2.1) 
.

Uniqueness of the solution obtained by approximation

Let f ∈ L γ+2 2 (Ω), let f n be a sequence of L ∞ (Ω) functions converging to f in L γ+2 2 (Ω), with |f n | ≤ |f |, and let u n be a solution of (2.4). In Section 2 we proved the existence of a distributional solution u in W 1,1 0 (Ω) ∩ L γ+2 2 (Ω) to (1.1), such that, up to a subsequence,

lim n→+∞ u n -u W 1,1 0 (Ω)∩L γ+2 2 (Ω) = 0 . Now, let g ∈ L γ+2 2 (Ω), let g n be a sequence of L ∞ (Ω) functions con- verging to g in L γ+2 2 (Ω), with |g n | ≤ |g|, and let z n in H 1 0 (Ω) ∩ L ∞ (Ω) be a weak solution of (3.2)      -div a(x, ∇z n ) (1 + |z n |) γ + z n = g n in Ω, z n = 0 on ∂Ω. (3.1) 
Then, up to a subsequence, we can assume that

(3.3) lim n→+∞ z n -z W 1,1 0 (Ω)∩L γ+2 2 (Ω) = 0 , where z in W 1,1 0 (Ω) ∩ L γ+2 2 (Ω) is a distributional solution of (3.4)      -div a(x, ∇z) (1 + |z|) γ + z = f in Ω, z = 0 on ∂Ω.
Our result, which will imply the uniqueness of the solution by approximation (see [START_REF] Dall | Approximated solutions of equations with L 1 data. Application to the H-convergence of quasi-linear parabolic equations[END_REF]) of (1.1), is the following.

Theorem 3.1. Assume that u n and z n are solutions of (2.4) and (3.2) respectively, and that (3.1) and (3.3) hold true, with u and z solutions of (1.1) and (3.4) respectively. Then

(3.5) Ω |u -z| ≤ Ω |f -g| . Moreover, (3.6) 
f ≤ g a.e. in Ω implies u ≤ z a.e. in Ω.

Proof. Substracting (3.2) from (2.4) we obtain

-div a(x, ∇u n ) (1 + |u n |) γ - a(x, ∇z n ) (1 + |z n |) γ + u n -z n = f n -g n .
Choosing T h (u nz n ) as a test function we have

Ω a(x, ∇u n ) (1 + |u n |) γ - a(x, ∇z n ) (1 + |z n |) γ • ∇T h (u n -z n ) + Ω (u n -z n )T h (u n -z n ) = Ω (f n -g n )T h (u n -z n ) .
This equality can be written in an equivalent way as

Ω [a(x, ∇u n ) -a(x, ∇z n )] • ∇T h (u n -z n ) (1 + |u n |) γ + Ω (u n -z n )T h (u n -z n ) = Ω (f n -g n )T h (u n -z n ) - Ω 1 (1 + |u n |) γ - 1 (1 + |z n |) γ a(x, ∇z n ) • ∇T h (u n -z n ) .
By (1.4), the first term of the left hand side is nonnegative, so that it can be dropped; using Lagrange's theorem on the last term of the right hand side, we therefore have, since the absolute value of the derivative of the function s → 1 (1+|s|) γ is bounded by γ,

Ω (u n -z n )T h (u n -z n ) ≤ Ω (f n -g n )T h (u n -z n ) +γh Ω |a(x, ∇z n )||∇T h (u n -z n )| .
Dividing by h we obtain

Ω (u n -z n ) T h (u n -z n ) h ≤ Ω |f n -g n | |T h (u n -z n )| h +γ Ω |a(x, ∇z n )||∇T h (u n -z n )| .
Since, for every fixed n, u n and z n belong to H 1 0 (Ω), and a(x, ξ) satisfies (1.3), the limit as h tends to zero gives

(3.7) Ω |u n -z n | ≤ Ω |f n -g n | ,
which then yields (3.5) passing to the limit and using the second part of Lemma 2.10.

The use of T h (u nz n ) + as a test function and the same technique as above imply that

Ω (u n -z n ) + ≤ {un≥zn} (f n -g n ) .
Hence, passing to the limit as n tends to infinity, we obtain, if we suppose that f ≤ g almost everywhere in Ω,

Ω (u -z) + ≤ {u≥z} (f -g) ≤ 0 , so that (3.6) is proved.
Thanks to (3.5), we can prove that problem (1.1) has a unique solution obtained by approximation. Corollary 3.2. There exists a unique solution obtained by approximation of (1.1), in the sense that the solution u in W 1,1 0 (Ω) ∩ L γ+2 2 (Ω) obtained as limit of the sequence u n of solutions of (2.4) does not depend on the sequence f n chosen to approximate the datum f in L γ+2 2 (Ω).

Remark 3.3. Note that (3.7) implies the uniqueness of the solution of (2.2), while (3.6) implies that if f ≥ 0, then the solution u of (1.1) is nonnegative.

Remark 3.4. Corollary 3.2, together with estimates (3.5) and (2.5), implies that the map S from L γ+2 2 (Ω) into itself defined by S(f ) = u, where u is the solution of (1.1) with datum f , is well defined and satisfies

S(f ) -S(g) L 1 (Ω) ≤ f -g L 1 (Ω) , S(f ) L γ+2 2 (Ω) ≤ f L γ+2 2 (Ω)
.

A non existence result

As stated in the Introduction, we prove here a non existence result for solutions of (1.1) if the datum is a bounded Radon measure concentrated on a set E of zero harmonic capacity.

Theorem 4.1. Assume that γ > 1, and let µ be a nonnegative Radon measure, concentrated on a set E of zero harmonic capacity. Then there is no solution to

     -div a(x, ∇u) (1 + u) γ + u = µ in Ω, u = 0 on ∂Ω.
More precisely, if {f n } is a sequence of nonnegative L ∞ (Ω) functions which converges to µ in the tight sense of measures, and if u n is the sequence of solutions to (2.4), then u n tends to zero almost everyhwere in Ω and

lim n→+∞ Ω u n ϕ = Ω ϕ dµ ∀ ϕ ∈ W 1,∞ 0 (Ω) .
Remark 4.2. A similar non existence result for the case γ ≤ 1 is much more complicated to obtain. Indeed, if for example a(x, ξ) = ξ, and γ = 1, the change of variables

v = log(1 + u) yields that v is a solution to      -∆v + e v -1 = µ in Ω, u = 0 on ∂Ω.
Existence and non existence of solutions for such a problem has been studied in [START_REF] Brezis | Nonlinear elliptic equations with measures revisited[END_REF] (where the concept of "good measure" was introduced) and in [START_REF] Vazquez | On a semilinear equation in R 2 involving bounded measures[END_REF] (if N = 2) and [START_REF] Bartolucci | Semilinear equations with exponential nonlinearity and measure data[END_REF] (if N ≥ 3).

Proof. Let µ be as in the statement. Then (see [START_REF] Maso | Prignet: Renormalized solutions of elliptic equations with general measure data[END_REF]) for every δ > 0 there exists a function

ψ δ in C ∞ 0 (Ω) such that 0 ≤ ψ δ ≤ 1 , Ω |∇ψ δ | 2 ≤ δ , Ω (1 -ψ δ )dµ ≤ δ .
Note that, as a consequence of the estimate on ψ δ in H 1 0 (Ω), and of the fact that 0 ≤ ψ δ ≤ 1, ψ δ tends to zero in the weak * topology of L ∞ (Ω) as δ tends to zero.

If f n is a sequence of nonnegative functions which converges to µ in the tight convergence of measures, that is, if

lim n→+∞ Ω f n ϕ = Ω ϕ dµ , ∀ϕ ∈ C 0 (Ω) , then (4.1) 0 ≤ lim n→+∞ Ω f n (1 -ψ δ ) = Ω (1 -ψ δ ) dµ ≤ δ .
Let u n be the nonnegative solution to the approximating problem (2.4).

If we choose 1 -(1 + u n ) 1-γ as a test function in (2.4), we have, by (1.2), and dropping the nonnegative lower order term,

α(γ -1) Ω ∇u n (1 + u n ) γ 2 ≤ (γ -1) Ω a(x, ∇u n ) • ∇u n (1 + u n ) 2γ ≤ Ω f n .
Recalling (1.3), we thus have

Ω a(x, ∇u n ) (1 + u n ) γ 2 ≤ β Ω ∇u n (1 + u n ) γ 2 ≤ C Ω f n ,
with C depending on α, β and γ. Therefore, up to a subsequence, there exist σ in (L 2 (Ω)) N and ρ in L 2 (Ω) such that

(4.2) lim n→+∞ a(x, ∇u n ) (1 + u n ) γ = σ , lim n→+∞ ∇u n (1 + u n ) γ = ρ , weakly in (L 2 (Ω)) N and L 2 (Ω) respectively. The choice of [1 -(1 + u n ) 1-γ ](1 -ψ δ ) as a test function in (2.4) gives (4.3) (γ -1) Ω a(x, ∇u n ) • ∇u n (1 + u n ) 2γ (1 -ψ δ ) + Ω u n [1 -(1 + u n ) 1-γ ](1 -ψ δ ) = Ω f n [1 -(1 + u n ) 1-γ ](1 -ψ δ ) + Ω a(x, ∇u n ) • ∇ψ δ (1 + u n ) γ [1 -(1 + u n ) 1-γ ] ≤ Ω f n (1 -ψ δ ) + Ω a(x, ∇u n ) • ∇ψ δ (1 + u n ) γ [1 -(1 + u n ) 1-γ ] .
We study the right hand side. For the first term, (4.1) implies that

lim δ→0 + lim n→+∞ Ω f n (1 -ψ δ ) = 0 ,
while for the second one, we have, using (4.2), and the boundedness of

[1 -(1 + u n ) 1-γ ], lim n→+∞ Ω a(x, ∇u n ) • ∇ψ δ (1 + u n ) γ [1 -(1 + u n ) 1-γ ] = Ω σ • ∇ψ δ [1 -(1 + u) 1-γ ] .
Recalling that σ is in (L 2 (Ω)) N , that ψ δ tends to zero in H 1 0 (Ω), and using the boundedness [1 -(1 + u) 1-γ ], we have

lim δ→0 + lim n→+∞ Ω a(x, ∇u n ) • ∇ψ δ (1 + u n ) γ [1 -(1 + u n ) 1-γ ] = 0 .
Therefore, since both terms of the left hand side of (4. (1-ψ δ ) = 0 , which implies that ρ = 0. Thus, since

∇u n (1 + u n ) γ = 1 γ -1 ∇ 1 -(1 + u n ) 1-γ ,
by the second limit of (4.2) the sequence 1-(1+u n ) 1-γ weakly converges to zero in H 1 0 (Ω), and so (up to subsequences) it strongly converges to zero in L 2 (Ω). Therefore u n (up to subsequences) tends to zero almost everywhere in Ω. Since the limit does not depend on the subsequence, the whole sequence u n tends to zero almost everywhere in Ω.

We now have, for Φ in (L 2 (Ω)) N , and by (1.3), (Ω), as desired.

Remark 4.3. With minor technical changes (see [START_REF] Maso | Prignet: Renormalized solutions of elliptic equations with general measure data[END_REF]) one can prove the same result if µ is a signed Radon measure concentrated on a set E of zero harmonic capacity.

γ+2 2 (

 2 Ω), and such that |f n | ≤ |f | almost everywhere in Ω, and consider the approximating problems(2.4) 
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  a(x, ∇u n ) (1 + |u n |) γ • Φ ≤ Ω a(x, ∇u n ) (1 + |u n |) γ |Φ| ≤ β Ω |∇u n | (1 + |u n |) γ |Φ| . Thus, by (4.2), Ω σ • Φ = lim n→+∞ Ω a(x, ∇u n ) (1 + |u n |) γ • Φ ≤ β Ω ρ |Φ| = 0 ,which implies that σ = 0. Therefore, passing to the limit in (2.4), that is, inΩ a(x, ∇u n ) • ∇ϕ (1 + u n )we get, since the first term tends to zero,lim n→+∞ Ω u n ϕ = Ω ϕ dµ ,for every ϕ in W 1,∞ 0