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Abstract

Transrectal biopsies under 2D ultrasound (US) controllaeectirrent clinical standard for prostate cancer diagnosis
The isoechogenic nature of prostate carcinoma makes issageto sample the gland systematically, resulting in a
low sensitivity. Also, it is dfficult for the clinician to follow the sampling protocol acately under 2D US control
and the exact anatomical location of the biopsy cores is onvkrafter the intervention. Tracking systems for prostate
biopsies make it possible to generate biopsy distributi@psrfor intra- and post-interventional quality control and
3D visualisation of histological results for diagnosis @rghtment planning. They can also guide the clinician tdwar
non-ultrasound targets. In this paper, a volume-swept 3lbak®d tracking system for fast and accurate estimation
of prostate tissue motion is proposed. The entirely imaage system solves the patient motion problem with an
a priori model of rectal probe kinematics. Prostate defdiona are estimated with elastic registration to maximize
accuracy. The system is robust with only 17 registratiolufas out of 786 (2%) biopsy volumes acquired from 47
patients during biopsy sessions. Accuracy was evaluat@dr&:0.52 mm using manually segmented fiducials on
687 registered volumes stemming from 40 patients. A clirpecatocol for assisted biopsy acquisition was designed
and implemented as a biopsy assistance system, which aitoexsercome the draw-backs of the standard biopsy
procedure.

Keywords: image-based tracking, prostate tracking, prostate bioygys, guided prostate biopsies, 3D ultrasound
registration

1. Introduction

1.1. Prostate biopsies

Today, prostate biopsies are the only definitive way to conéirprostate cancer hypothesis. The current clinical
standard is to perform prostate biopsies under 2D traradrelttasound (TRUS) control. The US probe is equipped
with a needle guide for transrectal access to the prostatéige 1. The guide aligns the needle trajectory with the-end
fire US image plane, which makes it possible to visualize thg¢tory on the image for needle placement control.
However, early- and mid-stage carcinoma are mostly isagetio, i.e. not visible in US images, which makes it
necessary to sample the gland according to a systematérmpafthe standard protocol consists in the acquisition of
10-12 cores and takes roughly into account that most tunatwsut 70%) develop in the peripheral zone of the gland
(see Fig. 2).

1.2. Clinical issues

The current standard biopsy procedure has several shartgemfirst, it is dificult for the clinician to reach
systematic targets accurately because he has to move the poatinuously to place the needle; a constant visual
reference is lacking [16]. Second, performing a non-extieisystematic search for an invisible target implies
that the target can be missed. Negative results leave thieiah in a dilemma when the cancer hypothesis cannot be
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Figure 1: 2D-TRUS guided prostate biopsies. The patiemt @orsal or lateral decubitus and locally anesthetized. ZIh& RUS probe is inserted
into the rectum to position the needle. A rigidly attacheddie guide ensures that the puncture trajectory lies in ®gldne. Fig. (b) illustrates
an 18 Gauge (diameter of 1.27 mm) biopsy needle spring ggn(&ishows the 2D TRUS image containing the needle (brightwith reflection
artefacts) and the virtual puncture trajectory known frawmdg calibration (dotted line). Fig. (a) was found on the \s@b of the National Cancer
Institute (vww.cancer.gov Fig. (c) was found on the web site of BK Medicahfw.bkmed.cojn
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Figure 2: 12-core protocol. Fig. (a) shows the schematizetbpol in the coronal plane of the prostate. Fig. (b) illats the protocol in 3D. PZ
is the peripheral zone, TZ the transition, and CZ the certvat of the prostate.



discarded: his only option is to repeat the biopsy serieghEtmore, the location of the acquired samples with raspec
to the patient anatomy is only very approximately knownratte intervention. Uncertainty about tumor location is
a major reason why prostate cancer therapy generally ¢smsithe treatment of the entire gland. Incontinence and
impotence are frequent sidéfects of whole gland treatments that considerably reducetiagity of life. For this
reason a rapidly increasing number of research groupstisrly investigating methods that allow the implementatio
of focal therapy strategies [1].

1.3. Proposed solutions

Several authors have proposed to perform biopsy under M&aguoe to overcome the tumor visibility problem.
Hata et al [13], Susil et al. [26] and Krieger et al. [15] prep@n MR compatible end¥ector for transperineal biopsy
core acquisition, while Beyersdbet al. [6] propose an endfector for transrectal access. Additionally, Stoianovici
et al. [25] propose a fully actuated transrectal biopsy tobtRk imaging is, however, a costly and sparse resource; it
is thus unlikely that MR-guidance will become a standardtfier millions of prostate biopsies performed in the US
and the EU alone every year. MR-guidance is, however, aneistiag option if a biopsy series needs to be repeated
because of inconclusive results.

Baumann et al. [3] and Xu et al. [28] proposed to acquire a UBme before the intervention and to use it as
an anatomical reference. The stream of US control imageasrachduring the intervention is then registered with the
reference volume. This allows the projection of targetsndefiin the reference volume into the control images, and,
conversely, the biopsy trajectory, known in control imapace, into the reference volume. This technique makes
it possible to improve biopsy distribution accuracy by shhmhe current trajectory in a fixed reference together
with the trajectories of previously acquired biopsy coréslso allows the clinician to aim for targets defined in the
reference volume during a planning phase and to obtain #wgar biopsy positions for post-interventional analysis.
An example for non-US targets are suspicious lesions fondR volumes that are multi-modally registered with
the US reference volume. It is also possible to derive tarffem more sophisticated statistical atlases [24] or, in
the case of repeated biopsies, they could consist of prelyiounsampled regions. After the intervention, the biopsy
trajectories in the reference volume can be combined wéhhtstological results and used for therapy planning.

Xu et al. [28] acquire a freehand 3D US volume and use 2D cbimrages during the intervention. The control
images are tracked in operating room space with a magnetsosenounted on the probe. In a second step, image-
based registration is performed in about 15s to compensasafall organ and patient movements. A similar approach
was proposed by Bax et al. [5] and Cool et al. [12], who use &nudated arm for 2D US beam tracking and
to acquire a 3D reference volume. Bax does not compensafgat@nt and gland movements. However, pain-
related pelvis movements are frequent, since the patiembtisinder total anesthesia. In this case, both methods
risk to lose track of the gland because the US beam is follaweaperating room space and not in organ space,
requiring the acquisition of a new reference volume. Theuaitipn of a 3D volume with a 2D transducer is time-
consuming and the reconstruction process inevitably dnices some distortion in the volume. Furthermore, the
US probe continually deforms the gland during needle plargmand it is dficult to estimate these non-linear
deformations on 2D images. This can lead to inaccurate astins of the puncture trajectory. Envisioneering Medical
Technologies commercialize the TargetScan system [2]lwhges a side-fire probe, flexible biopsy needles and a
motorized encoded stepper to place and track the needlesddVice shares the draw-backs of the system proposed
in[5, 12]. In [3], we proposed to use a US probe with an aréited, motorized transducer array that allows to acquire
3D images without moving the probe, which reduces the distws in the reconstructed volume. The sweep duration
of 0.5-5 s makes it possible to acquire volumes also durieddfbpsy core acquisition phase without delaying the
procedure noticeably. The rich spatial information in 8:8® control volumes makes it feasible to design a purely
image-registration based tracking method that can cogemitst types of patient movements during the procedure.
In [4] a deformation estimation step was added to the remgistr pipeline, which reduced the target registrationrerro
(TRE) below 1 mm, with a registration time of 6 s. Recentlyriik et al. [14] reported a TRE of 6£2.0 mm
(RMS) with maximum errors of more than 10 mm for transformasi obtained with the articulated arm of the system
discussed in [5, 12] ("pre-registration error”). To actéevmore clinically acceptable error, which they define to be a
TRE of less than 2.5mm, they evaluated the accuracy of m@atiimage-based registration using reconstructed 3D
TRUS volumes. They obtained a TRE of 28 mm with a computation time of 5-90 s. The proposed regfisin
algorithm is based on local optimization and is initialiagth transformations obtained from the encoded arm in
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Figure 3: Registration pipeline. The dimensionality of trensformation space and the image resolution are sueebsBicreased.

operating room space. A new reference volume has to be achwinen the patient moves outside the capture range
of the registration algorithm.

In this paper, we present a purely US image registrationcbpsastate tracking system capable of deformation
estimation. The system does not require beam tracking @hates hence hardware requirements. It is more accurate
and faster than other systems that achieve clinically dabépaccuracy as defined in [14], and also less sensitive
to patient motion. The registration framework, previoystgsented in [3, 4], is extended and improved: a method
is outlined that allows to increase the number of levels inudtimesolution registration framework by reducing the
information loss on coarse levels. This makes it possibledace registration time significantly. The kinematic nmode
[3], used to estimate plausible positions of the US probé wéspect to the gland, is extended to cope with varying
probe insertion depths. The similarity measure introducedleformation estimation in [4], capable of dealing
efficiently with the frequently occurring local intensity sisitaused by probe pressure variations and changing US
beam angles, is analyzed in more detail. The measure isdesglex than the correlation cfiient and therefore
requires less data to yield statistically robust estimatddch makes it possible to use it on coarser resolutioriseve
In a second part we will present our novel clinical prostatgpsy application which is able to compute precise
biopsy and cancer maps. It also allows for guidance towandsUs targets and provides the facility to visualize the
location of samples acquired during a previous biopsy sasdtinally, the diferent steps of the tracking algorithm
are validated on a large set of patient data and an in-deptiusiion of the clinically acceptable tracking error is
presented.

2. 3D ultrasound-based prostatetracking

2.1. Coarse-to-fine strategies

Non-linear registration of 3D US image streams is curretfiymost promising approach to perform organ track-
ing with deformation estimation. The principal challengégnage-based tracking systems are robust outcomes and
computational fliciency. A technique to achieve both goals are coarse-tadigistration strategies that successively
increase the degrees of freedom (DOF) of the transformatiace and the image resolution. An overview of this
strategy is given in Fig. 3.

2.2. Coarse-to-fine transformation spaces

We propose a 3-step registration pipeline (see Fig. 3, ugpérfor a purely image-based estimation of the rigid
and residual elastic transformations between the prosteiged in a reference volume and in a tracking volume.
At each step, the number of degrees of freedom of the tramsfitwn space is increased. This strategy stems from
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Figure 4: Geometry of end-fire, volume-swept 3D US view cdfig. (a) depicts the 2D transducer array plane, (b) the nateep plane, and (c)
gives a 3D view of the scanned volume.

the observation that image registration with high dimemaidransformation spaces requires, in general, a fairbdgo
initial estimate in order to converge to the physically estrsolution. If initial estimates of the required qualitg aot
available beforehand, they need to be computed on a lowesrdiional transformation space on which the distance
measure is less exposed to local minima. Ideally, if it islser@ugh, the search space can be explored systematically,
in order to find all major local minima.

In the presented approach, three search spaces are expkingda registration pipeline. The first step of the
pipeline consists of a systematic exploration of a 3 DOF rhofl¢he probe kinematics, that integrates rectal and
image formation constraints. This model excludes solstittvat are not plausible in relation to the prostate. The
systematic search yields a set of points near strong locahmaithat are investigated in the second step of the pipeline
Here, a local optimization is performed on each minimumgsirclassic 6 DOF rigid transformation space. Finally,
the best result is retained as the initial estimate for tird tiegistration step, which estimates the elastic defdiona

2.3. Coarse-to-fine image resolutions

The second coarse-to-fine strategy operates on the imagleities. While the first two registration steps are
executed at very coarse resolution levels of a Gaussianeipa@mid, elastic registration descends to finer levels to
estimate local details like the deformation caused by aleéesertion. Large parts of the transformation are theeefo
computed on very coarse levels, not only boosting the magish speed, but also giving the algorithm a more global
perspective at early stages of the process.

Special attention is paid to the construction of the mudsaiution image pyramid. The volume covered by the
end-fire US beam corresponds to a section of a torus (cf. Figle beam borders in Cartesian space are therefore
non-trivial and a complex mask is required tafeientiate voxels that carry information from backgroundels.

The latter must be ignored during image processing to avieises. However, most image processing (e.g. gradient
computation and Gaussian blurring) is performed on thehi®ighood of a voxel, i.e. it cannot be carried out if the
neighborhood is incomplete. While this is a minor issue fightresolution images, it poses a major problem on
coarser levels of an image pyramid. The entire border isdghteach down-sampling, and the ratio of border voxels
to inner voxels increases. As a consequence the informatintaining volume decreases exponentially with each
resolution level and the multi-resolution approach wouwdditmited to a small number of levels.

To cope with this important issue, a first order border exdltaton is performed on the mask borders of a pyramid
levelk before computing levek + 1. Letl : R® — R be the imagep € N a voxel position and| € N a neighboring
voxel of p. Finally, letd € N be the distance vectar = q — p. Then, the Taylor expansion ofxd + p), x € R at
point O yields, after solving fok(p),

d o X1 d"
1(p) I(xd+ p) - x[a(l(xd+ P)1(0) - nz:; E[ﬁ'(xcI+ P)1(0)
I(xd+ p) = x(I(d + p) — 1(p))-
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Figure 5: Information loss and image extrapolation. Theauppw shows cuts through a multi-resolution pyramid of weés constructed without

information loss containment, from finest (left) to coatgaght). Note that the volume of information is significgnteduced on the coarsest level
(upper row, right-most). The lower row shows a multi-resiolu pyramid built with the presented image extrapolatiechnique. The volume of

information remains almost constant.

This expression is discretized by setting 2, which is the smallest number for which the discrete dadéopigation
is meaningful (it follows that two consecutive voxels inatitiond are needed for an estimation). We get, therefore,

lo(p) = 2I(p+d)-I(p+2d)=2I(q)-1(29- p). (1)

The final intensity is the mean &§(p) for all g € N2g(p) for which the computation is possible, whe¥gs(p) is the
26-neighborhood op. If less than a third of the directions can be computed, thehMs discarded. Fig. 5 shows that
the volume containing information remains almost constattt this approach.

3. Rigid registration

3.1. Parametric optimization framework

The first two steps of the registration pipeline (cf. Fig. 8jamine the rigid transformation between the prostate
in the reference and the tracking images. Both steps opendtav-dimensional search spaces that canflieiently
solved with a parametric formulation of the optimizatiomiplem. We look for a set of parameté&'sin a parameter
spaced c RY such that

0°[11, 12; ¢ :arg(r;)nirﬂ)[ll,lzogo(e)], 2)
€l

where thel; : R® — R are images ang(d, X) : ® x R® — R3 defines a spatial transformation in functionéoénd
x € R3. Finally, D[14, 1,] is an image distance measure. In the presented approadpetiison correlation cfieient
Cov(ly, |
Dec = _ Covllylz) 3)
VWar(l)Var(l,)

is used as image distance measure for parametric optimizati

1AIso known ascross correlatioror simply correlation cogficient
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Figure 6: Model of probe head kinematics under endorecthpaostate image formation constraints. Fig. (a) shows dinstcuction of the origin
S(0, 0) of the surface discretization, which corresponds torkersection point of a line defined by the rectal fixed p&laind the ellipsoid center
C with the ellipsoid. Fig. (b) illustrates the explorationtb& surface with the probe using the spherical anglaadg. The US originO is placed
on the surface of the ellipsoid. Fig. (c) finally models th@tions around the axis of the US probe.

3.2. Global rigid registration with endorectal probe kinatits

The presence of local minima in the large rigid search spaaleent dificult to use local optimization methods
(e.g. gradient descent or Powell-Brent, [8, 22]) direcfihe objective of the first registration step is therefore to
estimate the position of the US probe relative to the orgdintba transformation close to the solution. Instead of
using magnetic or mechanic tracking systems, a model ofitrentatics of the probe under physiological and image
acquisition constraints was designed. The idea is to profih the following observations:

1. The probe head must be in contact with the thin rectal waftant of the prostate during image acquisition.
This is a necessary condition to obtain an image of the gland.
2. The anal sphincter heavily constrains probe motion irré¢lceum.

This makes it possible to define a kinematic model of probel meation with respect to the prostate surface.
It is assumed that the center of the probe head lies on theipainaxis of the probe (thprobe axi3. It is further
assumed that the probe axis always lies on a hypothetidal fe@d pointR € R which approximates the sphincter
constraints. Finally, an approximate estimation of thesfate surface in the reference image is needed. The role
of the surface estimation is comparable to that of a regioimtefest (ROI), it therefore does not need to be very
accurate. We thus opted to use a simple ellipsoid, which isualy defined by the clinician on the first volume he
acquires. This step consists in the placement of an axgs«adi rectangular bounding box around the prostate, which
can be done with a few mouse clicks. All positions for which thS originO lies on the surface approximation and
the probe axis lies oR are considered as plausible probe positions, see alsodandb. The contact points can be
defined with two parametersandg using a spherical representation of the ellipsoid. A thiadgmetenl is needed
to model the probe rotations around the probe axis, see €ig. 6

In the presented approach it is further assumed that theepredod position in the image and the probe head radius
are known. The precision of the fixed poRRtis not crucial, and it is possible to use the same fixed pRifdr all
patients. It is an approximation that stems from a learnitgtsat was semi-automatically registered: for a given
patienti of the learning setR' was defined as the point with minimal distance to the set di@axes projected into
the reference volume after registration. The mean oRHe an approximation oR that works well in practice (cf.
Sec. 6, where the accuracy of the model is evaluated).

The resulting 3D transformation space is small enough fgistesnatic exploration with an acceptable computa-
tional burden. To cope with variations in probe pressuee,the insertion depth of the probe into the rectal tissues,
the model is explored at five fiierent depths in the probe axis direction at steps of 5 mm. Enanpeter range is
configured such that probe tilt angles of up td 8dd arbitrary rotations around the probe axis are considdrke
systematic search is performed on very coarse resoluti@tsl¢4 resolution reductions of facto?)2o increase the
performance.



3.3. Local rigid registration

The five probe positions with optim#@dcc are used as start positions for multiple rigid registragiorhe distance
measure is optimized on this 6 DOF search space using a astniethod (Powell-Brent [8, 22]). The transformation
0(0,w; X) : x — R,x+ 0 models the rigid space, with the origine R® and the three Euler anglese R3 that define
the rotation matribR,,. The origino is set to the center of the ellipsoidal prostate approxiomadiescribed in Sec. 3.2.

The goal of this step is to find the local minima of the distam@asureDcc in the neighborhood of the initial
estimates, which makes it possible to make a robust finatehmatween them. The estimation with minimal distance
is retained. This step can be executed on a fairly coarsedmee the finer details will be considered in the following
elastic estimation step. The rigid registration can hercpdyformed rapidly.

4. Elasticregistration

4.1. Framework for non-linear registration

Image-based deformation estimation can be formulated agp@mization process of a local distance measure.
Letly, I, : R® — R be imagesy : R® — R3 the deformation function and the functior@[l4, 1»; ¢] a measure of the
distance betweeh andl; o ¢. In contrast to parametric approaches that use basis éunsctib build the deformation
function, we will follow a variational approach [27, 19, 18jd defings(x) = x+ u(x), whereu : R® — R3 is assumed
to be a difeomorphism. The deformation could then be estimated byrgpthie optimization problem

¢" = argmin(&fl1. I2; ¢]) » (4)

where the registration enerd@ysimply corresponds t®. Straightforward minimization of a distance measure, how-
ever, yields poor results in general due to countless lo@aihma, in particular in the presence of noise, partial objec
occlusion and other imperfections in the image data. Unfately, US is a particularly noisy modality, which makes
3D US based deformation estimation vulnerable to localegistrations. This problem can be addressed by integra-
tion of a priori models of the expected deformation. This bamone implicitly by adding further energy terms to the
objective function. In this work, inverse consistency afladtc regularization energies are added.

4.2. Inverse consistency constraints

In non-linear image registration, the forward estimatibattminimizesg[14, |2; ¢] does not generally yield the
inverse of the backward estimation that minimi&§k, 11; ¥, i.e. oy # Id with Id : R® — RS2, x = x. Introduction
of Zhang’s inverse consistency constraint [29]

Il ¢l = f Il o ¢~ 1dI5 dx (5)
Q
as additional energy penalizes solutions that lead to isistent inverse transformations, whéXec R? is the regis-

tration domain in image space. Estimation of the forwardtaedackward deformations is coupled by an alternating
iterative optimization

¢t = argmin(€lls, 12;¢] + 710X ¢1). ©
(4

gl = arg¢min(8[|2, 19 + I1¢;4). "

Concurrent estimation with mutual correction reduces isieaf local misregistrations.



4.3. Elastic regularization

The deformation of the prostate caused by probe pressuresgynelastic, which justifies the introduction of the
linearized elastic potential [19]

3

ely] = Elu+1d] = fQ e (Ot axu) + %(div u)? dx (8)
jk=1

as additional energy, whereandu are the Lamé cdicients, which are related to Poisson’s fiméenty and Young'’s
modulusE via the equations
31+ A
E= G+ 20u andy =

A+ Y 20+ )’

Note that the linear elastic potential prevents the estonadf strong deformations when operating with non-
physical, fractional forces derived from local image disthrities. This choice was made to avoid strong misregis-
trations when; andl, contain local diferences for which the image distance metric is not invariting, however,
possible to use for example the less restrictive fluid reigdtion to compute complete forces, and to apply linear
elastic regularization in a second step. The low targesteggion error (TRE) of rigid registration (cf. Sec. 6) indies
however that the gland rarely gets deformed more than 10%hw the reason why we did not further investigate
this approach.

4.4. Image distance measure

As for rigid registration, the image distance measure igtiveng energy of the deformation estimation process.
While a global measure is used for rigid registration, defation estimation requires a local measure to capture the
transformation details. The degree of locality of a meassiia general determined by the size of its convolution
kernel. The more local the measure is, the more details caafiteired on a given resolution level. In consequence,
the number of resolution levels that can be used for defoomastimation, and hence the computation time, depends
heavily on the locality of the measure. On the other handnikasure must also be able to cope with modality-
specific image variations like for example intensity changden the ultrasound beam angle changes with respect
to an imaged surface. Experiments on patient data have stimwvithe sum of squared distances (SSD), which has
a minimal kernel size, is a poor distance measure for defiiomastimation in US images. Local intensity changes
are frequent due to changing US beam angles with respect tiisdues and probe pressure variations. The Pearson
correlation that was used for rigid registration requitesyever, a considerably larger kernel size to achievestitl
power, in particular if its complex derivative is used. Thengralized correlation ratio introduced by Roche et al] [23
allows us to derive a more appropriate correlation-basstdiice measure:

Derlls, 12 11 = g D (1109 - F(1200))°, )

XeQ

where the functiorf : R — R models the intensity mapping. When a linear relationship al + 8 is assumed,
the measure corresponds to the Pearson correl@lignused for rigid registration (cf. Eqn. 3.1). Note tHatc
estimates the optimal andg implicitly from the image data. Removingleads to a correlation measure with only

one intrinsic DOF, i.e.
1

Dcrll1, 12, 1() + 8] = Q

D (1209 = 1209 = B)2. (10)

XeQ

The parametes can be directly estimated on thdfgrence image using a Gaussian convoluggix). Introducing
the registration transformatignand switching to the continuous domain yields

Dedll, Iz ¢] = fg(u(x)— 10003~ (11~ 10 9) * Go (0)? dx (11)

This measure requires less data to achieve statistical poovepared to the two-dimensional Pearson correlation,
but it is more general than the identity-assuming SSD wilzéro DOF. It is invariant to low-frequency intensity
shifts between the compared images, which is why we callghifit correlation®Dsc. The invariant frequency range
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Figure 7: Intensity shift correlation model. Fig. (a) shaihe floating volume, Fig. (d) the fixed volume (after rigid isgtation), Fig. (b) the
elastic registration with the SSD correlation model and Fiyshows the result with the intensity shift correlationdel and inverse consistency
constraints. All other parameters were identical for betistrations. The SSD driven registration is incorrectalnse of various local intensity
shifts that are caused by thefdrence in probe pressure between the acquisition of thedixédhe floating images. The intensity shift correlation
model correctly handles this problem and converges to tiysigdly correct result.

is controlled by the standard deviationof G. If o gets smaller, the cropped range gets larger, and the reigstr
convergence rate decreases and may even stall if only léghiéncy noise is left. When used with a multi-resolution
solver on a Gaussian pyramid (cf. Sec. 4.5), which impjigigrforms a low-pass filtering of the intensity variations o
coarse resolutions, this approach transforms to a barsifittasing on varying frequency bands. In this configuration
it is sufficient to chose relatively small standard deviations, withisking registration ingiciencies. Fig. 7 illustrates
the performance of the shift correlation model combinedhht inverse consistency constraint.

4.5. Solver
Combination of the energy terms yields the alternatingesyst

¢ argmin(Dsc[l1, I2, ¢] + E[¢] + I[y; ¢]), (12)

lp*

argwmin(ﬂscﬂz, l1, 9] + E[Y] + Ie;¢]) . (13)

An iterative two-step minimization scheme is used to solethmbjective functions. The Euler-Lagrange equations
of Egn. 12 and 13 are rewritten as a fixed point iteration

90k+1 _ 9Ok

- LIPM + foclln 12; 98T + frIwk; &4, (14)
Pt — gk B K K K. K

- LT + fosclla, 11971 + frle ¥, (15)

wheret € R controls the discretization granularity, and with thepalt partial diferential operator
L[¢] = L[u+ 1d] = pAu + (A + p)Vdiv u, (16)

which is obtained from the Gateaux-derivative®ét ¢, cf. [19]. The Gateaux derivative df at ¢ yields the force
term

frilyiel = (V) op- (yo@—1d). 17)

Finally, the Gateaux derivative ddsc aty provides us the image-based forces

stc[Il’IZ;QO] =_(|1_2|l*ga'+ 1% Go * Go— (18)
l2op+2l00%Gs—l209* Gy xGs) - (VI2) 0.
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To avoid the expensive double convolution we use the appration

Ik*gtr*g(rzlk*go'» (19)

which simplifies the gradient to
fpsclln il == (li—lix Gy —laop+12090%G,) - (VI2) 0 g. (20)

Note that (20) can also be obtained by interprefiras an independent functigh: R® — R, and by applying the
SSD distance measure on the image fa{x), l2(¢(X)) + B(X)}. The gradient obtained from the Gateaux derivative of
this measure atg ),

f =—(|1—|2°90+ﬂ)'((w210‘p)’ (21)
can be used for an alternating estimationpadndg. If B is estimated from the image instead of computing it with
the gradient, i.e. by setting(x) = 12 * G,(X) — 11 0 ¢ * G(X), we get again (20). The approximation (19) can hence
be analytically justified by using an alternative formutatiof the similarity measure (see [10], p. 98, for a similar
discussion on the CC).

Finally, an iterative algorithm is used to estimate the ldispment fields:
1: while not convergedlo
2 computefpsclly, I2; ¢¥] and f7[y; ¢¥]
3 computefpsclla, 11; ] and fr[¢; k]
4 solve Eqn. 14 fop**+1
5:  solve Eqn. 15 fop**1
6: end while

The forces are considered as constants for the resolutidtred?DEs 14 and 15, and the forward and the backward
estimation mutually correct themselves at each force @pddte PDEs are solved using Red-Black Gauss-Seidel re-
laxation [9, 22] and the full multigrid strategy is used tdaih a linear computational complexity [7, 9]. Convergence
is achieved if the dference of the.,-norm of the sum of all local forces is below a threshold fattbe forward and

the backward estimation between two iterations. Note timbtgorithms iterate until convergence at each level, de-
viating thus from the classical multigrid scheme. This isessary since relaxation is performed on fractional farces
Fixed edges and bending side walls are used as boundarytiomsdin the registration domain [19].

4.6. Parameter settings

A recurring problem in variational image registration frworks is the proper scaling of the energy terms. In the
presented approach, line searches in the inverse gradieation are performed within a limited perimeter in orcer t
obtain locally exact solutions for the image distance amdtkierse consistency forces. The forces obtained are then
summed together, i.e. they are equally weighted but nobaesl. The compressibility constraint of the linear elastic
tensor poses some problems in the presented frameworle sia@re operating with fractional forces, it behaves
like a strong shape constraint and registration will stdlew it is enabled from the beginning. We therefore allow
the deformation estimation to converge with the comprédggilbonstraint disabled (Poissoris= 0), and turn it on
only in a second run where local over-stretching and squgeagicorrectedy = 0.48). Young's modulu€ has no
physical meaning in this approach since fractional disgtaents are used as artificial forces. We set lio#nd the
PDE discretizatiomt to 0.5. The final displacemenp(x)“*! that is added tg(x)X is finally limited to [|6p(X)|| < 1
to ensure that no jumps over intensity barriers are possiliés constraint greatly improves the overall numerical
stability.

5. Clinical application

In the previous sections we proposed a tracking method fastate motion using 3D TRUS. In this section a
clinical application for prostate biopsy tracking and drde, based on this method, will be presented. The primary
objective of this application is to combine clinical acaryravith an intuitive user interface and a lightweight clialic
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Figure 8: Application prototype. The figure shows a protetgfithe biopsy assistance application during a biopsy Gessi
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Figure 9: Clinical flow chart of the biopsy application. Bfypplanning and acquisition phase.

work-flow. In particular, care was taken such that no logatand interventional overhead is added to the current
standard clinical procedure. The application aims to ptegblutions for the clinical issues of TRUS prostate biepsi
enumeratedin 1.2. This includes the ability to target stisps lesions identified on MR images, to visualize location
sampled during a previous biopsy session, and to proviéeviahtional biopsy maps as well as post-interventional
cancer maps. Fig. 9 gives a summary of the clinical work-flowtfiopsy acquisition, while Fig. 10 describes the
post-biopsy work-flow from histological analysis to theygganning. The dierent steps are described in detail in
the following sections. An illustration of the clinical sgtis given in Fig. 8.

5.1. Panoramic volume as anatomical reference

The first part of the clinical protocol is performed a few ntisiprior to biopsy collection, and consists in the
acquisition of the anatomical reference. Unfortunatebingle 3D volume of the prostate does not typically contain
the entire gland because of the pyramidal form of the 3D USrbimat cuts the gland at its lateral borders and, in
particular, near the probe head where most tissue saml¢skam. For this reason, three volumes are acquired from
different positions, elastically registered and compoundexvitnat we name @anorama volume The bounding
ellipsoid required for the kinematic model is defined by theician after the acquisition of the first volume.

12



) Histological . . | Treatment g
Analysis »| Diagnosis | planning v
Assign Gleason scores to Analysis of US cancer
biopsy map map and treatment choice

Register MR with
US reference

Project US biopsycancer | y Cancer map
map into MR image based planning

Figure 10: Clinical flow chart of the biopsy application. téi®gical analysis, diagnosis and therapy planning phase.
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Figure 11: Planning phase. Fig. (a) shows the transversh(lgrthe coronal semi-automatic segmentation result. &pshows the 3D repre-
sentation of the segmentation including the manually segedepoints (yellow). Fig. (d) finally shows the result of Horear surface registration
between the MR image and the US reference.

5.2. Biopsy planning

The second part of the protocol consists in the definitionaof-altrasound biopsy targets in the anatomical refer-
ence. This step needs to be simple and rapid since it is noeogent for the clinician to interact with the computer
while holding a probe, and the patient discomfort increagés the duration of the rectal penetration. The clinician
therefore first identifies the targets, then he inserts thbgand acquires the reference volume, and finally the soft-
ware registers the targets with the reference volume. Ifahget registration requires user interaction, the praire c
be held in place with an articulated arm in order to free thegsftian’s hands.

In the concrete case of MR lesion targeting, the segmentafidhe prostate in the US reference, required for
MR-US registration, needs to be performed rapidly for theesaeasons. We use the algorithm proposed by Martin
et al. in [17] to perform MR to 3D TRUS prostate volume fusiohhis algorithm uses the MR image prostate
segmentation as shape prior for a fully automatic detectfdhe prostatic capsule in 3D US volumes. The MR shape
is automatically obtained with a probabilistic atlas angatmlly constrained deformable model, using the method
presented by Martin et al. in [18], cf. Fig. 11. After MR-USsfan, the segmented MR target can be projected into
the anatomical reference of the tracking system. The agic also provides the facility to project biopsy maps into
an MR image, using the same techniques.

In the case of the repetition of a biopsy series, it is intémggto know the exact location of previously acquired
samples. This is performed by registering the anatomidateace of the previous intervention with the newly ac-
quired reference using the elastic tracking algorithm gméexd in Sec. 2. However, we do not yet have enough data
on repeated biopsies to prove the viability of this approdtte time lapse between two series can be important, and
the organ can be altered in between, for instance becauseof growth. Also, the involved imaging hardware can
be diferent or dfferently configured, which could yield dissimilar imagespUirely image-based registration should

13



@) (b) (©

Figure 12: Biopsy maps. Fig. (a)-(c) showfdrent views of a biopsy map with color-coded Gleason score.

lack stability, a mixed image and surface-based registatill most certainly be sflicient.

Finally, it could be interesting to indicate targets with ighhprobability of carcinoma presence. This can be
performed by registering a statistical cancer atlas, ssdhat developed by Shen et al. [24], with the prostate shape
segmented in the reference volume. This could lead to arts#tstical sampling and could potentially reduce the
number of biopsy acquisitions per session, see also theappirotocol for transperineal biopsies developed by Shen.

5.3. Biopsy acquisition

After registration and projection of the targets, the bjopere acquisition phase is started. Current 3D US
scanners can acquire 0.5-5 volumes per second, depending msolution. However, continuous 3D volume streams
cannot be processed at the same frame-rate with the cumplgrnentation of the prostate tracking algorithm. Also,
the higher frame-rates of 2D US are visually more pleasinga&onsequence, 2D US is used for needle placement.
Single 3D volumes are acquired only when positional infdfameabout the targeted or collected sample is required.
Volume acquisition can be triggered out of 2D US mode withat fiedal. The clinician’s hands are free for tasks
like holding the probe and the biopsy gun. The volumes areraatically transferred to the application via TAOP
and DICOM and after reception they are automatically regést. The puncture path that corresponds to the probe
position when the volume was acquired is then projectedtigaeference volume and visualized with the planned
targets. This makes it possible to validate and correcttimetoire trajectory before firing the biopsy gun.

When the needle is correctly placed, the tissue sample lisatetl by triggering the spring needle gun. Before
removing the needle, the clinician acquires a US volumeainimg the needle image. The needle is then automatically
segmented, if present. It is projected into the referenatoamy, giving the clinician an immediate feed-back about
the sampling position with respect to previous biopsiese Biopsy distribution can hence be assessed during the
intervention and additional samples can be collected, ¢eagary. A typical interventional biopsy map is given in
Fig. 12.

5.4. Multi-modal biopsy and cancer maps

After acquisition, the samples are sent to the pathologidtiEtological examination. The Gleason score, a visual
tissue grading scale that is correlated with the aggresessof the carcinoma, is determined for each sample and
entered into the biopsy application. A color code is usedgoalize the cancer grade of a sample in the biopsy maps.
This provides an instant overview over the cancer distidiouor diagnosis and treatment planning.

With the presented system it is possible to localize the syiogamples accurately. This capacity could help
to improve existing treatment strategies and might be ligefiexperimental focal therapy approaches. It can be
interesting, for example, to project the cancer map onto apf\éRning volume. This can be done using the same
approach as the MR target projection onto the US reference.
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Figure 13: Viewer for visual validation. The viewer showartsverse (a), sagittal (b) and coronal cuts (c) simultaslgolihe registration volumes
are overlaid: the upper-left and lower-right corners ofrediew show the tracking volume, while the lower-left and eppght corners show the
reference volume. The green cut point is the 3D point whezahtee image planes intersect. The user can move the cutffggly in each view,
allowing him to explore the entire volume (changing the pairone view changes the spatial position of the other twas)e

6. Experimentsand results

The tracking system was tested on real patient images tha aeuired during biopsy sessions at the Pitié
Salpétriere hospital, Paris, France. The patient stuaty approved by the ethical committee of the Pitié Sakpéri
and was performed with the consent of each patient. The veduwaere acquired with a GE Voluson equipped with an
endorectal RIC5-9 probe. Three volumes were acquired aeofiminutes before biopsy acquisition for the creation
of a panorama volume that contains the entire gland (seel&t&)ventional volumes were acquired after each biopsy
shot with the needle left inside. Besides these points tirelard clinical protocol was not altered. Registratioasav
performed on a standard PC with 4GB of RAM, 3GHz processaguieacy and two cores. The acquired volumes had
aresolution of 199voxels. A 5-level multiresolution pyramid was used for ggition, the resolution on the coarsest
level being 18 voxels.

6.1. Kinematic model

The first experiment evaluates the capacity of the kinenmitbe movement model to estimate a probe position
suficiently close to its real position with respect to the glaRdr this test, 786 registrations of the biopsy volumes of
47 patients were performed with the corresponding panokeruanes. The registrations were then visually validated
either by the clinician immediately after biopsy acquggitior df-line by one of the authors. This was carried out
using a volume viewer that allows to overlay and to exploeeréference and the tracking volume after application
of the registration transformation (see Fig. 13). Note thataccuracy of a large and randomly chosen subset of the
registrations classified as valid was evaluated ta0.B mm, cf. the accuracy study presented in Sec. 6.2, which
indicates that only few registrations were falsely ideatifias correct. In this study, 769 (97.8%) volumes were
classified as valid, and 17 (2.2%) were classified as failufidse 17 failures occurred with volumes that did not
contain enough information about the prostate, i.e. thek&d object was literally "out of view”. This was caused
by inadequate US depth or probe pressure (prostate capsilésible) in 11 cases, partial probe contact with the
rectum in 1 case, extremely lateral volumes containing argynall part of the prostate in 4 cases and an incomplete
panoramain 1 case. Note that the failures were not causedttnpmovements.

A second experiment studies the role and performance ofittematic model (pipeline step 1 in Fig. 3) with
respect to local rigid registration (pipeline step 2). Wer#iore compute the angular and the Euclidean distances of
the best transformation predicted by the model from thesftamation estimated with local rigid registration to see
how accurate predictions of step 1 are and how much the sestepdmproves these predictions. The best prediction
of the model is defined as the transformation that is closettd transformation produced by step 2. The distance
between two transformations is defined as the root meanes@RMS) Euclidean distance of the 6 intersection points
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Figure 14: Probe positions. The Fig. (a) to (c) show the prabstions during biopsy acquisition for threefdrent patients, projected into
panorama space after registration. The interface betwieerand yellow tubes corresponds to the position of the thacer origin, the yellow tips

correspond to the contact point of the probe with the rectline green sphere is the a priori fixed point. One can see tbartfular error of the

probe position predicted by the kinematic model stems floarfact that the fixed point model of the rectal sphincter iiemapproximate.

of the probe head with the canonical coordinate axis, cedtat the transducer origin, after respective application
of the transformations. The study was performed on 269 sséglevolume registrations stemming from 14 biopsy
sessions. The ellipsoid surface was discretized using<d @ @rid, and the 360rotational space around the probe
axis was discretized using 24 steps. The model was evalaafae: diferent depths. The mean Euclidean distance
of the transducer array origin was 205 mm, and the mean angular distance wag®.P. Concerning the five
different depths at which the model was evaluated, 15% of thepbedictions were found at arffeet of -10 mm,
23% at -5 mm, 35% at 0 mm, 21% &b mm and 6% at-10 mm. The model hence predicts the position of the
transducer array quite precisely, which indicates that relatively robust with respect to the accuracy of the user-
defined ellipsoid. Note that evaluating multiple depths campensate ellipsoid placement errors in the probe axis
direction. The angular predictions are less accurate,wtiems from the resolution of the rotational space around
the probe axis of 15and from the fact that using an a priori fixed point as a modettfe constraints exerted by the
rectal sphincter is rather simplistic. After rigid regation, the average distance of the probe axis from the aiprior
fixed point was 4.23.1 mm. Fig. 14 shows typical probe positions during biopsith respect to the fixed point
for three diferent patients. In conclusion, the results given in thisgeaph reflect the tradefdetween accuracy
and speed of the kinematic model. The role of the kinematidehis to initialize local rigid registrationficiently.
However, to achieve clinically acceptable accuracy, loegistration is mandatory.

6.2. Target registration error

This third study evaluates the accuracy of 687 registrat&temming from 40 patients that were classified as
correct. Fiducials were first manually segmented in the p@ama volumes, and then in the registered tracking volumes
if they were visible. Finding unambiguously identifiableuaials in the panorama and the majority of the tracking
volumes was a challenging task. Segmentation consistdueiméfinition of the barycenter of a structure. Small
structures like calcifications or kysts were preferredsitheir limited volume facilitates manual barycenter déifni
and hence reduces the fiducial localization error (FLE), Kge 15. We did not segment (parts of) the prostatic
capsule since it is icult to identify anatomically corresponding points on sgds in US images, i.e. the FLE of the
point distance measure would have increased. Surfacadismeasures on the other hand underestimate the tissue-
correspondence error because they are insensitive toréaceumisalignments. In total, 147 reference fiducials were
segmented in the 40 panorama volumes (3.7 fiducials per w)ltand 1889 corresponding fiducials were segmented
in the 687 tracking volumes (2.7 fiducials per volume). Tlatistical power of the simple descriptive statistics that
were used in this study is ensured by the total number of 1888a&ted samples, i.e. the small number of samples per
registration pair is compensated by the large number otiatad registrations. The FLE was estimated to 8(B%9
mm via multiple segmentations of the reference fiducialse @hatomical distribution of the reference fiducials is
illustrated in Fig. 16. It is important to note that the fidaldegmentations are not used by the registration algorithm
the fiducial registration error is hence a valid estimataheftarget registration error (TRE).
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Figure 15: Fiducials. Fig. (a) and (b) show correspondingifieations in the tracking and the panorama volume, Figatd (d) illustrate a kyst.

mean RMS mean dist. execution
distance distance (worst decile) time

[mm] [mm] [mm] [s]

1 unregistered | 13.8:7.9 17.0 17.9 -

2 rigid 1.4+0.8 1.5 3.0 21

3 deformation 0.8+0.5 0.9 2.0 6.8

4 def. woinv. cons. 1.0+0.7 1.2 2.7 6.4

5 def. w std SSD 1.6+1.5 2.2 5.2 4.3

Table 1: Accuracy study. Line 2) and 3) present TRE and negish time of the rigid and deformation estimations. Lieshows the result for
the deformation estimation without inverse consistenaystraints, and line 5) for the deformation estimation usitammdard SSD instead of shift
correlation as similarity measure. The mean error in the$ivdecile’ was computed on the 10% of fiducials with the latgeRE.

To evaluate the TRE, the distance between the centers afspmnding fiducials were measured using the Eu-
clidean distance
e(PK) = IF{(K) = ¢"[lo, Im] © Ff, (K)llzs. (22)

whereP is the patientF,Z(k) is thekth fiducial in the panorama imag@aandF,Fr’n(k) is the anatomically corresponding
fiducial in the tracking imagén,.

The results for both rigid and elastic registration are giveTab. 1. Rigid registration yields a TRE of 1@.8
mm while the TRE after deformation estimation is 8085 mm. The mean error in the worst decile is 3.0 mm
for rigid registration, which is reduced to 2.0 mm after defation estimation. The average computation time of
rigid registration is about 2 s versus about 7 s for deforomaéistimation. We also evaluated the performance of
the deformation estimation without inverse consistenaystints (TRE of 1.80.7 mm) and when using standard
SSD instead of the proposed intensity-shift compensatiatfiotsc (TRE of 1.6:1.5 mm), everything else being
identical. Both techniques improve thus accuracy. SS2dhasgistration yields results worse than rigid regisbrati
which proves that this measure is inadequate for deformagtimation in US images. On the other hand, shift
correlation significantly improves the rigid registratie@sult while its computation time is still reasonable. hénce
an interesting alternative to more complex similarity meeas.

6.3. Rigid vs. elastic registration

A comparison of the mean decile TRE of rigid and elastic tegiion was carried out to evaluate the clinical
relevance of deformation estimation, see Fig. 17. Elastiistration improves TRE in all deciles about at least one
third. In absolute values, it yields the strongest benefihénworst decile, where the average error is decreased by 1
mm to 2 mm. The error curve of rigid registration indicatesttthe gland is barely deformed in the majority of the
volumes that were analyzed. However, in about 20% to 30%ef/tihumes stronger deformations can be observed
that can be reduced with elastic registration. The croselzion between the TRE and the fiducial distance from
the transducer is -0.09 for rigid registration, i.e. thege variables are uncorrelated. The cross correlation ketwe
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Figure 16: Fiducial distribution. This figure shows the disition of the 147 fiducials that were segmented in the pamarvolumes in normalized
space (unit circle). Normalization was performed by septime bounding ellipsoids on the unit sphere, followed by@eqution of the fiducials
onto the transverse mid-plane of the sphere.

the TRE and the fiducial distance from the prostate cented.is for rigid registration, i.e. the error at the capsule is
of similar extent than the error at the center. The crosstation between the TRE and the fiducial distance to the
needle tip is 0.02, and between the TRE and the fiducial distemthe entire needle trajectory is 0.0. We therefore did
not measure significantly stronger errors near the needfedlsewhere. This observation has to be, however, taken
with care since it is possible that including all fiducialsteasure a local phenomenon (the volume of the needle is
very small compared to the volume of the prostate), togetlithrthe sparse number of fiducials per volume, might
compromise the statistical power of this particular testiual illustration of the deformation estimation is givien

Fig. 18.

7. Discussion

We have presented a 3D TRUS based tracking system for pgostation that occurs during transrectal biopsy
acquisition. The presented approachiaiis from existing systems in that it uses a motorized US thacesr for 3D
volume acquisition and in that it is purely image-registnabased. A kinematic model of the rectal probe motion is
used to find the position of the probe with respect to the gland not in operating room coordinates, as it is the case
with approaches that use probe tracking hardware. A regjstr framework capable of estimating the rigid and the
residual elastic motion of the prostate was presented. Aplsitout éfective local similarity measure was introduced
to drive the elastic registration process &#ceently as possible. Special extrapolation technique®weoposed to
cope with information loss problems in multi-resolutionaige registration. A clinical application was built on the
top of the tracking system, allowing the computation of pediopsy and cancer maps, MR-TRUS target projection,
MR biopsy maps for therapy planning, and rudimentary sufpoiguidance towards non-ultrasound targets. In this
section, we will discuss the proposed system.

7.1. Target registration error

A prostate tumor is considered as being clinically signifidgait has a volume of at least 0.5 cc [1, 21]. If the
shape of the tumor resembles a sphere, this correspondsattiues 0f roughly 5 mm. Let us further assume that
the error is normally distributed. Based on these assumgtiarnik et al. claim that a tracking TRE of 2.5 mm
(RMS) yields a probability of 95.4% that the registered ¢asgwill lie inside the clinically significant 5 mm radius
[14]. However, this is only valid if there are no other sowoéerror in the clinical application.
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Figure 17: Rigid vs. Elastic. The Fig. shows the error decifter rigid and elastic registration.
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Figure 18: Rigid vs. Elastic. Fig. (a) and (c) show typicaidiregistration results, the left half of each image shapifre tracking image, and the
right half showing the reference. In both casefiedént probe pressure was applied when the volumes wereraggilihe non-linear compression
cannot be corrected by the rigid registration and local raisives subsist in particular near the probe head. Fig. (bjd@rshow the result of the
deformation estimation, which corrects the local errors.
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If the clinician wants to be guided towards non-US targetsekample suspicious lesions in MR images, he has
to segment and register them with the US reference volumeavassume that MR target segmentation, MR-TRUS
registration and TRUS-TRUS registration are statistycimitiependent. In that case, the total RMS error is

€= Z eiz. (23)

If we assume that manual MR segmentation is performed witRM8 error of 1 mm, MR-TRUS registration with an
error of 2.5 mm [17, 18] and TRUS-TRUS registration also v#ith mm, we get a total RMS error of 3.7 mm. This
corresponds to a 82% probability to hit the target.

However, we also have needle deflection, guide calibratiamr® needle depth tracking errors, tissue deformation
during needle insertion and the error of manual reprodoatiothe proposed trajectory. Unfortunately we do not
know the extent of these errors. Let us optimistically asstimat each of these factors add an additional RMS error
of 1 mm. Then we get a total RMS error of 4.3 mm or a probabilitgtmout 75% to hit the target. This means that the
sensitivity of MR-TRUS guided biopsies would correspongdragimately to the sensitivity of a systematic sampling
of the gland. With this error we would thus not gain anything.

It is therefore necessary to minimize the TRE of each pati®@fpirocessing chain wherever possible. Reusing the
assumptions of the previous paragraphs, the total RMS efitbe presented system is 3.6 mm (RMS, 83% probability
to hit the target) with elastic registration, and 3.8 mm (RM$% probability to hit the target) with rigid registration
With elastic registration, the probability of missing tlaeget is reduced by 25% compared to a tracking system with a
TRE of 2.5 mm (RMS). If the TRE of the presented system coulttbeced to 0.25 mm (RMS), which corresponds
to the error of optical or magnetic tracking systems, théphidlity to hit the target would increase to 85%. In other
words, further reducing the tracking error by a factor okthimproves the hit rate by only 2.5%. For MR targeting,
future eforts should thus be concentrated on the reduction of the RRS fusion error.

Note that the error analysis is not the same for biopsy maperarhe total error is composed only of the TRUS-
TRUS registration error and the needle segmentation dfrare assume, again, that a manual segmentation can be
performed with an RMS error of 1. mm, the total error would B&4Imm (RMS). If the biopsy map is used for therapy
planning, however, and if it is projected onto the thera@nping volume, the projection error adds to the total error.

In conclusion, to achieve a clinically satisfying total TRHEl sources of error must be minimized further. With
the presented system, the most important sources of ereon 82 be MR-TRUS fusion and the human error, i.e.
the capacity of the operator to reproduce a suggested tiwajed-uture &orts should hence be concentrated on the
optimization of these errors.

7.2. Rigid vs. elastic tracking

Elastic tracking is the preferred solution concerning thieimization of the total TRE of the system. However, it
requires a three to four fold increase in computation timesthuce the risk of missing an MR target, estimated with
the assumptions in Sec. 7.1, by only about ten percent. Qtheces of error are predominant in the system. For
biopsy maps, where the computation time is not an issue, @nithé registration of the panoramas of twdfelient
sessions, elastic registration is the preferred solution.

It is interesting to have a look at the error distribution @fid and elastic registration (cf. Fig. 17). Elastic
registration reduces the rigid error by almost 50% in thelded-9. In the worst decile, the error reduction is 30%.
The error is reduced significantly in all deciles, which skaWwat the proposed non-linear registration method is
robust. The rigid registration result is not degraded.

7.3. Patient motion

A considerable advantage of the proposed approach is thaglatively robust with respect to patient movements.
Some patients feel pain during biopsy acquisition, in widake hip displacements due to muscular contractions can
occur. Other patients are not comfortably positioned arahgk their pose during the procedure. In the presented
experiments, registration failures were not due to patiratements, but to a lack of prostate information in the
tracking volume, which is comparable to a marker that is dwiew of an optical tracking camera or to a magnetic
sensor that is outside the magnetic field. This contrastssyistems that use probe tracking to initialize image-based
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registration, for which the patiefprostate can move outside the capture range of the registragorithm. If this
happens, these systems have to acquire a new anatomicaineadesolume, which is time consuming and requires
transitive registration of the previous results. A niceesétect of a purely software-based and free-hand tracking
system is that less encumbering hardware is required ingaeating room.

Patient movements can, however, still pose problems witlpthsented system when they occur during 3D TRUS
acquisition, which leads to distorted volumes. The samdiepwhen the operator moves the probe during volume
acquisition. Patient and probe movements can also occimgltggistration, which is problematic when the system
guides the clinician toward a target. This can be improvereldycing the registration time, cf. also the discussion in
Sec. 7.4.

7.4. 3D TRUS vs. 2D TRUS based tracking

3D TRUS and 2D TRUS based prostate biopsy systems have betigdts and weaknesses. A large incon-
venience of 3D US and deformation estimation is the voluntpiaition time of 0.5-5 s (depending on the image
quality) and the registration time of currently 7-8 s. Whés is still suficient to give the clinician an intra-operative
feed-back, it is dficult to implement a system that can guide the clinicians tgets. It is conceptually straight-
forward to parallelize the registration algorithm on spéized hardware like modern scalar processing units. B thi
case, an increase in speed by a factor of 20-30 seems to stice&lowever, real-time TRUS volume acquisition is
currently a blocking issue for conveniently fast updatetheftracking position.

2D TRUS based tracking is less accurate and more sensitpatignt movements. When using 2D TRUS with
image-based registration, there is a risk that lateraldigspwill not be correctly registered since only a small part
of the image will contain the gland. The capture range of sudystem is smaller than the range of a 3D TRUS
based system. Another inconvenience of 2D TRUS is the leagate and more time-consuming acquisition of the
initial 3D volume that serves as anatomical reference. Tact of the volume reconstruction error cannot be fully
evaluated with point fiducial based TRE evaluations. Phargtudies have shown distance errors of 3%-4% [5, 11];
on real patients the accuracy is unknown. Perhaps a contninzt2D and 3D TRUS tracking would yield the best
of both worlds.

8. Conclusion

The biopsy application that we implemented for clinical gaees the clinician an immediate and precise feed-
back about the current biopsy distribution. The biopsy nwgsbe fused with the results of the histological analysis
for diagnostics and therapy planning. The maps of a pre\bmpsy session can be projected on the current panorama
image. Finally, the system enables guidance towards tasgefmented on MR images. The system only minimally
alters the current standard procedure and does not adficagmiogistical complexity to the intervention.

The cancer map module provides significant clinical valuelfagnosis and therapy planning. It makes it possible
to implement experimental focal therapy strategies basetthe® localization of positive samples. It is for example
feasible to perform additional targeted biopsies in a sés@ssion around a positive sample to get a very precise idea
of the cancer distribution. Inversely it is possible to confihe absence of cancer locally with supplementary tadgete
biopsies. The possibility to project the cancer map into dtiliage for determination of the shape of a tumor in a
more sensitive imaging modality is also a very promisingdeafor prostate cancer diagnostic.

Guidance to predefined targets could increase the setsitivbrostate biopsies. Suspicious lesions identified in
MR volumes can be projected into the tracking images andéhenable them to be reached with high precision. If a
biopsy series needs to be repeated, the clinician can aawigling previously examined tissues again, which leads to
a higher coverage of the gland. A limitation of the systenh@yever, that it is not yet possible to perform guidance
to targets in real-time.

To date, the industrial version of the presented biops\stssie system has been used on more than 200 biopsy
sessions and has proven to work reliably in clinical practd/e are currently putting together the protocols for in-
depth assessment of the clinical potential of the system.ai&earticularly interested in the impact of the system
on the sensitivity of US guided prostate biopsies and biapggtitions. A preliminary study [20] showed that it
is difficult for clinicians to reach the zonal targets of the clihita-core standard protocol accurately. Giving the
clinician a visual feed-back about the sample distribuifier the intervention lead already to a significant leagnin
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effect. We are also interested in the sensitivity and spegifidiMR-targeted biopsies, which is an interesting option
when the initial biopsy series was negative while the casuaspicion could not be discarded.

In the longer term, it would be interesting to consider thagesof the prostate tracking system for therapy,
knowing that a number of therapeutic interventions on tlestate are performed under endorectal US control (e.g.
brachytherapy, HIFU, cryotherapy, ...). Focal therapythagotential to lead to less sidé&exts than radical therapy,
but it requires the accurate positioning of the therapeagstrument to be safe, reliable anffestive. US based
prostate tracking can help to achieve this accuracy.
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