
HAL Id: hal-00606375
https://hal.science/hal-00606375v1

Submitted on 6 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic Aspects of Heterogeneous Biological
Networks Comparison

Guillaume Blin, Guillaume Fertin, Hafedh Mohamed-Babou, Irena Rusu,
Florian Sikora, Stéphane Vialette

To cite this version:
Guillaume Blin, Guillaume Fertin, Hafedh Mohamed-Babou, Irena Rusu, Florian Sikora, et al.. Algo-
rithmic Aspects of Heterogeneous Biological Networks Comparison. COCOA 2011, 2011, Zhangjiajie,
China. pp.272-286, �10.1007/978-3-642-22616-8_22�. �hal-00606375�

https://hal.science/hal-00606375v1
https://hal.archives-ouvertes.fr

Algorithmic Aspects of Heterogeneous Biological

Networks Comparison ⋆

Guillaume Blin1, Guillaume Fertin2, Hafedh Mohamed-Babou2, Irena Rusu2,
Florian Sikora1, Stéphane Vialette1

1 Université Paris-Est, LIGM - UMR CNRS 8049, France.
{Guillaume.Blin,Florian.Sikora,Stephane.Vialette}@univ-mlv.fr

2 Université de Nantes, LINA - UMR CNRS 6241, France.
{Guillaume.Fertin,Hafedh.Mohamed-Babou,Irena.Rusu}@univ-nantes.fr

Abstract. Biological networks are commonly used to model molecular
activity within the cell. Recent experimental studies have shown that
the detection of conserved subnetworks across several networks, com-
ing from different organisms, may allow the discovery of disease path-
ways and prediction of protein functions. There already exist automatic
methods that allow to search for conserved subnetworks using networks
alignment; unfortunately, these methods are limited to networks of same
type, thus having the same graph representation. Towards overcoming
this limitation, a unified framework for pairwise comparison and analysis
of networks with different graph representations (in particular, a directed
acyclic graph D and an undirected graph G over the same set of vertices)
is presented in [4]. We consider here a related problem called k-DAGCC:
given a directed graph D and an undirected graph G on the same set V of
vertices, and an integer k, does there exist sets of vertices V1, V2, . . . Vk′ ,
k′ ≤ k such that, for each 1 ≤ i ≤ k′, (i) D[Vi] is a DAG and (ii)
G[Vi] is connected ? Two variants of k-DAGCC are of interest: (a) the
Vis must form a partition of V , or (b) the Vis must form a cover of V .
We study the computational complexity of both variants of k-DAGCC

and, depending on the constraints imposed on the input, provide several
polynomial-time algorithms, hardness and inapproximability results.

1 Introduction

Recent advances in the field of biological networks comparison, inspired by devel-
opments in sequence comparison, have provided a prominent tool for explaining
organization and interpreting function and evolution of biological networks [20].
In their most basic abstraction level, biological networks can be modeled by
graphs, where vertices represent cellular compounds, and edges (or arcs) repre-
sent their interactions. These graphs may be directed or undirected, depending
on the type of networks they represent: for instance, a Protein-Protein Interac-
tion network (PPI) is usually modeled by an undirected graph whose vertices

⋆ This work was partially supported by GDR-IM and ANR project BIRDS JCJC
SIMI 2-2010

are proteins and edges represent the physical interactions between proteins; how-
ever, a metabolic network is modeled by a directed graph (also called reaction

graph), where (a) any vertex represents a reaction which needs both a set of
input compounds (substrates) and some enzymes (proteins) as catalysts, and
produces a set of compounds (products) and (b) there is an arc from reaction ri

to reaction rj if rj uses, as substrate, a product of ri.

Each biological network represents a partial view of the molecular activity
within the cell. Thus, comparing them provides a better understanding of the
behavior of a biologic system. We say that two biological networks are homoge-

neous if they are of the same type and have the same graph representation, but
come from different species. In contrast, networks are said to be heterogeneous

if they come from the same species, but are of different types and have different
graph representations (e.g., a directed graph and an undirected graph).

The main comparative approaches considered so far focus on homogeneous
networks using networks alignment (see, among others, [10,11,18,20,5,2,21,12]).
Such methods are powerful for detecting conserved modules across several net-
works of different species. Unlike homogeneous networks, only few research works
aim at comparing heterogeneous networks. Most of the existing methods used to
compare heterogeneous networks are usually manual, or use case-by-case meth-
ods. In [22,19,13,16,1], authors search for a chain of reactions in a metabolic net-
work, by investigating the relationships between genes involved in the reactions
and the proximity of genes along the genome. Interactions between proteins that
catalyze successive reactions in metabolic networks have been studied in [3,9].
In [14,8,6], authors search signaling pathways by confronting a signal transduc-
tion network, represented by a directed graph, to a PPI network, represented by
an undirected graph. They perform an orientation of the PPI graph as follows:
given a list of ordered source-target pairs, the PPI graph is oriented in such a
way that, for a maximum number of pairs (s, t), there is a directed path from
the source s to the target t. The advantage of this method is that it allows to
return to homogeneous networks with the same graph. However, in addition to
its computational difficulty, the good behavior of this method is closely related
to the choice of the list of the source-target pairs. In [8], such a list is manually
constructed.

Recently, a unified framework for comparison and analysis of heterogeneous
networks was proposed [4]. In particular, the central problem considered in [4]
is the following: given a directed acyclic graph (DAG) D′ and an undirected
graph G′ built on the same set of vertices, find the longest directed path in
D′ whose vertices induce a connected component in G′. In this setting, D′ and
G′ represent a metabolic network and a PPI network, respectively. However, in
general, metabolic networks are not DAGs, and hence contain directed cycles.

Therefore, we consider in thispaper the following problem, called k-DAGCC,
that can be seen as a way to pre-process the input graphs in [4]: given a directed
graph D and an undirected graph G on the same set V of vertices and an integer
k, does there exist sets of vertices V1 . . . Vk′ , k′ ≤ k, such that, for each 1 ≤ i ≤ k′,
(i) D[Vi] is a DAG and (ii) G[Vi] is connected ? Two variants of k-DAGCC are

2

considered: (a) the partition version, where the Vis must form a partition of V ,
and (b) the cover version, where the Vis must form a cover of V .

The problem k-DAGCC (under both its variants) is also motivated by the re-
search of pathways in metabolic networks that correspond to functionally related
proteins in PPI networks. Indeed, pathways in metabolic networks correspond
to DAGs [18], while functionally related proteins in PPI networks correspond to
connected subgraphs [1,2,15,21,12]). Thus, it is of interest to be able to extract
biologically relevant information from two large networks by decomposing them
into smaller modules that each (i) carry a rich biological information and (ii) are
easier to interpret.

In this paper, we study the computational complexity of both variants of
k-DAGCC and, depending on the constraints imposed on the input, provide
several polynomial-time algorithms, along with hardness and inapproximability
results. Once the main notations and definitions will be stated (Section 2), we
will define formally and study in detail the complexity of the two variants of the
k-DAGCC problem, first in its partition version (Section 3), then in its cover
version (Section 4).

2 Preliminaries

This paper is concerned with both directed and undirected graphs. We briefly
recall the basic needed material.

A graph G = (V,E) consists of a set of vertices V and a set of edges (un-
ordered pairs of vertices) E. To shorten the exposition, we shall usually abbre-
viate |V | and |E| to n and m, respectively. The degree of a vertex u ∈ V is the
number of edges incident to it. A graph is acyclic if it does not contain any cycle.
An independent set is a subset V ′ ⊆ V such that (x, y) /∈ E for any x, y ∈ V ′.
A graph is connected if there exists a path between any pair of vertices. For
any V ′ ⊆ V , we let G[V ′] = (V ′, E′) stand for the subgraph induced by V ′, i.e.
E′ = {{x, y} ∈ E : x, y ∈ V ′}. A graph is a tree if it is both connected and
acyclic. A star of order n ≥ 3 is a tree with exactly one vertex of degree strictly
greater than 1. A graph is complete if it contains all possible edges. A planar

graph is a graph that can be embedded onto the plane, in such a way that its
edges intersect only at their endpoints. Finally, a graph is said to be outerplanar

if it has a planar embedding such that the vertices lie on a circle and the edges
lie inside that circle, without crossing each other.

A directed graph D = (V,A) consists of a set of vertices V and a set of arcs
(ordered pairs of vertices) A. A directed acyclic graph (DAG) is a directed graph
that does not have any directed cycle. For any V ′ ⊆ V , we let D[V ′] = (V ′, A′)
stand for the subgraph induced by V ′, i.e. A′ = {(x, y) ∈ A : x, y ∈ V ′}.

We shall consider graphs and directed graphs defined on the same set of
vertices, i.e. we will write D = (V,A) for the directed graph and G = (V,E) for
the undirected graph. To avoid ambiguity, we let mD and mG stand for |A| and
|E|, respectively. Given two such graphs D = (V,A) and G = (V,E) built on the
same set V of vertices, we say that a partition (resp. a cover) {V1, V2 . . . Vk} of

3

V is valid if, for any 1 ≤ i ≤ k, D[Vi] is a DAG and G[Vi] is connected. The two
variants of k-DAGCC we are going to study in this paper are called respectively
k-DAGCC-Partition and k-DAGCC-Cover, and are defined as follows.

k-DAGCC-Partition

Instance: A directed graph D = (V,A), an undirected graph G = (V,E), and
an integer k.
Question: Does there exist a valid partition P = {V1, V2, . . . , Vk′} of V such
that k′ ≤ k ?

k-DAGCC-Cover

Instance: A directed graph D = (V,A), an undirected graph G = (V,E), and
an integer k.
Question: Does there exist a valid cover C = {V1, V2, . . . , Vk′} of V such that
k′ ≤ k ?

The natural minimization version of the above decision problems are denoted
Min-DAGCC-Partition and Min-DAGCC-Cover, respectively.

❅
❅❅k

G
Graph Outerplanar Tree Star Path

(n − k) = O(1) P [Prop. 2]

k = O(1) NPC [Prop. 4] P [Prop. 3]

k unbounded
Inapprox. within
n1−ǫ [Prop. 6]

APX-hard [Prop. 7] NPC [Prop. 5] P [Prop. 1]

Table 1. Complexity results for k-DAGCC-Partition and Min-DAGCC-

Partition.

❅
❅❅k

G
Graph Outerplanar Tree Star Path

k = O(1) NPC [Prop. 9] P [Prop. 8]

k unbounded Inapprox. within n1−ǫ [Prop. 10] P [Prop. 8]

Table 2. Complexity results for k-DAGCC-Cover and Min-DAGCC-Cover.

The results presented in this paper are summarized in Table 1 (for prob-
lems k-DAGCC-Partition and Min-DAGCC-Partition) and Table 2 (for
problems k-DAGCC-Cover and Min-DAGCC-Cover).

4

3 Partition Version of k-DAGCC

In this section, we provide polynomial-time algorithms, hardness and inapprox-
imability results for different variants of Min-DAGCC-Partition and k-DAGCC-

Partition (see Table 1). We first provide polynomial-time algorithms for three
restricted cases: (a) G is a path, (b) n − k is a constant, and (c) G is an outer-
planar graph and k is a constant.

Recall that, given a directed graph D = (V,A) and an undirected graph
G = (V,E), testing whether D is a DAG (resp. whether G is connected) can be
done in O(n + mD) time (resp. O(n + mG) time) by depth-first search.

Proposition 1. Min-DAGCC-Partition is polynomial-time solvable when G
is a path.

Proof. The proof is by a simple greedy algorithm. Write (v1, v2, . . . , vn) for the
path G. We consider the vertices of G from v1 to vn. We start with S = ∅. For
vertex vi, if D[S ∪ {vi}] is a DAG, we add vi to S, otherwise we report S as an
element of the sought partition and set S = {vi}. When the algorithm stops, we
report the current S as the last element of the partition.

It is easily seen that this greedy algorithm produces a valid partition of V .
What is left is to prove that the valid partition obtained by the above algorithm
is of minimum cardinality. Let P = {V1, V2, . . . Vk} be the partition returned by
our algorithm, and suppose, aiming at a contradiction, that there exists a strictly
smaller valid partition P ′ = {V ′

1 , V ′
2 , . . . , V ′

ℓ }, thus with ℓ < k. We first observe
that, by construction, V1 cannot be a proper subset of V ′

1 . Since any connected
subgraph of G is built on consecutively indexed vertices {vp, vp+1, vp+2 . . . vq},
it follows that there must exist 2 ≤ i < k and 2 ≤ j ≤ ℓ such that (1) Vi is a
proper subset of V ′

j , and (2) V ′
j contains the first vertex, say x, of Vi+1. This is

a contradiction since Vi ∪ {x} is not a DAG in D. ⊓⊔

Proposition 2. k-DAGCC-Partition is polynomial-time solvable when n−k
is a constant.

Proof. Let us prove that this variant of k-DAGCC-Partition can be solved in
polynomial time by an exhaustive procedure. We consider all k-partitions of V .
We start from the unique n-partition of V and iteratively compute all (k − 1)-
partitions of V starting from its k-partitions. Recall that the Stirling number
of the second kind S(n, k) represents the number of ways to partition a set of

n elements into k nonempty subsets. We have S(n, k) = S(n, n)
∏n−k−1

i=0

(

n−i
2

)

.

But S(n, n) = 1, and hence S(n, k) =
∏n−k−1

i=0

(

n−i
2

)

= O(n2(n−k)). For each

of these O(n2(n−k)) partitions, we can check in polynomial-time whether it is a
valid solution for k-DAGCC-Partition. The proposition follows. ⊓⊔

Proposition 3. k-DAGCC-Partition is polynomial-time solvable when G is

an outerplanar graph and k is a constant.

5

Proof. Recall that a graph is outerplanar just when its vertices can be placed
on a circle so that its edges become non-crossing chords of the circle. Fix any
such an outerplanar circular embedding. Let V1, V2, . . . , Vk be any valid partition
of V . Now, associate to any Vi, 1 ≤ i ≤ k, the smallest arc of the circle that
covers all vertices in Vi (according to the outerplanar circular embedding). Since
V1, V2, . . . , Vk is a valid partition of V , any vertex is covered by at least one arc
of the circle, and no two arcs of the circle share a common endpoint. Moreover,
since (v1, v2, . . . , vn) is an outerplanar embedding of G and G[Vi] is connected
for every 1 ≤ i ≤ k, it follows that no two arcs of the circle properly overlap.

The algorithm is by enumerating all sets of non-overlapping k arcs of the circle
with distinct endpoints that cover V . Let v1, v2, . . . , vn be the vertices of G in
the outerplanar circular embedding following, say, the trigonometric orientation.
For any 1 ≤ i ≤ n, consider all 2(k − 1)-subsets of V \ {vi, vi−1} (by convention,
v0 = vn). Let {vj1 , vj2 , . . . , vj2(k−1)

} be such a subset, where the vertices are
read along the outerplanar circular embedding starting from vi and following the
trigonometric orientation. We now need to construct all possible arcs of the circle
with endpoints vi, vj1 , vj2 , . . . , vj2(k−1)

, vi−1 such that no two arcs of the circle
are overlapping. Clearly, this reduces to considering all well-formed parenthesis
strings of length 2k. Our construction yields sets of k arcs a1, a2, . . . , ak of the
circle such that (1) any two arcs of the circle have distinct endpoints, (2) no
two arcs of the circle are overlapping, and (3) each vertex of V is covered by
at least one arc of the circle. For any such solution, we construct a partition
(V1, V2, . . . , Vk) as follows: Vi contains all vertices covered by arc ai of the circle,
except those vertices covered by at least one arc aj of the circle which is strictly

covered by ai. This algorithm is O(n2
(

n
2(k−1)

) (

2(k−1)
k−1

)

(n+m)) time, where m =

max{mD, mG}. Indeed, we have n possibilities for choosing the reference vertex

vi. Starting from each reference vertex vi, we consider
(

n
2(k−1)

)

1
k

(

2(k−1)
k−1

)

sets of

k arcs of the circle (1
k

(

2(k−1)
k−1

)

is the number of well-formed parenthesis strings of
length 2k). From these sets, one can construct a solution Vi, 1 ≤ i ≤ k, is O(n)
time, and check whether each subset Vi, 1 ≤ i ≤ k, induces both a DAG in D
and a connected component in G in O(n+m) time. The proposition follows. ⊓⊔

We now prove that k-DAGCC-Partition becomes NP-complete when (a) G
is a complete graph or (b) G is a star.

Proposition 4. For any k ≥ 2, k-DAGCC-Partition is NP-complete even

when G is a complete graph.

Proof. k-DAGCC-Partition is certainly in NP. To prove hardness, we propose
a reduction from the NP-complete Not-All-Equal 3SAT (NAE 3Sat) prob-
lem [7]: Given a collection Cq = {c1, . . . cq} of q clauses, where each clause consists
of a set of three literals over a finite set of n boolean variables Vn = {x1, . . . xn},
is there a truth assignment of each variable of Vn such that at least one of the
literals is true and at least one is false in each clause ? For ease of exposition,
for any 1 ≤ j ≤ 3, we let cj

i stand for the j-th literal of clause ci.
Given any instance (Cq,Vn) of NAE 3Sat, we build D and G as follows:

6

• V = {vj
i : 1 ≤ i ≤ q, 1 ≤ j ≤ 3} ∪ {vi : 3 ≤ i ≤ k}

• A = {(vj
i , v

j′

i′), (v
j′

i′ , v
j
i) : cj

i = cj′

i′ } ∪ {(v1
i , v2

i), (v2
i , v3

i), (v3
i , v1

i) : 1 ≤ i ≤
q} ∪ {(vi, v), (v, vi) : 3 ≤ i ≤ k, v ∈ V \ {vi}}

• E = {(v, v′) : v, v′ ∈ V }

Roughly speaking, vertex vj
i corresponds to the j-th literal of clause ci,

whereas vertices vi, 3 ≤ i ≤ k, are gadgets to adapt the proof for any k ≥ 2.
There is a cycle of length two between any pair of vertices representing two
complementary literals (e.g. xi and xi) and between vi, 3 ≤ i ≤ k, and any
other vertex of V . Moreover, there is a cycle of length three between the triple
of vertices (v1

i , v2
i , v3

i) corresponding to the three literals of any clause ci. Finally,
G is a complete graph on V . An illustration of such a construction – omitting
G – is given in Figure 1.

v1

1

v2

1

v3

1

v1

2

v2

2

v3

2

v1

3

v2

3

v3

3

v3 v4 . . . vk

Fig. 1. Illustration of the construction of D, given Cq = {(x1 ∨ x2 ∨ x3), (x1 ∨

x2 ∨ x4), (x1 ∨ x2 ∨ x3)}. For readability, arcs {(vj
i , vl), (vl, v

j
i) : 1 ≤ i ≤ q, 1 ≤

j ≤ 3, 4 ≤ l ≤ k} are not drawn.

We claim that there is a solution for our NAE 3Sat instance iff there exists
a valid partition (V1, V2, . . . , Vk) of V .

(⇒) Given a truth assignment A of Vn such that each clause contains at
least one true and one false literals, we make a partition P = {V1, V2 . . . Vk} of
V as follows: V1 = {vj

i : cj
i = true in A}, V2 = {vj

i : 1 ≤ i ≤ q, 1 ≤ j ≤ 3} \ V1,
and, Vi = {vi} for 3 ≤ i ≤ k. By definition, there is one or two true literal(s) in
each clause. Thus, among the three vertices corresponding to the literals of ci, at
least one and at most two of them are in V1 (resp. V2). Moreover, considering A,
any variable cannot be simultaneously true and false. Therefore, two vertices
representing complementary literals cannot both belong to V1 (resp. V2). Then it
follows that each D[Vi], 1 ≤ i ≤ k, is a DAG since all cycles have been destroyed.
Since G is complete, we have a valid solution.

(⇐) Let P = {V1, V2 . . . Vk} be a valid partition of V . We build a truth as-
signment A as follows. By construction, there is no loss of generality in assuming

7

V3 = {v3}, . . . , Vk = {vk} (each of these vertices has to occur as a singleton in
the partition). Let us define a truth setting A such that literal cj

i , 1 ≤ i ≤ q and

1 ≤ j ≤ 3, evaluates to true iff vj
i ∈ V1. This requirement certainly defines a

truth setting assignment since opposite literals are part of a cycle of length two.
Let us now prove that A is a solution for our NAE 3Sat instance. Indeed, at
least one and at most two of the vertices representing the literals of each clause
ci belong to V1. Thus, any clause ci is indeed satisfied and by at most two of its
literals. ⊓⊔

Proposition 5. k-DAGCC-Partition is NP-complete even when G is a star.

Proof. We propose a reduction from the NP-complete k′-Independent Set (k′-

IS) problem [7]: Given a graph GI = (VI , EI) and a positive integer k′, is there
an independent set V ′

I ⊆ VI of cardinality at least k′ ?
Given any instance GI of k′-IS, we build D and G as follows:

• V = VI ∪ {vr}
• A = {(v, v′), (v′, v) : (v, v′) ∈ EI}
• E = {(vr, v) : v ∈ VI}

Moreover, we set k = |VI |−k′+1. Roughly speaking, graph D is obtained from
GI by replacing each edge by two arcs in opposite directions, and by adding an
isolated vertex vr. The graph G is a star whose center is vr; thus vr must be part
of any connected subgraph of G of order strictly greater than one. Construction
of both these graphs is illustrated in Figure 2.

1

2 3

4 5

GI

1

2 3

4 5

vr

D

1

2 3

4 5

vr

G

Fig. 2. Illustration of the construction of D and G, given GI . We highlighted a
possible 2-IS {1, 4} and a corresponding valid 4-partition of V .

We will show that there is an independent set, in GI = (VI , EI), of cardinality
at least k′ iff there is a solution for k-DAGCC-Partition with k = |VI |−k′+1.

(⇒) Given an independent set of GI of cardinality greater or equal than k′,
choose any subset V ′

I of k′ vertices of it (which is itself an independent set). We
compute the partition P = {V1, V2 . . . Vk} of V , where k = |VI |−k′+1, as follows.

8

Let V1 = V ′
I ∪{vr}. Consider any ordering of the vertices in VI \V ′

I , and, for every
2 ≤ i ≤ k, let Vi = {v}, where v is the (i − 1)-th vertex in this ordering. First,
note that any D[Vi], 2 ≤ i ≤ k is indeed a DAG since it is composed of a single
vertex. Moreover, by definition, ∄{v, v′} ⊆ V ′

I , such that (v, v′) ∈ EI . Therefore,
D[V1] is composed of isolated vertices (and thus, is also a DAG). The induced
subgraphs G[Vi], 2 ≤ i ≤ k, are trivially connected; moreover, connectivity of
G[V1] is ensured by the fact that vr ∈ V1.

(⇐) Given a solution P = {V1, V2 . . . Vk}, to k-DAGCC-Partition, we
build an independent set V ′

I ⊆ VI of GI , such that |V ′
I | = |VI |−k +1, as follows.

Let V ′
I = Vj \{vr} where Dj is the DAG containing vr. As previously mentioned,

in any solution, any connected subgraph of G of order strictly greater than one
must contain vr. Since we require that for every 1 ≤ i < j ≤ k, Vi ∩ Vj = ∅, at
most one of the Vis can be of order strictly greater than one, and it contains vr.
Thus, |V ′

I | = |Vj | − 1 = ((|VI | + 1) − (k − 1)) − 1, that is |V ′
I | = |VI | − k + 1.

Moreover, V ′
I is indeed an independent set since Dj is a DAG and thus does not

contain cycles. ⊓⊔

Finally, let us prove the inapproximability of Min-DAGCC-Partition when
G is a graph or a tree.

Proposition 6. Min-DAGCC-Partition cannot be approximated within n1−ǫ,

for any ǫ > 0.

Proof. We give an L-reduction from the Minimum Chromatic Number (Min-

CN) problem defined as follows: Given a graph GC = (VC , EC), find a proper
vertex coloring of GC using the minimum number of colors, where a vertex
coloring is said to be proper iff two neighbors in GC carry different colors.

Given any instance GC of Min-CN, we build D and G as follows:

• V = VC

• A = {(v, v′), (v′, v) : (v, v′) ∈ EC}
• E = {(v, v′) : v, v′ ∈ VC} \ EC

In other words, we keep the same set of vertices as in GC , the graph D is
obtained from GC by replacing each edge with two arcs in opposite directions,
while G is the complement of GC . An example of such a construction is given
in Figure 3.

Let us prove that this construction is indeed an L-reduction from Min-

CN. More precisely, we will prove the following property: there exists a proper
coloring for GC using k colors iff there exists a valid cardinality k partition
P = {V1, V2 . . . Vk} of V .

(⇒) Given a coloring of GC with k colors, let Vi, 1 ≤ i ≤ k, be the set of
vertices assigned color i. Let us now show that the partition P = {Vi : 1 ≤ i ≤ k}
is valid (i.e., for every 1 ≤ i ≤ k, D[Vi] is a DAG and G[Vi] is connected). Indeed,
by definition of a proper coloring, each Vi, 1 ≤ i ≤ k, is an independent set.
Thus, any D[Vi], 1 ≤ i ≤ k, is composed of isolated vertices – and therefore is
a DAG. Moreover, the induced subgraphs in G are indeed connected since, by
construction, whenever two vertices are not adjacent in GC , they are in G.

9

1

2 3

4 5

GC

1

2 3

4 5

D

1

2 3

4 5

G

Fig. 3. Illustration of the construction of D and G, given GC . We highlighted a
3-coloring of D and a corresponding valid 3-partition of V .

(⇐) Given a valid k-partition P = {V1, V2 . . . Vk} of V , we assign to any
vertex v ∈ Vi the color i, for any 1 ≤ i ≤ k. This assignment is a proper coloring
since, by construction, no D[Vi], 1 ≤ i ≤ k, contains an arc, otherwise it would
not be a DAG.

The above reduction linearly preserves the approximation, and moreover the
sizes of the solutions in the two problems are equal. Hence, given an approxima-
tion algorithm for Min-DAGCC-Partition, one can derive an algorithm for
Min-CN with the same approximation ratio. Since Min-CN cannot be approx-
imated within n1−ǫ for any ǫ > 0 [23], so does Min-DAGCC-Partition. ⊓⊔

Proposition 7. Min-DAGCC-Partition is APX-hard even when G is a tree.

Proof. We give an L-reduction from the APX-hard problem Set Cover-2 [17]
defined as follows: Given a ground set X = {x1, . . . xn} and a collection of
sets C = {S1, . . . Sq} in which each element of X appears at most twice, find
a minimum set cover C′, i.e. a set C′ ⊆ C such that X =

⋃

Si∈C′ Si and |C′| is

minimum. In the rest of the proof, for any 1 ≤ i ≤ q, we will denote by sj
i the

j-th element of Si.

Given any instance (X , C) of Set Cover-2, we build D and G as follows:

• V = {vr} ∪ {vi : Si ∈ C} ∪ {vk
i : xk = sj

i , Si ∈ C, 1 ≤ j ≤ |Si|}
• A = {(vk

i , vk
j), (vk

j , vk
i) : xk ∈ Si ∩ Sj} ∪ {(vr, v

k
i), (vk

i , vr) : ∄Sj s.t. xk ∈
Si ∩ Sj}

• E = {(vr, vi) : Si ∈ C} ∪ {(vi, v
k
i) : xk ∈ Si, Si ∈ C}.

Otherwise stated, G is a tree rooted at vr, whose children are the vertices
vi, 1 ≤ i ≤ q (where vi, 1 ≤ i ≤ q, represents Si). Each vi has one child per
element of Si (vk

i for xk ∈ Si). In D, the vertices vi, 1 ≤ i ≤ q, are isolated
whereas the two vertices (vk

i , vk
j) representing an element xk appearing twice in

C form a cycle of length two. Each of the remaining vertices forms a cycle of
length two with vr. An illustration of such a construction is given in Figure 4.

10

D

vr

v1 v2 v3 v4

v1

1 v3

1 v4

1 v2

2 v3

2 v1

3 v4

3 v5

4

G

vr

v1 v2 v3 v4

v1

1 v3

1 v4

1 v2

2 v3

2 v1

3 v4

3 v5

4

Fig. 4. Illustration of the construction of D and G, given
C = {{x1, x3, x4}, {x2, x3}, {x1, x4}, {x5}}.

Let us now prove that this construction is indeed an L-reduction; for this,
we show that there is a solution C′ of size k for Set Cover-2 iff there is a valid
partition of V in at most k + 1 sets V1, V2 . . . Vk+1.

(⇒) Given a set-cover C′ ⊆ C of cardinality k, we compute the partition
P = {V1, V2 . . . , Vk, Vk+1} of V as follows: for each Si ∈ C′, 1 ≤ i ≤ k, let
Vi = {vi} ∪ {vk

i : xk ∈ Si}, and let Vk+1 = {vr} ∪ {vj , v
k
j : xk ∈ Sj , Sj ∈ C \ C′}.

In other words, there is a set Vi (inducing the subtree of G rooted at vi) for
each Si belonging to the set cover; whereas Vk+1 contains the remaining vertices
(including the root vr of G). Consequently, by construction, for any 1 ≤ i ≤ k+1,
G[Vi] is indeed connected. Moreover, each D[Vi], 1 ≤ i ≤ k, is a DAG since it does
not contain vr and each element of X occurs at most once in Si. Finally, D[Vk+1]
is also a DAG since, by definition of Set Cover-2, any element appears at most
twice in C and at least once in C′. Therefore, in C \ C′, any element appears at
most once, and thus no cycle occurs in D[Vk+1].

(⇐) Given a valid partition P = {V1, V2 . . . Vk} of V , we build a cover
C′ = {S1, . . . , Sk−1} as follows. Assume, wlog, vr ∈ V1; then C′ = {Si : ∃vj

i 6∈ V1}.
In other words, we add in the cover all the sets having an element whose corre-
sponding vertex does not belong to V1. First, note that, by construction, there
is at most one vertex of {vi : 1 ≤ i ≤ q} in any G[Vj], 2 ≤ j ≤ k, since any path
linking two such vertices goes through vr, which is already contained in V1. It
follows that |C′| ≤ k − 1. It remains to show that C′ is indeed a set cover for
X . To do so, consider any element xi ∈ X . If xi occurs exactly once in C (wlog,
suppose xi ∈ Sj), then the corresponding vertex vi

j cannot belong to V1 since,
by construction, it would induce a cycle with vr in D[V1]. Therefore, Sj ∈ C′.
Otherwise, xi occurs exactly twice, and then at most one of the corresponding
vertices vi

j and vi
j′ belongs to V1, since otherwise it would induce a cycle in D[V1].

Thus, every xi ∈ X appears at least once in C′.

The above reduction is an L-reduction from Set Cover-2 to Min-DAGCC-

Partition. Hence, since Set Cover-2 is APX-hard, so is Min-DAGCC-Partition,
and the proposition is proved. ⊓⊔

11

4 Cover Version of k-DAGCC

As we did in the previous section, we now show several complexity results con-
cerning the k-DAGCC-Cover and Min-DAGCC-Cover problems (see also
Table 2).

Let us first provide a polynomial-time algorithm when G is a path (Proposi-
tion 8). We first prove the following lemma.

Lemma 1. When G is a path, k-DAGCC-Cover admits a YES answer iff

k-DAGCC-Partition admits a YES answer.

Proof. Any partition being a cover, if k-DAGCC-Partition admits a YES an-
swer, then so does k-DAGCC-Cover. Conversely, consider any positive answer
to k-DAGCC-Cover. Hence, there exists a cover C = {V1, V2, . . . Vk} of D such
that for every 1 ≤ i ≤ k, G[Vi] is connected and D[Vi] is a DAG. Since G is a
path, so does any G[Vi]. Suppose now that a vertex v ∈ V belongs to at least
three pairwise distinct sets Vp, Vq, Vr from C. In that case, G being a path, one
of these three sets, say (wlog) Vp, satisfies Vp ⊆ Vq ∪ Vr, and we can remove Vp

from C and obtain a strictly smaller cover. Applying this rule until no such case
occurs, we end up with a cover C′ = {V ′

1 , . . . V ′
k′}, k′ ≤ k, in which every vertex

v ∈ V belongs to at most two different sets of C′. Therefore, assuming the V ′
i s

are ordered according to their leftmost vertex in G, we consider the following
partition: P = {V ′′

i = V ′
i \ V ′

i+1 : 1 ≤ i < k′ s.t. V ′
i ∈ C′} ∪ {V ′

k′}. P is indeed
a partition of V , of cardinality k′ ≤ k ; besides, (a) since for any 1 ≤ i < k′,
D[V ′

i] is a DAG, so does any D[V ′′
i] ; (b) D[V ′

k′] is a DAG by hypothesis, and
(c) G[V ′′

i], 1 ≤ i < k′, and G[V ′
k′] are all subpaths of G, and therefore connected.

Thus k-DAGCC-Partition admits a YES answer, and the lemma is proved.
⊓⊔

Proposition 8. Min-DAGCC-Cover is polynomial-time solvable when G is

a path.

Proof. By Lemma 1, we know that when G is a path, the (YES/NO) solutions
of k-DAGCC-Partition and k-DAGCC-Cover are equivalent. Thus, in the
minimization versions of both problems (namely, Min-DAGCC-Partition and
Min-DAGCC-Cover), the same minimum value is reached, and in particular
if there exists a cardinality k solution to Min-DAGCC-Partition, then there
exists a cardinality k solution to Min-DAGCC-Cover. Besides, any partition
being a cover, we conclude that any solution to Min-DAGCC-Partition is also
a solution to Min-DAGCC-Cover Since Min-DAGCC-Partition is polyno-
mial time solvable (see Proposition 1), so does Min-DAGCC-Cover. ⊓⊔

As opposed to k-DAGCC-Partition, k-DAGCC-Cover proves to be NP-
complete even when G is a star and k is a constant.

Proposition 9. For any k ≥ 3, k-DAGCC-Cover is NP-complete, even when

G is a star.

12

Proof. Clearly, k-DAGCC-Cover is in NP. In order to prove that the prob-
lem is NP-hard, we provide a reduction from the Minimum Chromatic Num-

ber (Min-CN) problem, in its natural decision version: Given a graph GC =
(VC , EC) and an integer k, does there exist a proper vertex coloring of GC using
at most k colors ? This problem has been shown to be NP-hard for any k ≥ 3 [7].

Given any instance GC of Min-CN, we build D and G as follows:

• V = VC ∪ {vr}
• A = {(v, v′), (v′, v) : (v, v′) ∈ EC} ∪ {(v, vr) : v ∈ VC}
• E = {(vr, v) : v ∈ VC}

In other words, D is obtained from GC by replacing each edge by two arcs
in opposite directions, and by adding an arc from any vertex to vr, while G is a
star whose center is vr.

We now prove the following property: there exists a proper coloring for GC

using k colors iff there exists a valid cardinality k cover C = {V1, V2 . . . Vk} of V .
(⇒) Given a proper coloring of GC with k colors, let Si, 1 ≤ i ≤ k, be the set

of vertices assigned color k. We compute a cardinality k cover C = {V1, V2 . . . Vk}
of V as follows: for any 1 ≤ i ≤ k, Vi = Si ∪ {vr}. By definition of a proper
coloring, each Si is an independent set in GC (thus in D). Hence, since the out-
degree of vr is equal to zero, any D[Vi], 1 ≤ i ≤ k, is a DAG. Moreover, any
G[Vi] is indeed connected due to the fact that (i) G is star whose center is vr,
and (ii) every Vi, 1 ≤ i ≤ k, contains vr. Hence, C is valid.

(⇐) Given a valid cardinality k cover C = {V1, V2 . . . Vk} of V , we assign to
any vertex v ∈ Vi \ {vr} the color i, for any 1 ≤ i ≤ k. This assignment is a
proper coloring of GC since, by construction, no Vi can contain two neighbors
in GC , since otherwise, by construction of D, D[Vi] would not be a DAG. ⊓⊔

We finally show that Min-DAGCC-Cover is hard to approximate. Note
that this inapproximability even holds when G is a star (instead of general
graphs for the problem Min-DAGCC-Partition).

Proposition 10. Min-DAGCC-Cover cannot be approximated within n1−ǫ,

for any ǫ > 0, even when G is a star.

Proof. The reduction provided in proof of Proposition 9 is actually an L-reduction,
since the sizes of the solutions in the two problems are equal (we have indeed
proved, following our reduction, that “there exists a proper coloring for GC us-
ing k colors iff there exists a valid cardinality k cover C = {V1, V2 . . . Vk} of
V ”). Hence, given any approximation algorithm for Min-DAGCC-Cover, one
can derive an algorithm for Min-CN, with the same approximation ratio. Since
Min-CN cannot be approximated within n1−ǫ for any ǫ > 0 [23], so does Min-

DAGCC-Cover.

13

5 Conclusion

In this paper, we have studied the problem of decomposing (i.e., partitioning
or covering) a directed graph D into DAGs, such that each DAG induces a
connected subgraph in a given undirected graph G built on same vertex set
as D. We have provided, depending on the constraints imposed on the input,
several polynomial-time algorithms, as well as hardness and inapproximability
results.

There are still several open problems worthwhile to study. For example, one
may consider the parameterized complexity of k-DAGCC-Partition, where
the parameter is the number of partitions, in the specific case where G is a tree
(we indeed know that no FPT algorithm of complexity f(k)nO(1) is possible
when G is a graph, since the problem is NP-complete for k = 2). One may also
consider studying the approximability of Min-DAGCC-Partition.

References

1. F. Boyer, A. Morgat, L. Labarre, J. Pothier, and A. Viari. Syntons, metabolons
and interactons: an exact graph-theoretical approach for exploring neighbourhood
between genomic and functional data. Bioinformatics, 21(23):4209–4215, 2005.

2. Y.-P. Deniélou, F. Boyer, A. Viari, and M.-F. Sagot. Multiple alignment of bio-
logical networks: A flexible approach. In Proc. 20th Annual Symposium on Com-
binatorial Pattern Matching (CPM), volume 5577 of Lecture Notes in Computer
Science, pages 263–273, 2009.

3. P. Durek and D. Walther. The integrated analysis of metabolic and protein in-
teraction networks reveals novel molecular organizing principles. BMC Syst Biol,
2(1), 2008.

4. G. Fertin, H. Mohamed Babou, and I. Rusu. A pattern-
guided approach to compare heterogeneous networks. Available at
http://pagesperso.lina.univ-nantes.fr/∼E09D478T/SGM-DB.pdf. Submit-
ted, 2011.

5. J. Flannick, A. Novak, B. S. Srinivasan, H. H. McAdams, and S. Batzoglou. Graem-
lin: General and robust alignment of multiple large interaction networks. Genome
Res, 16(9):1169–1181, 2006.

6. I. Gamzu, D. Segev, and R. Sharan. Improved orientations of physical networks.
In Proc. 10th Workshop on Algorithms in Bioinformatics (WABI 2010), volume
6293 of Lecture Notes in Bioinformatics, pages 215–225, 2010.

7. M. Garey and D. Johnson. Computers and Intractability: A guide to the theory of
NP-completeness. W.H. Freeman, San Francisco, 1979.

8. A. Gitter, J. Klein-Seetharaman, A. Gupta, and Z. Bar-Joseph. Discovering path-
ways by orienting edges in protein interaction networks. Nucleic Acids Research,
39(4):e22, 2011.

9. C. Huthmacher, C. Gille, and H. Holzhütter. A computational analysis of protein
interactions in metabolic networks reveals novel enzyme pairs potentially involved
in metabolic channeling. J Theor Biol, 252(3):456 – 464, 2008.

10. B. P. Kelley, R. Sharan, and R. M. Karp et al. Conserved pathways within bacteria
and yeast as revealed by global protein network alignment. Proc Natl Acad Sci
USA, 100(20):11394–11399, 2003.

14

11. B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwell, and T. Ideker.
Pathblast: a tool for alignment of protein interaction networks. Nucleic Acids Res,
32(Web Server issue), 2004.

12. O. Kuchaiev, T. Milenkovic, V. Memisevic, W. Hayes, and N. Przulj. Topological
network alignment uncovers biological function and phylogeny. J R Soc Interface,
7(50):1341–1354, 2010.

13. I. Lee, S. V. Date, A. T. Adai, and E. M. Marcotte. A probabilistic functional
network of yeast genes. Science, 306:1555–1558, 2004.

14. A. Medvedovsky, V. Bafna, U. Zwick, and R. Sharan. An algorithm for orienting
graphs based on cause-effect pairs and its applications to orienting protein net-
works. In Proc. 8th Workshop on Algorithms in Bioinformatics (WABI 2008),
volume 5251 of Lecture Notes in Bioinformatics, pages 222–232, 2008.

15. M. Narayanan and R. M. Karp. Comparing protein interaction networks via a
graph match-and-split algorithm. J of Comput Biol, 14(7):892–907, 2007.

16. C. Pal and L. Hurst. Evidence against the selfish operon theory. Trends Genet,
20:232–234, 2004.

17. C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complex-
ity classes. J Comput Syst Sci, 43(3):425–440, 1991.

18. R. Y. Pinter, O. Rokhlenko, E. Yeger-Lotem, and M. Ziv-Ukelson. Alignment of
metabolic pathways. Bioinformatics, 21(16):3401–3408, 2005.

19. S. Rison, S. Teichmann, and J. Thornton. Homology, pathway distance and chro-
mosomal localisation of the small molecule metabolism enzymes in Escherichia coli.
J Mol Biol, 318:911–932, 2002.

20. R. Sharan and T. Ideker. Modeling cellular machinery through biological network
comparison. Nature Biotechnol, 4(4):427–433, 2006.

21. W. Tian and N. F. Samatova. Pairwise alignment of interaction networks by fast
identification of maximal conserved patterns. In Proc. 14th Pacific Symposium on
Biocomputing (PSB), pages 99–110, 2009.

22. Y. Zheng, J. Szustakowski, L. Fortnow, R. Roberts, and S. Kasif. Computational
identification of operons in microbial genomes. Genome Res, 12:1221–1230, 2002.

23. D. Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, 3(1):103–128, 2007.

15

	Algorithmic Aspects of Heterogeneous Biological Networks Comparison
	Guillaume Blin, Guillaume Fertin, Hafedh Mohamed-Babou, Irena Rusu, Florian Sikora, Stéphane Vialette

