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Infection load structured SI model with exponential
velocity and external source of contamination

Antoine Perasso Ulrich Razafisoh

Abstract—A mathematical SI model is developed for the closed population with an external source of contamination
dynamics of a contagious disease in a closed population with This incorporates infection load structure of the infected
an external source of contamination. We prove existence and population, denoted € .J, with i~ as minimal infection

uniqueness of a non-negative mild solution of the problem usg load in the infected population: this infection load is a
semigroup theory. We finally illustrate the model with numerical - N i
simulations. threshold from which the individual are considered to be
infected. As a consequence, an individual with an infection
load: € (0,7~) appears in the model in the susceptible class
S. The model also incorporates a constant mortality fate
and a constant entering flux into the susceptible clasS.

|. INTRODUCTION The mortality rateu(:) for the infected class depends on the

In this article is considered an infection load epidemi@lognfection loadi. A consequence of the assumption (|||) is

ical SI model, described by a system of nonlinear partial difhat functiony satisfies
ferential equations of transport type. The time variabléds

Index Terms—Epidemiology, SI model, nonlinear PDE, trans-
port equation, semigroup theory

notedt > 0 and the infection load € J = (i~, +o0) C RT. lim p(s)ds = +oc0. (2)
It is supposed that the infection loathcreases exponentially oo Ji-
with time according to the evolution equati(gf] =vwvi. This The limit in equation (2) models that infected individuals
leads to the following problem, leave the staged by dying of the disease with a finite
ds(t) infection load. The horizontal transmission, with reteis
=7 (o + @)S(t) — BS()T(I)(t), t=>0, modeled With. variabl_e inlitial Io_ad of thg infectious agent
oI(t,i) O(wil)(t,i) at the contagion, Wh_lch is qs&gned using the _funcﬂan
5 = 5 — p(@)I(t, 1) The external contamination is modelgd as an input of the
FOHBSHTE), t>0,ic ], system that affects the susceptible with a constant d¢ate
- attributing the minimal initial infection load~. This is
vitI(t,i7) = aS(t), stated in Problem (1) by the loopback boundary condition
S(0) =S, Ry, I(0,)) = Io € L1 (J). vi~I(t,i~) = aS(t). As a consequence, a zero valuecof

(1) induces a problem without external contamination.

In Problem (1),7 is the integral operator defined for some
integrable functior on J by

’Thr—>/

implying thatS(t) + 7(I)(t) denotes the total population at ~ . @ g
time ¢ > 0, with initial populationSy + 7 (1o).

External Contamination

S T(I)
Throughout the article the following assumptions are made AT (I)
on the model: 1o 1%
(i) 5, po, v, >0 and~vy >0,
(i) function ® € C>°(J) is a non negative function such
that lim; 40 (I)( ) =0 and fJ dl =1 Fig. 1. Fluxes of population dynamics diagram
(iii) function u € L*°(J) is such thaip( ) > o for almost
every (fa.e) € J. This article firstly investigates in Section Il the well-

This mathematical model is a variation of a Sl epidemigposedness of Problem (1): the existence and uniqueness
logical model of scrapie [8], [10], where the age structureof a non-negative mild solution is proved using a semi-
is avoid. See [9] and references therein for a review of §roup approach. To achieve that goal, we start by checking
models described by transport equations, and [3], [4] or [B)e existence of a strongly continuous semigroup for the
for a presentation and examples of classical S| models -Prdibearized problem in Section II-A, by incorporating the
lem (1) describes the dynamics of a contagious disease ifpapback boundary condition in the domain of a densely
' o defined differential operator. Then Section II-B is dedicht

TU_MR6249 Chrono-environnement - Universite de Franche¥®0 q the study of the nonlinear part of Problem (1), proving
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witeede that this latter satisfies a Lipschitz regularity. This tipiz
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and uniqueness of a non-negative mild solution for theor (y,g) € X, let us look for (z,¢) € D(A) such that
nonlinear problem, which is finally proved to be defined ot\l — A)(z, ») = (y, g). This is clearly equivalent to

the time horizon0, +o0|. 1

In a second step, in Section Ill, we illustrate the model T = my, (4)
with numerical simulations throughout a numerical scheme Az (A +p)

adapted to the model we make explicit in the article. o’ + T@ =g,

Finally, in Section IV, we conclude the present work.
whereg(i) = vip(i). An integration of the previous equality

gives for. € J andi > ¢,
Il. M ATHEMATICAL ANALYSIS

N e S L CONe P
In all that follows, A denotes the set @(i) = p(1)e I ed +/ e JI TR g(s) ds.
A={AeR, A>v—pu}, Since we want(z,¢) € D(A), when. goes toi~ one
. . . deduces thap satisfies
(X, |- llx) is the Banach space with product norm given by ap _
. ar i awe@ g 1T e g,
X =Rx L(J), pli) = S I My 2 [ ) s

(5)
We now prove that suclir, ¢) € D(A). Indeed, using the
expression ofp given in (5) and assumption (iii) om,
classical majorations and Fubini’s theorem imply foe A,

and X, is the non-negative cone of, that isX; = R x
LY (J).
For every constank > 0, Br denotes the ball of(,

Br={r e X,||z||x < R}. +oo
r=1 |zl x } / lo(i)] di < ax
e A+ o
A. The linear problem + /.+OO (/JFOO ie* [ ar di> lg(s)| ds.
Related to Problem (1), we consider the differential oper- v s v (6)

atorA: D(A) C X — X defined by
' . . For A € A equation (4) impliesx|z| < |y| so we deduce
D(A) ={(z,¢) € X, (ip) € W' (J) andp(i”) = az},  from (6)

o — +oo
A:( kn 2)’ / lw(i)ldiéAjuo<|y|+|\g||p>. (7)
)

€ X and consequently to (4),

with This finally implies that x,

d
Ly = ——(vip) — e

The aim of this section is to prove th@gt,, D(A)) generates
a positiveCy semigroup.

l[(z; @)l x < 1y, 9)llx-

A+ 1o

We now check thatie) € Wh1(J).

Assumption (iii) ony implies that forh € A,
Proposition 1. The domainD(A) is a dense subset of oo boo s .\ 2t

X, and the resolvent sei(A) contains A. Moreover, the / o= Il 2 dr g </ (L) Y odi < 1o
resolventR) is given for every € A by i- —Ji-

7

Ria(y) Moreover, Fubini's theorem and assumption (iii) pryield
RA(yvg) = < R2/{(y g) >7 (3) for A € A,
7 +oo i g o
where / / o A+”‘7r()dT|g(S)|ds i
1 )
Rl k(y) =Y, oo oo ' _*tuo
: X , |
onr o+« i Ada(r) g < /7 / (;) di | lg(s)| ds
Roa(y,9) = V—@,Rm(y)eﬁr M ar ; :
. 14
¢ 7 w(r < 5 ) -
b L [ ey g < e lallu)
14 i

_ Equation (5) and the previous estimations prove tha}
Proof: Consider for every: € R the dense subsdd,  11(.7). Finally, form the expression (5) it is clear tht) €
of L'(J) given by WULL(J). So (x,p) € D(A) and the expression (3) d®y
- . follows from (4) and (5). ]
DIZ{gECC(J), g(l ):aw}a

B Corollary 1. The resolveni?, satisfies
where C.(J) denotes the set of continuous functions with

2
compact support. We clearly ha\@ ({z} x D) C D(A), |RY]| € ~——=, VYAE€A, VneN" (8)
seR (A =+ ko)
and sinceUcr {2} x D, = X, we deduce thaD(A) is Proof: Let us denoteR} = (RT,,R;,) for every

dense inX. n € N. Using equation (4) and the same calculation we



developped to get (7), an induction proves that for every 1) Existence and uniqueness of the solution on finite

n € N* and every(y,g) € X, time horizon: In this section, we aim at proving existence,
unigueness and positivity of the solution of Problem (1) on a
IRTA(W)| < ——1yl, finite time horizon. This solution is defined in a mild sense,
. (A =+ o) we refer to [2] for the definition.
/ |RY \(z,9)] di < (yl + gl L), Proposition 2. For every (So,Iy) € X4, there exists
i ’ (A + po)™ tmaz < oo such that Problem(1) has a unique mild
and (8) directly ylelds m solution (S, I) S C([O, T],X+) for everyT < tmaz-
Theorem 1. The differential operator(A, D(A)) is an Proof: We prove the theorem with a fixed point method,

dapting the ideas of [11].
et m > 0. Consider, for),, that satisfies (12), the operator

A,, = A— )\, I and the functionf,, = f + A\l — g

A consequence of Theorem 1 is théf, is an infinitesimal

Proof: For A € A one gets\-+ iy )" < (A-+ ) 9SNera(0T ONY of a positive Cy semigroup{T:, (1)} =0

for everyn € N. Then the Corollary 1 and the Hille-Yosida
theorem [5] prove the existence of the semigréiifa (¢) }+>o (T4, (t)]] < 2e—Ho=2Am)t g >,

and the majoration (9). Moreover, as it is proved in proved in ) )

[1], the resolveni?, being positive orl.!(.J), the semigroup SO one can consider. > 0 big enough such that,, > 0

infinitesimal generator of a strongly continuous positivél_l
semigroup{T'4(t)}:>0 on X that satisfies

[Ta(t)] < 2e=HOt g >0, (9)

{Ta(t)}+>0 is also positive. m given by
rm = 2([(S0, lo)l|x sup |[Ta,,(t)]-
. t€[0,1]
B. The non-linear problem L
satisfies
In this section, we tackle the non-linearity in Problem 1 T < M.
proving it satisfies a Lipschitz condition. To this goal, we .
check that Problem 1 rewrites as In all that follows, let us denoté(™ the subset ofX given
by
d { St S(t X" =X, NB, .
%<I()>A<I()>+f(5(t),f(t)), =X 0B
(1) (t) (10) Sincer,, < m we have
S(0)=8,eRy, I(0,)=1Iye LL(J), :
(0)=So € Ry, 1(0.7) =l € LL()) Xin C B 13

where functionf : X — X is given by Let + > 0 be such that

Flu,v) = ( 7~ BuT(v) ) : (11) 7 < min (1, 150, To)llx ) : (14)

BLuT (v) o (A + Am)
Lemma 1. The functionf : X — X given in(11) satisfies WhereA is given in Proposition 1.
the following properties : Consider the mapping” : C([0,7],X) — C([0,7], X)
defined by

1) JA > 0, VM > 0, V((ul,vl), (UQ,U2>> S BJQM,
F(U(S)a U(S)) =Ta,, (ﬁ)(Sm IO)

+f " T (t = ) fn(u(s), 0(s)) ds.

Since f»,, (0) = 0 in X, Proposition 1 implies that fot €
(u,v) € BN Xy = flu,v) + Am(u,v) € X4 (12)  [0,7] and (u,v) € C([0,7], B.,.),

[|f(ur,v1) = f(uz,v2)[|x < AM]|[(u1,v1)—(uz,v2)]x,

Proof: Let M > 0 and ((u1,v1), (ug,v2)) € B2,. [F(u(t),v(t))llx < )zl[lopt 1T, ()11 (10, Lo) || x

Straightforward computations give =
+trm (Arm + Am)),

[ur T (v1) — u2T (v2)| < M| (ur,v1) — (u2,v2)| x. and consequently to (14) the mapping preserves
([0, 7], By, ). Moreover, equations (12) and (13) imply that
F preservesC([0, 7], X\™) for (So,Ip) € X, since the

semigroup{T4,, (t)}+>0 IS positive.
— < — m =
1f (wr01) = fluz, v2)llx < AM (w1, v2) = (uz, va)llx, Similar calculations prove thak' is a contraction mapping

T ; 1
whereA = 233 is a positive constant. Moreover, given> 0, °f C([0,7], X) with Lipschitz constang.

on gets for everyu, v) € B,,NX. the following estimation, Consequently/” is a contraction of’([0, 7], X}) and the
Banach fixed point theorem implies the existence and the

v = BuT () + At > (A — Bm)u, uniqueness ofu,v) € C([0,7], X}™) such thatF(a,v) =
(a,v) in C([0, 7], X). By similar arguments than ones devel-
so (12) is satisfied for every,, > Gm. B oped in [7], the solution can then be extended[@t,,,.[

Hypothesis (ii) on® and the previous inequality imply



with ¢4 < +00.
Finally, every mild solution of Problem (1) is a mild solutio
of the following problem,

a (s
7 (70 )= (
S(0) =Sy € Ry, I(0,-

so the unique fixed poir(iz, ©
solution of Problem (10).

) + fm(S(1), 1(1)),

=1 e L_l‘_(J),

of F'is also the unique mild
[ |

)
)

and so

t

Fou(t,)] < Lov(0,E)+et+ [ (nov(s, ) +r)Tov(s, €)ds.
0

A standard Gronwall inequality argument then gives

[Lo(t,&)] < Toy(0,8) +ct

t
b [ 0009 + es)(n0 (5, + v)el G ingy
0

2) Global existenceMWe now prove that the solution can

be extended on the whole horizon tifRe".

Theorem 2. For every(Sy, Iy) € X4, the Problem(1) has
a unique mild solution(S,I) € C(R*, X ).

Proof: We suppose by contradiction that,,, < +oo.
Then Proposition 2 implies thdtS, I) € C([0, tmaz], X+),

But if ¢,,.. < 400, then hypothesis (iii) on functiop and
the previous inequality yields a contradiction with (17).
To conclude, we necessarily ha¥g,,—+oo- [ ]

IIl. NUMERICAL SIMULATIONS

and standard results from [7] imply that the solution the . . . . .
[7] imply G] this section we illustrate the model with some numerical

satisfies
lim
t_>t’V‘VL(l"17

1(5(), I(1))[[x = +oc. (15)

simulations. We start with the presentation of the scheme.

SinceS and! are non-negative functions and all the param-

eters are positive, Problem (1) implies that
0<S(t)<So+n~t, Vt>0.

But sincet,,.. < +oo one can deduce that

0< %1_13;25 S(t) < 115137573?5(15) < +o0. (16)
Then equation (15) necessarily implies
fim sup @)y = +oo. (17)
Suppose now that
ltigltsup St)T (I)(t) = +oc. (18)

Since from the equation I8 of Problem (1) one gets

aws&+w—ﬁA S(s)T(I)(s) ds,

the latter equality combined to (18) and Fatou’s Lemma

would imply thatlim inf, ., S(t) = —oo, which contra-
dicts (16). So théim sup in (18) is finished. Taking (16)-(17)
into account one deduces that necessanily_,; . S(t)
0 and alsolim,_,,,, S’(t) = 0. Assigning these limits in
the equation inS in Problem (1) one gets
lim ST (I)(t) = 2

t—=tmax

: 19
3 (19)
Consider now the change of variablgs= (v¢1,») given
by

Y (€)= (L) = (t,ifeu(tfg)).

Classical differential calculus applied oo ¢ leads to the
following differential equation,

oI
(821/]) =—(poa+v)loth+ Doy BST(I).
Sincet — S(¢t)7 (I)(t) is a continuous function, then, taking

into account (19) and hypothesis (ii) on functidn there
exists a positive constamt> 0 such that the latter equation
implies

oI o)
ot

}§c+(uo¢2+y)foq/)

A. Numerical scheme

We introduce an infection load-time grids where the infetti
load and the time steps ar&: and At respectively. We
define i;,1,o = i~ + jAi, t" = nAt and the cells
Kj =lij_1/2,ij41/2[ centered at; = 5(i;_1/2 + i11/2),

1 < j < M whereM is the number of cells . We denote by
I} the approximation of the average bft", ) over the cell

K;, namely

1j+1/2

/ijl/2

Since the propagation speed of the transport equation is not
finite, we use an implicit upwind finite volume scheme in
order to computd . The general scheme is as follow:

1

I ~ —
A

J

It i)di.

« We compute the initial states:

412
Iy(i)di.

tj—1/2

1

0 _ 0 _
S = 5(0) and I; i

o Assume nowS™ andI™ = (I7,..
> we define

., I},) are computed,

M
Tar(I") = Ay 17,
j=1

> we compute

Sn+1 — 1
1+ At(po + o+ BT (IM))

(vAt +8™),
> we compute/"*! by solving the following linear
system:

At n At .
— I/Elj_l/2]j_+11 + <1 + v/ + Atuj) I +1
= I A, BT T (1), 1 < < M,

wherep; = u(i;) and®; = o(3;).



TABLE |
PARAMETER VALUES USED FOR THE SIMULATIONS

1004

90
Parameter definition symbol value o
initial susceptible population size  Sp 100 indiv. ,
initial infected population size Io 0 indiv. ™
susceptible mortality rate 140 0.1 year! ool
infected mortality rate m 0.15 year?! ]
infection load growth rate v 103 year! S
contamination rate ey 0.02 year?! = 0o
horizontal transmission rate B 3.10~3 (indiv. year)~! ]
entering flux {v1;72} {0; 1} indiv.year ! 1

204

0]

B. Numerical simulations S ok o | os ok | ok

For the simulations, we consider the truncated domain

(17,iT) where we set~ = 1 andi™ = 2. We use the _ .
NI ) . Fig. 2. Case 14, = 0) ; Total populationS (t) + Tas (I)(t t
infection load stepAi = 0.05 and a time step\t = 0.1. We  of yoar ase 1 = 0) ; Total populationS () + 7ar (1)(2) on a quarter

present two cases of simulation. Both suppose that thaliniti

population does not contain infected, statedipy= 0. %07
The first case of simulation corresponds to a zero entering e
flux in the population {; = 0). One can then check on ol
Figure 2 that the total population decreases and convenges t ol
0 with time. o
In the second case, the entering flux is not zego=£ 1). One i
. . . year
can check that, with the parameters used for the simulation
an epidemic occurs at the beginning of the contamination w
process. Moreover, the disease seems to be persisterd-pers E
tent in time in the following sense : there exists> 0 such S o
IV. CONCLUSION 500 005 0 ear O 020 05

In this article, we have proved the existence and the . _ _
uniqueness of a non negative mild solution for a SI modgf;auaﬁ:rs %fzyﬁ?ar: 1) : Suscepiibles(t) and total infectedTa (1)(t)
that describes the evolution of a disease in a closed popula-

tion. This disease is characterized by an exponential itgloc

of the infection load, a contagious process between indivigd1] . segal,Non-linear semi-groupsAnnals of Mathematics 78:339-364,
uals, and an external source of contamination. This last is 1963. o o _ o
supposed to be proportional to the susceptible populatidn a2 T';é%r;rc';m;,{'(\f%Zﬁ]rgittlgtsiowar%?;fg?np?ilr?lc%%c)i\nnzcgct)%n Seriesn
is modeled with a loopback boundary condition. Accordingly ' '

to the simulations made, further investigations on this ehod

shall prove the persistence of the disease when the entering

flux ~ is non zero.
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