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Infection load structured SI model with exponential
velocity and external source of contamination

Antoine Perasso†, Ulrich Razafison‡

Abstract—A mathematical SI model is developed for the
dynamics of a contagious disease in a closed population with
an external source of contamination. We prove existence and
uniqueness of a non-negative mild solution of the problem using
semigroup theory. We finally illustrate the model with numerical
simulations.

Index Terms—Epidemiology, SI model, nonlinear PDE, trans-
port equation, semigroup theory

I. I NTRODUCTION

In this article is considered an infection load epidemiolog-
ical SI model, described by a system of nonlinear partial dif-
ferential equations of transport type. The time variable isde-
notedt ≥ 0 and the infection loadi ∈ J = (i−,+∞) ⊂ R

+.
It is supposed that the infection loadi increases exponentially
with time according to the evolution equationdidt = νi. This
leads to the following problem,










































dS(t)

dt
= γ − (µ0 + α)S(t) − βS(t)T (I)(t), t ≥ 0,

∂I(t, i)

∂t
= −

∂(νiI)(t, i)

∂i
− µ(i)I(t, i)

+Φ(i)βS(t)T (I)(t), t ≥ 0, i ∈ J,

νi−I(t, i−) = αS(t),

S(0) = S0 ∈ R+, I(0, ·) = I0 ∈ L1
+(J).

(1)
In Problem (1),T is the integral operator defined for some
integrable functionh on J by

T : h 7→

∫

J

h(i) di,

implying thatS(t) + T (I)(t) denotes the total population at
time t ≥ 0, with initial populationS0 + T (I0).

Throughout the article the following assumptions are made
on the model:

(i) β, µ0, ν, α > 0 andγ ≥ 0,
(ii) function Φ ∈ C∞(J) is a non negative function such

that limi→+∞ Φ(i) = 0 and
∫

J Φ(i)di = 1.
(iii) function µ ∈ L∞(J) is such thatµ(i) ≥ µ0 for almost

every (f.a.e)i ∈ J .
This mathematical model is a variation of a SI epidemio-
logical model of scrapie [8], [10], where the age structured
is avoid. See [9] and references therein for a review of SI
models described by transport equations, and [3], [4] or [6]
for a presentation and examples of classical SI models. Prob-
lem (1) describes the dynamics of a contagious disease in a
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closed population with an external source of contamination.
This incorporates infection load structure of the infected
population, denotedi ∈ J , with i− as minimal infection
load in the infected population: this infection loadi− is a
threshold from which the individual are considered to be
infected. As a consequence, an individual with an infection
load i ∈ (0, i−) appears in the model in the susceptible class
S. The model also incorporates a constant mortality rateµ0

and a constant entering fluxγ into the susceptible classS.
The mortality rateµ(i) for the infected class depends on the
infection load i. A consequence of the assumption (iii) is
that functionµ satisfies

lim
i→+∞

∫ i

i−
µ(s)ds = +∞. (2)

The limit in equation (2) models that infected individuals
leave the stageI by dying of the disease with a finite
infection load. The horizontal transmission, with rateβ, is
modeled with variable initial load of the infectious agent
at the contagion, which is assigned using the functionΦ.
The external contamination is modeled as an input of the
system that affects the susceptible with a constant rateα,
attributing the minimal initial infection loadi−. This is
stated in Problem (1) by the loopback boundary condition
νi−I(t, i−) = αS(t). As a consequence, a zero value ofα

induces a problem without external contamination.

Fig. 1. Fluxes of population dynamics diagram

This article firstly investigates in Section II the well-
posedness of Problem (1): the existence and uniqueness
of a non-negative mild solution is proved using a semi-
group approach. To achieve that goal, we start by checking
the existence of a strongly continuous semigroup for the
linearized problem in Section II-A, by incorporating the
loopback boundary condition in the domain of a densely
defined differential operator. Then Section II-B is dedicated
to the study of the nonlinear part of Problem (1), proving
that this latter satisfies a Lipschitz regularity. This lipschitz
perturbation of the linear problem then induces the existence



and uniqueness of a non-negative mild solution for the
nonlinear problem, which is finally proved to be defined on
the time horizon[0,+∞[.
In a second step, in Section III, we illustrate the model
with numerical simulations throughout a numerical scheme
adapted to the model we make explicit in the article.
Finally, in Section IV, we conclude the present work.

II. M ATHEMATICAL ANALYSIS

In all that follows,∆ denotes the set

∆ = {λ ∈ R, λ > ν − µ0},

(X, ‖ · ‖X) is the Banach space with product norm given by

X = R× L1(J),

andX+ is the non-negative cone ofX , that isX+ = R+ ×
L1
+(J).

For every constantR > 0, BR denotes the ball ofX ,

BR = {x ∈ X, ‖x‖X ≤ R}.

A. The linear problem

Related to Problem (1), we consider the differential oper-
atorA : D(A) ⊂ X → X defined by

D(A) = {(x, ϕ) ∈ X, (iϕ) ∈ W 1,1(J) andϕ(i−) = αx},

A =

(

−µ0 − α 0
0 L

)

,

with

Lϕ = −
d

di
(νiϕ)− µϕ.

The aim of this section is to prove that(A,D(A)) generates
a positiveC0 semigroup.

Proposition 1. The domainD(A) is a dense subset of
X , and the resolvent setρ(A) contains∆. Moreover, the
resolventRλ is given for everyλ ∈ ∆ by

Rλ(y, g) =

(

R1,λ(y)
R2,λ(y, g)

)

, (3)

where

R1,λ(y) =
1

λ+ µ0 + α
y,

R2,λ(y, g) =
α

νi
R1,λ(y)e

−
∫ i
i−

λ+µ(r)
νr dr

+
1

νi

∫ i

i−
e−

∫ i
s

λ+µ(r)
νr drg(s) ds.

Proof: Consider for everyx ∈ R the dense subsetDx

of L1(J) given by

Dx = {g ∈ Cc(J̄), g(i
−) = αx},

whereCc(J̄) denotes the set of continuous functions with
compact support. We clearly have

⋃

x∈R

(

{x}×Dx

)

⊂ D(A),

and since∪x∈R {x} ×Dx = X , we deduce thatD(A) is
dense inX .

For (y, g) ∈ X , let us look for (x, ϕ) ∈ D(A) such that
(λI −A)(x, ϕ) = (y, g). This is clearly equivalent to

x =
1

λ+ µ0 + α
y, (4)

dϕ̂

di
+

(λ+ µ)

νi
ϕ̂ = g,

whereϕ̂(i) = νiϕ(i). An integration of the previous equality
gives for ι ∈ J and i ≥ ι,

ϕ̂(i) = ϕ̂(ι)e−
∫

i
ι

λ+µ(r)
νr dr +

∫ i

ι

e−
∫

i
s

λ+µ(r)
νr drg(s) ds.

Since we want(x, ϕ) ∈ D(A), when ι goes to i− one
deduces thatϕ satisfies

ϕ(i) =
αx

νi
e−

∫
i
i−

λ+µ(r)
νr dr +

1

νi

∫ i

i−
e−

∫
i
s

λ+µ(r)
νr drg(s) ds.

(5)
We now prove that such(x, ϕ) ∈ D(A). Indeed, using the
expression ofϕ given in (5) and assumption (iii) onµ,
classical majorations and Fubini’s theorem imply forλ ∈ ∆,
∫ +∞

i−
|ϕ(i)| di ≤

αx

λ+ µ0

+

∫ +∞

i−

(∫ +∞

s

1

νi
e−

∫ i
s

λ+µ(r)
νr dr di

)

|g(s)| ds.

(6)

For λ ∈ ∆ equation (4) impliesα|x| ≤ |y| so we deduce
from (6)

∫ +∞

i−
|ϕ(i)| di ≤

1

λ+ µ0
(|y|+ ‖g‖L1). (7)

This finally implies that(x, ϕ) ∈ X and consequently to (4),

‖(x, ϕ)‖X ≤
2

λ+ µ0
‖(y, g)‖X .

We now check that(iϕ) ∈ W 1,1(J).
Assumption (iii) onµ implies that forλ ∈ ∆,

∫ +∞

i−
e−

∫
i
i−

λ+µ(r)
νr drdi ≤

∫ +∞

i−

(

i

i−

)−
λ+µ0

ν

di < +∞.

Moreover, Fubini’s theorem and assumption (iii) onµ yield
for λ ∈ ∆,
∫ +∞

i−

∫ i

i−
e−

∫
i
s

λ+µ(r)
νr dr|g(s)|ds di

≤

∫ +∞

i−





∫ +∞

s

(

i

s

)−
λ+µ0

ν

di



 |g(s)| ds

≤
ν

λ+ µ0 − ν
‖g‖L1(J).

Equation (5) and the previous estimations prove that(iϕ) ∈
L1(J). Finally, form the expression (5) it is clear that(iϕ) ∈
W 1,1(J). So (x, ϕ) ∈ D(A) and the expression (3) ofRλ
follows from (4) and (5).

Corollary 1. The resolventRλ satisfies

‖Rnλ‖ ≤
2

(λ+ µ0)n
, ∀λ ∈ ∆, ∀n ∈ N

∗. (8)

Proof: Let us denoteRnλ = (Rn1,λ, R
n
2,λ) for every

n ∈ N. Using equation (4) and the same calculation we



developped to get (7), an induction proves that for every
n ∈ N

∗ and every(y, g) ∈ X ,

|Rn1,λ(y)| ≤
1

(λ + µ0)n
|y|,

∫ i+

i−
|Rn2,λ(x, y)| di ≤

1

(λ + µ0)n
(|y|+ ‖g‖L1),

and (8) directly yields.

Theorem 1. The differential operator(A,D(A)) is an
infinitesimal generator of a strongly continuous positive
semigroup{TA(t)}t≥0 onX that satisfies

‖TA(t)‖ ≤ 2 e(ν−µ0)t ∀t ≥ 0. (9)

Proof: For λ ∈ ∆ one gets(λ+ µ0 − ν)n ≤ (λ+ µ0)
n

for everyn ∈ N. Then the Corollary 1 and the Hille-Yosida
theorem [5] prove the existence of the semigroup{TA(t)}t≥0

and the majoration (9). Moreover, as it is proved in proved in
[1], the resolventRλ being positive onL1(J), the semigroup
{TA(t)}t≥0 is also positive.

B. The non-linear problem

In this section, we tackle the non-linearity in Problem 1
proving it satisfies a Lipschitz condition. To this goal, we
check that Problem 1 rewrites as










d

dt

(

S(t)

I(t)

)

= A

(

S(t)

I(t)

)

+ f(S(t), I(t)),

S(0) = S0 ∈ R+, I(0, ·) = I0 ∈ L1
+(J),

(10)

where functionf : X → X is given by

f(u, v) =

(

γ − βuT (v)
βΦuT (v)

)

. (11)

Lemma 1. The functionf : X → X given in (11) satisfies
the following properties :

1) ∃Λ > 0, ∀M > 0, ∀((u1, v1), (u2, v2)) ∈ B2
M ,

‖f(u1, v1)−f(u2, v2)‖X ≤ ΛM‖(u1, v1)−(u2, v2)‖X ,

2) ∀m > 0, ∃λm > 0,

(u, v) ∈ Bm ∩X+ ⇒ f(u, v) + λm(u, v) ∈ X+. (12)

Proof: Let M > 0 and ((u1, v1), (u2, v2)) ∈ B2
M .

Straightforward computations give

|u1T (v1)− u2T (v2)| ≤M‖(u1, v1)− (u2, v2)‖X .

Hypothesis (ii) onΦ and the previous inequality imply

‖f(u1, v1)− f(u2, v2)‖X ≤ ΛM‖(u1, v2)− (u2, v2)‖X ,

whereΛ = 2β is a positive constant. Moreover, givenm > 0,
on gets for every(u, v) ∈ Bm∩X+ the following estimation,

γ − βuT (v) + λmu ≥ (λm − βm)u,

so (12) is satisfied for everyλm ≥ βm.

1) Existence and uniqueness of the solution on finite
time horizon: In this section, we aim at proving existence,
uniqueness and positivity of the solution of Problem (1) on a
finite time horizon. This solution is defined in a mild sense,
we refer to [2] for the definition.

Proposition 2. For every (S0, I0) ∈ X+, there exists
tmax ≤ +∞ such that Problem(1) has a unique mild
solution (S, I) ∈ C([0, T ], X+) for everyT < tmax.

Proof: We prove the theorem with a fixed point method,
adapting the ideas of [11].
Let m > 0. Consider, forλm that satisfies (12), the operator

Am = A− λmI and the functionfm = f + λmI −

(

γ

0

)

.

A consequence of Theorem 1 is thatAm is an infinitesimal
generator onX of a positiveC0 semigroup{TAm(t)}t≥0

that satisfies

‖TAm(t)‖ ≤ 2e(ν−µ0−λm)t, ∀t ≥ 0,

so one can considerm > 0 big enough such thatrm > 0
given by

rm = 2‖(S0, I0)‖X sup
t∈[0,1]

‖TAm(t)‖.

satisfies
rm ≤ m.

In all that follows, let us denoteXrm
+ the subset ofX given

by
Xrm

+ = X+ ∩Brm .

Sincerm ≤ m we have

Xrm
+ ⊂ Bm. (13)

Let τ > 0 be such that

τ ≤ min

(

1,
‖(S0, I0)‖X

rm(Λrm + λm)

)

, (14)

whereΛ is given in Proposition 1.
Consider the mappingF : C([0, τ ], X) → C([0, τ ], X)
defined by

F (u(s), v(s)) =TAm(t)(S0, I0)

+

∫ t

0

TAm(t− s)fm(u(s), v(s)) ds.

Sincefλm(0) = 0 in X, Proposition 1 implies that fort ∈
[0, τ ] and (u, v) ∈ C([0, τ ], Brm),

‖F (u(t), v(t))‖X ≤ sup
s∈[0,t]

‖TAm(s)‖(‖S0, I0)‖X

+trm(Λrm + λm)),

and consequently to (14) the mappingF preserves
C([0, τ ], Brm). Moreover, equations (12) and (13) imply that
F preservesC([0, τ ], Xrm

+ ) for (S0, I0) ∈ X+ since the
semigroup{TAm(t)}t≥0 is positive.
Similar calculations prove thatF is a contraction mapping
of C([0, τ ], X) with Lipschitz constant12 .
Consequently,F is a contraction ofC([0, τ ], Xrm

+ ) and the
Banach fixed point theorem implies the existence and the
uniqueness of(ū, v̄) ∈ C([0, τ ], Xrm

+ ) such thatF (ū, v̄) =
(ū, v̄) in C([0, τ ], X). By similar arguments than ones devel-
oped in [7], the solution can then be extended on[0, tmax[



with tmax ≤ +∞.
Finally, every mild solution of Problem (1) is a mild solution
of the following problem,










d

dt

(

S(t)

I(t)

)

= Am

(

S(t)

I(t)

)

+ fm(S(t), I(t)),

S(0) = S0 ∈ R+, I(0, ·) = I0 ∈ L1
+(J),

so the unique fixed point(ū, v̄) of F is also the unique mild
solution of Problem (10).

2) Global existence:We now prove that the solution can
be extended on the whole horizon timeR+.

Theorem 2. For every(S0, I0) ∈ X+, the Problem(1) has
a unique mild solution(S, I) ∈ C(R+, X+).

Proof: We suppose by contradiction thattmax < +∞.
Then Proposition 2 implies that(S, I) ∈ C([0, tmax[, X+),
and standard results from [7] imply that the solution then
satisfies

lim
t→tmax

‖(S(t), I(t))‖X = +∞. (15)

SinceS andI are non-negative functions and all the param-
eters are positive, Problem (1) implies that

0 ≤ S(t) ≤ S0 + γt, ∀t ≥ 0.

But sincetmax < +∞ one can deduce that

0 ≤ lim inf
t→tmax

S(t) ≤ lim sup
t→tmax

S(t) < +∞. (16)

Then equation (15) necessarily implies

lim sup
t→tmax

‖I(t)‖L1(J) = +∞. (17)

Suppose now that

lim sup
t→tmax

S(t)T (I)(t) = +∞. (18)

Since from the equation inS of Problem (1) one gets

S(t) ≤ S0 + γt− β

∫ t

0

S(s)T (I)(s) ds,

the latter equality combined to (18) and Fatou’s Lemma
would imply that lim inft→tmax S(t) = −∞, which contra-
dicts (16). So thelim sup in (18) is finished. Taking (16)-(17)
into account one deduces that necessarilylimt→tmax S(t) =
0 and alsolimt→tmax S

′(t) = 0. Assigning these limits in
the equation inS in Problem (1) one gets

lim
t→tmax

S(t)T (I)(t) =
γ

β
. (19)

Consider now the change of variablesψ = (ψ1, ψ2) given
by

ψ : (t, ξ) 7→ (t, i) = (t, i−eν(t−ξ)).

Classical differential calculus applied toI ◦ ψ leads to the
following differential equation,

∂(I ◦ ψ)

∂t
= −(µ ◦ ψ2 + ν) I ◦ ψ +Φ ◦ ψ2 βST (I).

Sincet 7→ S(t)T (I)(t) is a continuous function, then, taking
into account (19) and hypothesis (ii) on functionΦ, there
exists a positive constantc > 0 such that the latter equation
implies

∣

∣

∣

∣

∂(I ◦ ψ)

∂t

∣

∣

∣

∣

≤ c+ (µ ◦ ψ2 + ν) I ◦ ψ

and so

|I◦ψ(t, ξ)| ≤ I◦ψ(0, ξ)+ct+

∫ t

0

(µ◦ψ(s, ξ)+ν)I◦ψ(s, ξ)ds.

A standard Gronwall inequality argument then gives

|I ◦ ψ(t, ξ)| ≤ I ◦ ψ(0, ξ) + ct

+

∫ t

0

(I ◦ ψ(0, ξ) + cs)(µ ◦ ψ(s, ξ) + ν)e
∫

t
s
(µ◦ψ(u,ξ)+ν)duds

But if tmax < +∞, then hypothesis (iii) on functionµ and
the previous inequality yields a contradiction with (17).
To conclude, we necessarily havetmax=+∞.

III. N UMERICAL SIMULATIONS

In this section we illustrate the model with some numerical
simulations. We start with the presentation of the scheme.

A. Numerical scheme

We introduce an infection load-time grids where the infection
load and the time steps are∆i and ∆t respectively. We
define ij+1/2 = i− + j∆i, tn = n∆t and the cells
Kj =]ij−1/2, ij+1/2[ centered atij = 1

2 (ij−1/2 + ij+1/2),
1 ≤ j ≤M whereM is the number of cells . We denote by
Inj the approximation of the average ofI(tn, i) over the cell
Kj, namely

Inj ≃
1

∆i

∫ ij+1/2

ij−1/2

I(tn, i)di.

Since the propagation speed of the transport equation is not
finite, we use an implicit upwind finite volume scheme in
order to computeInj . The general scheme is as follow:

• We compute the initial states:

S0 = S(0) andI0j =
1

∆i

∫ ij+1/2

ij−1/2

I0(i)di.

• Assume nowSn andIn = (In1 , . . . , I
n
M ) are computed,

⊲ we define

TM (In) = ∆i

M
∑

j=1

Inj ,

⊲ we compute

Sn+1 =
1

1 +∆t(µ0 + α+ βTM (In))
(γ∆t+ Sn),

⊲ we computeIn+1 by solving the following linear
system:

− ν
∆t

∆i
ij−1/2I

n+1
j−1 +

(

1 + ν
∆t

∆i
ij+1/2 +∆tµj

)

In+1
j

= Inj +∆tΦjβS
n+1TM (In), 1 ≤ j ≤M,

whereµj = µ(ij) andΦj = Φ(ij).



TABLE I
PARAMETER VALUES USED FOR THE SIMULATIONS.

Parameter definition symbol value
initial susceptible population size S0 100 indiv.
initial infected population size I0 0 indiv.
susceptible mortality rate µ0 0.1 year−1

infected mortality rate µ 0.15 year−1

infection load growth rate ν 10−3 year−1

contamination rate α 0.02 year−1

horizontal transmission rate β 3.10−3 (indiv. year)−1

entering flux {γ1; γ2} {0; 1} indiv.year−1

B. Numerical simulations

For the simulations, we consider the truncated domain
(i−, i+) where we seti− = 1 and i+ = 2. We use the
infection load step∆i = 0.05 and a time step∆t = 0.1. We
present two cases of simulation. Both suppose that the initial
population does not contain infected, stated byI0 = 0.
The first case of simulation corresponds to a zero entering
flux in the population (γ1 = 0). One can then check on
Figure 2 that the total population decreases and converges to
0 with time.
In the second case, the entering flux is not zero (γ2 = 1). One
can check that, with the parameters used for the simulation,
an epidemic occurs at the beginning of the contamination
process. Moreover, the disease seems to be persistent persis-
tent in time in the following sense : there existsε > 0 such
that lim inft→+∞ T (I)(t) ≥ ε.

IV. CONCLUSION

In this article, we have proved the existence and the
uniqueness of a non negative mild solution for a SI model
that describes the evolution of a disease in a closed popula-
tion. This disease is characterized by an exponential velocity
of the infection load, a contagious process between individ-
uals, and an external source of contamination. This last is
supposed to be proportional to the susceptible population and
is modeled with a loopback boundary condition. Accordingly
to the simulations made, further investigations on this model
shall prove the persistence of the disease when the entering
flux γ is non zero.

REFERENCES

[1] W. Arendt, Resolvent positive operators, Proc. London Math. Soc.
54:321-349, 1987

[2] T. Cazenave and A. Haraux,An Introduction to Semilinear Evolution
Equations, Oxford Science Publication, Oxford, 2006

[3] O. Diekmann and J.A.P. Heersterbeek,Mathematical Epidemiology of
Infectious Diseases, wiley Series in Mathematical and computational
biology, Wiley, Chichester, 2000

[4] L. Edelstein-Keshet,Mathematical Models in Biology, Classics in
Applied Mathematics 46, siam, 2005

[5] K.J. Engel and R. Nagel,A short course on operator semigroups,
Universitext, Springer, 2006

[6] J.D. Murray,Mathematical Biology I : An Introduction, Interdisciplinary
Applied Mathematics 17, Springer, 2004

[7] A. Pazy, Semigroups of linear operators and applications to partial
differential equations, Applied Mathematical Sciences 44, Springer,
1983

[8] A. Perasso and B. Laroche,Well-posedness of an epidemiological model
described by an evolution PDE, ESAIM:PROC. 25:29-43, 2008

[9] B. Perthame,Transport Equations in Biology, Birkhäuser, 2010
[10] S.M. Stringer, N. Hunter and M.E.J. Woolhouse,A mathematical

model of the dynamics of scrapie in a sheep flock, Math. Biosci.
153(2):79-98, 1998

0.00 0.05 0.10 0.15 0.20 0.25
0

10

20

30

40

50

60

70

80

90

100

S
+
T
M
(I
)

year

Fig. 2. Case 1 (γ1 = 0) ; Total populationS(t) +TM (I)(t) on a quarter
of year

0.00 0.05 0.10 0.15 0.20 0.25
0

10

20

30

40

50

60

70

80

90

100

0.00 0.05 0.10 0.15 0.20 0.25
0

2

4

6

8

10

12

T
M
(I
)

S

year

year

Fig. 3. Case 2 (γ2 = 1) ; SusceptibleS(t) and total infectedTM (I)(t)
on a quarter of year
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