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Abstract—A mathematical SI model is developed for the
dynamics of a contagious disease in a closed population with
an external source of contamination. We prove existence and
uniqueness of a non-negative mild solution of the problem using
semigroup theory. We finally illustrate the model with numerical
simulations.
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I. I NTRODUCTION AND NOTATIONS

In this article is considered the following SI model, de-
scribed par a system of integro-partial differential equations
of reaction-transport type,






















































Ṡ(t) = (b− µ0 − α)S(t)− βS(t)

∫ i+

i−
I(t, i) di, t ≥ 0,

∂I(t, i)

∂t
= −

∂(νiI)(t, i)

∂i
+ (b− µ(i))I(t, i)

+Φ(i)βS(t)

∫ i+

i−
I(t, i) di, t ≥ 0, i ∈ (i−, i+),

I(t, i−) = αS(t),

S(0) = S0 ∈ R+, I(0, ·) = I0 ∈ L1
+(i

−, i+),
(1)

with the following assumptions:

(i) 0 < i− < i+ < +∞,
(ii) i satisfies the evolution equationdi

dt
= νi,

(iii) b, α, β, µ0, ν > 0,
(iv) function µ ∈ L∞(i−, i+) is such thatµ(i) ≥ µ0 for

almost every (f.a.e)i ∈ (i−, i+),
(v) functionΦ ∈ C∞[i−, i+] is a non negative function such

thatΦ(i−) = Φ(i+) = 0 and
∫ i+

i−
Φ = 1.

This mathematical model is a variation of an epidemiological
model of scrapie [6] that has been studied in [4]. See [5] for a
review of SI models described by transport equations. Problem
(1) describes the dynamics of a contagious disease in a closed
flock with an external source of contamination, which is the
main contribution of this article. This incorporates infection
load structure of the infected population, denotedi ∈ (i−, i+),
where i−, respectivelyi+, is the minimal, respectively max-
imal infection load at which infected individuals die from
the disease or are withdrawn of the flock population. It is

supposed thati increases exponentially with respect to time
t, as stated in assumption (ii). The model also incorporates
a constant mortality rateµ0 for the susceptibleS and an
infection load dependent mortality rateµ(i) for the infected
I. It is assumed that there is total vertical transmission so the
reproductive rateb is the same forS and I. The horizontal
transmission, with rateβ, is modeled with variable initial
load of the infectious agent at the contamination, which is
assigned using the functionΦ. The external contamination
affects the susceptible with a constant rateα, attributing the
minimal initial infection loadi−. This is stated with a loopback
boundary conditionI(t, i−) = αS(t).

This article investigates the existence and the uniquenessof
a non-negative mild solution of Problem (1) using a semigroup
approach. To achieve that goal, is proved in Section II the
existence of a strongly continuous semigroup for the linearized
problem, incorporating the loopback boundary condition inthe
domain of a densely defined differential operator. Section III
is then dedicated to the study of the nonlinear part of Problem
(1), proving that it satisfies a Lipschitz regularity. In Section
IV is stated the main result of the article. The existence and
the uniqueness of a non-negative solution is proved on finite
time horizon periods, an then is extended to the time horizon
[0,+∞[. Finally, in Section V, we illustrate the model with
numerical simulations.

In all that follows,∆ denotes the set

∆ = {λ ∈ R, λ > b− µ0},

(X, ‖ · ‖X) is the Banach space with product norm given by

X = R× L1(i−, i+),

andX+ is the non-negative cone ofX.
For every constantR > 0, BR denotes the ball ofX

BR = {x ∈ X, ‖x‖X ≤ R}.



II. T HE LINEAR PROBLEM

Related to Problem (1), we consider the differential operator
A : D(A) ⊂ X → X defined by

D(A) = {(x, ϕ) ∈ X, (iϕ) ∈W 1,1(i−, i+) andϕ(i−) = αx},

A =

(

b− µ0 − α 0
0 L

)

,

with

Lϕ = −
d

di
(νiϕ) + (b− µ)ϕ.

The aim of this section is to prove that(A,D(A)) generates
a positiveC0 semigroup.

Proposition 1. The domainD(A) is a dense subset ofX, and
the resolvent setρ(A) contains∆. Moreover, the resolventRλ

is given for everyλ ∈ ∆ by

Rλ(y, g) =

(

R1,λ(y)
R2,λ(y, g)

)

, (2)

where

R1,λ(y) =
1

λ+ µ0 + α− b
y,

R2,λ(y, g) =
α

νi
R1,λ(y)e

−
∫

i

i−
λ+µ(r)−b

νr
dr

+
1

νi

∫ i

i−
e−

∫
i

s

λ+µ(r)−b

νr
drg(s) ds.

Proof: Consider for everyx ∈ R the dense subsetDx of
L1(i+, i−) given by

Dx = {g ∈ Cc[i
−, i+], g(i−) = αx},

whereCc[i
−, i+] denotes the set of continuous functions with

compact support. We clearly have
⋃

x∈R

{x}×Dx ⊂ D(A), and

since∪x∈R {x} ×Dx = X, we deduce thatD(A) is dense in
X.
For (y, g) ∈ X, let us look for (x, ϕ) ∈ D(A) such that
(λI −A)(x, ϕ) = (y, g). This is clearly equivalent to

x =
1

λ+ µ0 + α− b
y, (3)

d

di
(νiϕ) +

(λ+ µ− b)

νi
(νiϕ) = g.

An integration of the previous equality gives forι ∈ (i−, i+)
and i ≥ ι,

νiϕ(i) = ϕ(ι)e−
∫

i

ι

λ+µ(r)−b

νr
dr +

∫ i

ι

e−
∫

i

s

λ+µ(r)−b

νr
drg(s) ds.

Since we want(x, ϕ) ∈ D(A), whenι goes toi− one gets

ϕ(i) =
αx

νi
e−

∫
i

i−
λ+µ(r)−b

νr
dr

+
1

νi

∫ i

i−
e−

∫
i

s

λ+µ(r)−b

νr
drg(s) ds. (4)

We now check that(x, ϕ) ∈ D(A). Indeed, using the expres-
sion of ϕ given in (4) and assumption (iv) onµ, classical
majorations and Fubini’s theorem imply forλ ∈ ∆,
∫ i+

i−
|ϕ(i)| di ≤

αx

λ+ µ0 − b

+

∫ i+

i−

(

∫ i+

s

1

νi
e−

∫
i

s

λ+µ(r)−b

νr
dr di

)

|g(s)| ds.

(5)

For λ ∈ ∆ equation (3) impliesα|x| ≤ |y| and we deduce
from (5)

∫ i+

i−
|ϕ(i)| di ≤

1

λ+ µ0 − b
(|y|+ ‖g‖L1). (6)

This finally proves that(x, ϕ) ∈ X and consequently to (3),

‖(x, ϕ)‖X ≤
2

λ+ µ0 − b
‖(y, g)‖X .

We now prove that(iϕ) ∈W 1,1(i−, i+).
Let ψ ∈ Cc[i

−, i+]. For λ ∈ ∆ straightforward calculations
give

∫ i+

i−
|iϕ(i)ψ(i)| di ≤

1

ν
(αx+ ‖g‖L1)‖ψ‖L1 ,

and the majoration above applied toψ ≡ 1 gives
∫ i+

i−
|iϕ(i)| di ≤

i+ − i−

ν
(αx+ ‖g‖L1),

and consequently(iϕ) ∈ W 1,1(i−, i+). So (x, ϕ) ∈ D(A)
and the expression (2) ofRλ follows from (4).

Corollary 1. The resolventRλ satisfies

‖Rn
λ‖ ≤

2

(λ+ µ0 − b)n
, ∀λ ∈ ∆, ∀n ∈ N

∗. (7)

Proof: Let us denoteRn
λ = (Rn

1,λ, R
n
2,λ) for everyn ∈ N.

Using equation (3) and the arguments we used to get (6), an
induction proves that for everyn ∈ N

∗ and every(y, g) ∈ X,

|Rn
1,λ(y)| ≤

1

(λ+ µ0 − b)n
|y|,

∫ i+

i−
|Rn

2,λ(x, y)| di ≤
1

(λ+ µ0 − b)n
(|y|+ ‖g‖L1),

and (7) directly yields.

Theorem 1. The differential operator(A,D(A)) is an in-
finitesimal generator of a strongly continuous positive semi-
group {TA(t)}t≥0 on X that satisfies

‖TA(t)‖ ≤ 2 e(b−µ0)t ∀t ≥ 0. (8)

Proof: The existence of{TA(t)}t≥0 and the majoration
are direct consequences of Corollary 1 and the Hille-Yosida
theorem [2]. Moreover, the resolventRλ is positive and as it
is proved in [1],{TA(t)}t≥0 is also positive.



III. T HE NON-LINEAR PROBLEM

In this section, we tackle the non-linearity in Problem 1
proving it satisfies a Lipschitz condition. To this goal, we
check that Problem 1 rewrites as










d

dt

(

S(t)

I(t)

)

= A

(

S(t)

I(t)

)

+ f(S(t), I(t)),

S(0) = S0 ∈ R+, I(0, ·) = I0 ∈ L1
+(i

−, i+),

(9)

where functionf : X → X is given by

f(u, v) =

(

−βu
∫ i+

i−
v

βΦu
∫ i+

i−
v

)

. (10)

Proposition 2. The functionf : X → X given in(10)satisfies
the following properties :

1) ∃Λ > 0, ∀M > 0, ∀((u1, v, 1), (u2, v2)) ∈ B2
M ,

‖f(u1, v1), (u2, v2)‖X ≤ ΛM‖(u1, v1)− (u2, v2)‖X ,

2) ∀m > 0, ∃λm > 0,

(u, v) ∈ Bm ∩X+ ⇒ f(u, v) + λm(u, v) ∈ X+. (11)

Proof: Let M > 0 and ((u1, v1), (u2, v2)) ∈ B2
M .

Straightforward computations give
∣

∣

∣

∣

∣

u1

∫ i+

i−
v1(i)di− u2

∫ i+

i−
v2(i)di

∣

∣

∣

∣

∣

≤M‖(u1, v1)−(u2, v2)‖X .

Hypothesis (v) onΦ and the previous inequalities imply

‖f(u1, v1)− f(u2, v2)‖X ≤ ΛM‖(u1, v2)− (u2, v2)‖X ,

whereΛ = 2β is a positive constant. Moreover, givenm > 0,
(11) is satisfied for everyλm ≥ βm.

IV. EXISTENCE AND UNIQUENESS OF THE SOLUTION

A. Existence on finite time horizon

Proposition 3. There existstmax ≤ +∞ such that Problem
(1) has a unique mild solution(S, I) ∈ C([0, T ], X+) for
everyT < tmax.

Proof: We prove the theorem with a fixed point method,
adapting the ideas of [7].
Let m > 0. Consider, forλm that satisfies (11), the operator
Am = A − λmI and the functionfλm

= f + λmI. A
consequence of Theorem 1 is thatAm is an infinitesimal
generator onX of a positiveC0 semigroup{TAm

(t)}t≥0 that
satisfies

‖TAm
(t)‖ ≤ 2e(b−µ0−λm)t, ∀t ≥ 0,

so one can considerm > 0 big enough such thatrm > 0
given by

rm = 2‖(S0, I0)‖X sup
t∈[0,1]

‖TAm
(t)‖.

satisfies
rm ≤ m.

In all that follows, let us denoteXrm
+ the subset ofX given

by
Xrm

+ = X+ ∩Brm .

Sincerm ≤ m we have

Xrm
+ ⊂ Bm. (12)

Let τ > 0 be such that

τ ≤ min

(

1,
‖(S0, I0)‖X

rm(Λrm + λm)

)

, (13)

whereΛ is given in Proposition 2.
Consider the mappingF : C([0, τ ], X) → C([0, τ ], X)
defined by

F (u(s), v(s)) =TAm
(t)(S0, I0)

+

∫ t

0

TAm
(t− s)fλm

(u(s), v(s)) ds.

Sincefλm
(0) = 0 in X, Proposition 2 implies that fort ∈ [0, τ ]

and (u, v) ∈ C([0, τ ], Brm),

‖F (u(t), v(t))‖X ≤ sup
s∈[0,t]

‖TAm
(s)‖(‖S0, I0)‖X

+trm(Λrm + λm)),

and consequently to (13) the mappingF preserves
C([0, τ ], Brm). Moreover, equations (11) and (12) imply that
F preservesC([0, τ ], Xrm

+ ) for (S0, I0) ∈ X+ since the
semigroup{TAm

(t)}t≥0 is positive.
Similar calculations prove thatF is a contraction mapping of
C([0, τ ], X) with Lipschitz constant12 .
Consequently,F is a contraction ofC([0, τ ], Xrm

+ ) and the
Banach fixed point theorem implies the existence and the
uniqueness of(ū, v̄) ∈ C([0, τ ], Xrm

+ ) such thatF (ū, v̄) =
(ū, v̄) in C([0, τ ], X). As it is proved in [3], the solution can
be extended on[0, tmax[ with tmax ≤ +∞.
Finally, every mild solution of Problem (1) is a mild solution
of the following problem,










d

dt

(

S(t)

I(t)

)

= Am

(

S(t)

I(t)

)

+ fλm
(S(t), I(t)),

S(0) = S0 ∈ R+, I(0, ·) = I0 ∈ L1
+(i

−, i+),

so the unique fixed point(ū, v̄) of F is also the unique mild
solution of Problem (9).

B. Global existence

Theorem 2. The Problem(1) has a unique mild solution
(S, I) ∈ C([0,+∞[, X+).

Proof: We suppose by contradiction thattmax < +∞.
Then Proposition 3 implies that(S, I) ∈ C([0, tmax[, X+)
and satisfies

lim
t→tmax

‖(S(t), I(t))‖X = +∞. (14)

Consider the change of variablesφ = (φ1, φ2) given by

φ : (t, ξ) 7→ (t, i) = (t, i−eν(t−ξ)).



SinceI is a non-negative function on[0, tmax[, we can easily
check thatI ◦ φ satisfies the following sub-linear differential
equation,

∂(I ◦ φ(t, ξ))

∂t
≤ (b− µ ◦ φ2(t, ξ)) I ◦ φ(t, ξ), (15)

which implies thatI◦φ(t, ·) is a bounded function on[0, tmax[
and so isI(t, ·). Moreover,I being non-negative, Problem (1)
also implies that

S(t) ≤ e(b−µ0−α)t,

and S is a bounded function on[0, tmax[. The previous
inequality and (15) yield a contradiction with (14), and nec-
essarilytmax=+∞.

V. NUMERICAL SIMULATIONS

In this section, we illustrate the model through three simula-
tion scenarios. All scenarios suppose that the initial population
does not contain infected, stated byI0 = 0.

TABLE I
PARAMETER VALUES USED FOR THE SIMULATIONS.

Parameter definition symbol value
initial susceptible population size S0 100 indiv.
initial infected population size I0 0 indiv.
susceptible mortality rate µ0 0.1 year−1

infected mortality rate µ 0.15 year−1

reproductive rate b 0.12 year−1

infection load growth rate ν 10−3 year−1

Scenario 1 specific parameters
contamination rate α 2.0 10−2 year−1

horizontal transmission rate β 0 (indiv. year)−1

Scenario 2 specific parameters
contamination rate α 8.5 10−2 year−1

horizontal transmission rate β 0 (indiv. year)−1

Scenario 3 specific parameters
contamination rate α 9.5 10−3 year−1

horizontal transmission rate β 3 10−3 (indiv. year)−1

In the simulations,k(I)(t) denotes the total infected popu-

lation at timet given byk(I)(t) =
∫ i+

i−
I(t, i) di.
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Fig. 1. Scenario 1,S(t) andk(I)(t) on a quarter of year

Scenario 1 corresponds to the case whereS is constant,
under the assumptionb − µ0 − α = 0, and no horizontal
transmission (β = 0). In this case, we haveb − µ0 > 0
and the boundary condition is constant and positive. Figure
1 represents the curves of susceptibles and total infected over
time on a period of a quarter of year. It shows that the total
infected population increases with time as we could expect.
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Fig. 2. Scenario 2,S(t) andk(I)(t) on a quarter of year

Scenario 2 represents the case of a high level of contami-
nation, withb− µ0 − α < 0, and no horizontal transmission.
This implies that the susceptible populationS decreases with
time, therefore also does the boundary conditionαS. The
rate b − µ < 0 for infected implies a fast decrease of the
total population. Figure 2 illsutrates this scenario on a time
period of a quarter of year, and shows that the total population
converges to0 with time.
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Fig. 3. Scenario 3,S(t) andk(I)(t) on 3 years

Scenario 3 finally represents the case where the transmission
rate is small enough to imply thatS would increase without
horizontal transmission (β = 0). But one can check on Figure
3 that a positive value ofβ implies a time oscillation of
susceptibles and infected, with a delay of the curve of infected



compared to the curve of suscetibles. Specifically, Figure 4,
which represents the phase-plane(S, k(I)) on a time horizon
of 10 years, shows a convegence to an equilibrium point of
the model.
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Fig. 4. Scenario 3, phase-plane(S, k(I)) on 10 years

VI. CONCLUSION

In this article, we have proved the existence and the unique-
ness of a non negative mild solution for a SI model that
describes the evolution of a disease in a closed population.
This disease is characterized by an exponential velocity ofthe
infection load, a contagious process between individuals,and
an external source of contamination. This last is supposed to
be proportional to the susceptible population and is modeled
with a loopback boundary condition. The simulations made
show that, accordingly to the values of fundamental biological
parameters, the total population density converges with time
to equlibrium points of the dynamical system.
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