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Abstract—A mathematical SI model is developed for the supposed that increases exponentially with respect to time
dynamics of a contagious disease in a closed population with¢ as stated in assumption (ii). The model also incorporates
an external source of contamination. We prove existence and 5 -onstant mortality rate:, for the susceptibleS and an

unigueness of a non-negative mild solution of the problem using . . . . .
semigroup theory. We finally illustrate the model with numerical infection load dependent mortality raje(i) for the infected

simulations. I. It is assumed that there is total vertical transmissionhso t
Index Terms—Epidemiology, SI model, nonlinear PDE, trans- reproductive rate is the same forS and I. The horizontal
port equation, semigroup theory transmission, with rate3, is modeled with variable initial

load of the infectious agent at the contamination, which is
assigned using the functio®. The external contamination

In this article is considered the following SI model, deaffects the susceptible with a constant rateattributing the
scribed par a system of integro-partial differential egured  minimal initial infection loadi—. This is stated with a loopback
of reaction-transport type, boundary condition/ (¢,i~) = aS(t).

. it This article investigates the existence and the uniqueofess
S(t) = (b—po —)S(t) — ﬂS(t)/ I(t,i) di, t>0, anon-negative mild solution of Problem (1) using a semigrou
dI(t, 1) O(wil)(t,4) v approach. To achieve that goal, is proved in Section Il the

I. INTRODUCTION AND NOTATIONS

9% i + (b — (i) I(t,9) existence of a strongly continuous semigroup for the lizear
o problem, incorporating the loopback boundary conditiothi
+<I>(z’)ﬁS(t)/ I(t,i) di, t>0,i€(i",it), domain of a densely defined differential operator. Sectlbn |

is then dedicated to the study of the nonlinear part of Prable

I(t,i7) = aS(t), (1), proving that it satisfies a Lipschitz regularity. In Sen

S(0) =Sy eRy, I(0,)) = Iy € L (i, i) IV is stated the main result of the article. The existence and
) ) ) ) . . . . . .

* (1) the uniqueness of a non-negative solution is proved on finite

with the following assumptions: time horizon periods, an then is extended to the time horizon

() 0<i~ <it < +oo, [0, 4+0c[. Finally, in Section V, we illustrate the model with

(ii) ¢ satisfies the evolution equatiqﬁ = vi, numerical simulations.
(i) b,a, B, po,v >0, In all that follows, A denotes the set
(iv) function pp € L*(i~,i") is such thatu(i) > po for
almost every (f.a.e) € (i—,i"),
(v) function® € C>[;~,:*] is a non negative function such
that ®(i~) = d(i*) = 0 and [/ & =1.
This mathematical model is a variation of an epidemiologic&X: || - [ x) is the Banach space with product norm given by
model of scrapie [6] that has been studied in [4]. See [5] for a
review of SI models described by transport equations. Brobl
(1) describes the dynamics of a contagious disease in adclose
flock with an external source of contamination, which is the
main contribution of this article. This incorporates ifea and X is the non-negative cone of.
load structure of the infected population, denoted(i—,i"), For every constanR > 0, By denotes the ball o
wherei~, respectivelyit, is the minimal, respectively max-
imal infection load at which infected individuals die from
the disease or are withdrawn of the flock population. It is Br ={z € X, |z|x < R}.

A={AeR, A>b— o},

X =Rx L'(i™,i"),



Related to Problem (1), we consider the differential operat

Il. THE LINEAR PROBLEM

A:D(A) C X — X defined by

D(4) = {(z,9) € X, (ip) e W (i,

with

Proposition 1. The domainD(A) is a dense subset df, and

=

Ly =

b—po—a 0

)

% vig) + (b~ ).

The aim of this section is to prove thatl, D(A)) generates
a positiveCy semigroup.

the resolvent set(A) containsA. Moreover, the resolver®)
is given for every € A by

Ri(y,9) = ( Rf,li?;?;) ) ’

where

Ri(y) =

Ry a(y,9) =

1
+ —
vi

[0
2R -
" 1Ay )6

1

)\+uo+a—by’

i Adu(r)—b
S —dr

)

e e AR dr "g(s) ds.

Proof: Consider for every: € R the dense subsd?, of
L'(i*,i~) given by

D, = {g € CC[iiJJrL g(ii) = O(JJ},

whereC.[i~,i*] denotes the set of continuous functions witorollary 1. The resolvent?, satisfies

compact support. We clearly ha\@ {z} x D, Cc D(A), and

sinceU,cgr {z} x D, = X, we deduce thaD(A) is dense in

X.

For (y,g) € X, let us look for (x,p) € D(A) such that

zeR

®)

(M — A)(z,¢) = (y,9)- This is clearly equivalent to
_ 1
S Ao ta— Y
d A+p—0)
(i) + =2 (vig) =

An integration of the previous equality gives foe (i=,i™)

andi > ¢,

vip(i) = p(v)e

L

i
i Atp(r)—b i Atp(r)—b
=) =dr —|—/ e o T
L

Since we wan{z, ¢) € D(A), when. goes toi~

o(i)

1z
1
+ R
Vi

O gt

%

Adp(r)—b
#d’r‘

eI HHv(:)ibd’”g(s) ds.

ag(s) ds.

one gets

(4)

We now check thafz, @) € D(A). Indeed, using the expres-
sion of ¢ given in (4) and assumption (iv) op, classical
majorations and Fubini’s theorem imply fare A,

it

ﬁ)and@(r):ax},/ ()| di < —F

i— _>\+M0—b

i it Atp(r)
i A+p(r)—b
+/ </ —e e T di) lg(s)| ds.
17 s v
®)

For A € A equation (3) impliesa|z| < |y| and we deduce
from (5)
i+

[ 1ol di < s ol + el ©)

This finally proves thatz, ¢) € X and consequently to (3),
2

< —(3 .

@ Dllx < 37—l 9)llx

We now prove thatip) € Whi(i= iT).
Let ¢ € C.[i™,iT]. For A € A straightforward calculations
give
S+

|ttt di < Lo+ lglo) ol

and the majoration above applied o= 1 gives

| =

i+

i it i
[ tietol di < = (a4 gl

and consequentlyip) € Wh(i= iT). So (z,¢) € D(A)
and the expression (2) at, follows from (4). ]

2
RY|<——— VA€EA, VneN. 7
|| A||_<)\+M0_b)" ()
Proof: Let us denote?}, = (RT ,, R ) for everyn € N.
Using equation (3) and the arguments we used to get (6), an
induction proves that for every € N* and every(y, g) € X,

1
R? <o
‘ 1,)\(y)| = (A+MO _b)n‘y|a

i+

7 . . 1
/f |Ry (2, y)| di < mﬂlﬂ +llgllz),

and (7) directly yields. [ ]

Theorem 1. The differential operator(A, D(A)) is an in-
finitesimal generator of a strongly continuous positive isem
group {T4(t)}+>0 on X that satisfies

| Ta(t)]| < 2el7Ht i >0, (8)

Proof: The existence ofT4(t)}:>0 and the majoration
are direct consequences of Corollary 1 and the Hille-Yosida
theorem [2]. Moreover, the resolveft, is positive and as it
is proved in [1],{Ta(t)}:>0 is also positive. [ |



[1l. THE NON-LINEAR PROBLEM
In this section, we tackle the non-linearity in Problem

proving it satisfies a Lipschitz condition. To this goal, we

check that Problem 1 rewrites as

d [ S(t) ) S(t)
ﬁ<ﬂﬂ>A<Hﬂ>+ﬂﬂWHm7 o
S(O):SOER+, I(O,-)ZI()EL}i_(ii,ZAF),
where functionf : X — X is given by
[ —Bu fzj v )
flu,v) = i . (10)
(w,v) ( Bou [l v

Proposition 2. The functionf : X — X given in(10) satisfies
the following properties :

1) 3A >0, VM > 0, V((u1,v,1), (uz,v2)) € B2,

[ (u1, 1), (u2,v2) || x < AM||(u1,v1) — (u2,v2)||x,
2) Vim > 0,3\, > 0,

(u,v) € By, N X4 = f(u,v) + A (u,v) € X4 (1)

Proof: Let M > 0 and ((u1,v1), (u2,v2)) € B3%,.
Straightforward computations give

7;+ it
U1/ ’Ul(l)dl — UQ/
Hypothesis (v) on® and the previous inequalities imply

[ f(u1,v1) = fluz,v2)llx < AM||(u1,v2) — (u2,v2)| x,

whereA = 24 is a positive constant. Moreover, given > 0,
(11) is satisfied for every,, > gm. [ ]

v ()di| < M||(u,v1)—(uz,v2)[|x-

IV. EXISTENCE AND UNIQUENESS OF THE SOLUTION
A. Existence on finite time horizon

Proposition 3. There exists,,,. < 400 such that Problem
(1) has a unique mild solutior{S,I) € C([0,T],X;) for
everyT < tmaz-

Proof: We prove the theorem with a fixed point method,

adapting the ideas of [7].

Let m > 0. Consider, for\,, that satisfies (11), the operatorS® the unique fixed point

A, = A — \,I and the functionf,,, = f+ Anl. A
consequence of Theorem 1 is thdt, is an infinitesimal
generator onX of a positiveC, semigroup{Ta,, (t)}:>o that

satisfies
| Ta,, ()] < 2eCHo=Am)E -yt > 0,

so one can considen > 0 big enough such that,, > 0
given by

rm = 2/[(So, o)llx sup [T, (£)].
t€(0,1]

satisfies
T < M.

In all that follows, let us denote&™ the subset ofX' given

by

X'm = X, NB,,.

Sincer,, < m we have

X C Bp,. (12)
Let 7 > 0 be such that
. H(SUvIO)”X
< - 0 -
7 < min <1, (AT ) (13)

where A is given in Proposition 2.
Consider the mapping? : C([0,7],X) — C([0,7],X)
defined by

F(u(s),v(s)) =Ta,, (t)(So, o)

+/O Ta,, (t—5)fxr, (u(s),v(s)) ds.

Sincefy,, (0) = 0in X, Proposition 2 implies that far € [0, 7]
and (u,v) € C([0,7], By,,),

[1E (@), v(®)llx < sup [[Ta,, (s)]([S0; L)l x

s€(0,t

+trm (Arm + Am)),

and consequently to (13) the mapping preserves
C([o, 7], B,.,,). Moreover, equations (11) and (12) imply that
F preservesC([0,7], X ™) for (So,ly) € Xy since the
semigroup{T,, (t)}:>0 IS positive.

Similar calculations prove that is a contraction mapping of
C([0,7], X) with Lipschitz constant;.

ConsequentlyF" is a contraction ofC([0, 7], X ™) and the
Banach fixed point theorem implies the existence and the
uniqueness ofu,v) € C([0,7],X}™) such thatF(u,v) =
(a,v) in C([0,7], X). As it is proved in [3], the solution can
be extended off, t,,qz [ With ¢4, < 400.

Finally, every mild solution of Problem (1) is a mild solutio
of the following problem,

d [ sw)
i)
S(0) = Sy € Ry, 1(0,-

§>+ﬁJamum7

Io € L (im,it),

,v) of F'is also the unique mild

solution of Problem (9). [ ]

B. Global existence
Theorem 2. The Problem(1) has a unique mild solution
(S7 I) € C([07+OO[7X+)

Proof: We suppose by contradiction that,,. < +oo.
Then Proposition 3 implies thatS,I) € C([0,tmax], X+)
and satisfies

R -

1(S(t), I(1) || x = +oc.
Consider the change of variablés= (¢, ¢2) given by

G (t,) = (t,1) = (t,i e’ 79).



Sincel is a non-negative function [0, t,,,.. [, we can easily

Scenario 1 corresponds to the case whgrés constant,

check that! o ¢ satisfies the following sub-linear differentialunder the assumptioh — o — o« = 0, and no horizontal

equation,

T o0(t,8) _
0

t 7(b—/£0d)2(t7£))10¢(t,f)7

which implies thatf o¢(¢, -) is a bounded function off), ¢4 [
and so isI (¢, -). Moreover,I being non-negative, Problem (1)

also implies that

(15)

transmission § = 0). In this case, we havé — o > 0
and the boundary condition is constant and positive. Figure
1 represents the curves of susceptibles and total infested o
time on a period of a quarter of year. It shows that the total
infected population increases with time as we could expect.

S(t) < elbHo—t, o]
70
and S is a bounded function or0,t,,,,(. The previous @ %]
inequality and (15) yield a contradiction with (14), and nhec ]
essarilyt,ae—1oo- [ ] e
0.00 0.05 0 0.20 0.25
V. NUMERICAL SIMULATIONS year
In this section, we illustrate the model through three sanul e
tion scenarios. All scenarios suppose that the initial fetfmn ¢
does not contain infected, stated hy= 0. =
= 4]
TABLE | .
PARAMETER VALUES USED FOR THE SIMULATIONS 1
"0.00 0.05 010 020 025
year
Parameter definition - symbol value Fig. 2. Scenario 25(t) and k(I)(t) on a quarter of year
initial susceptible population size  Sp 100 indiv.
initial infected population size Io 0 indiv. ) ] ]
susceptible mortality rate 1o 0.1 year? Scenario 2 represents the case of a high level of contami-
'nfethe]d mortality rate lg 8-13 yeari nation, withb — py — o < 0, and no horizontal transmission.
e Ouncﬁg'aedrztgwth ate . by 3;‘;2‘;1 This implies that the susceptible populatiSndecreases with
Scenario 1 specific parameters time, therefore also does the boundary conditiofi. The
contamination rate a 2.010 2 year ! rate b — u < 0 for infected implies a fast decrease of the
horizontal ”ansm'sss'on ra,tez _fﬂ tO (indiv. year) total population. Figure 2 illsutrates this scenario onraeti
cenario £ speciiic parameters . .
ConammaTon Taie P ap 85107 year T period of a quarter of year, and shows that the total popmuiati
horizontal transmission rate B 0 (indiv. yeary ! converges td with time.
Scenario 3 specific parameters
contamination rate o 9.510° 3 year I
horizontal transmission rate B 31073 (indiv. year)! 1807

In the simulationsk(I)(¢) denotes the total infected popu-

lation at timet given by k(I)(¢) = f;f I(t,4) di.

180
1601
1404
120
&) 100
80
60
40i
20
0.00 0.05 0 0.20 0.25
year
2.0357
2.0307
2.0257
_— 2,020
2015
2.010
2.005
2.00
0.00 0.05 0.10 0.20 0.25
year
Fig. 1. Scenario 15(t) andk(I)(¢) on a quarter of year

15 20 25 30
year

100
90
EO:
70]
60

309
20
10

15 2.0 25 3.0
year

Fig. 3. Scenario 35(t) andk(I)(¢) on 3 years

Scenario 3 finally represents the case where the transmissio
rate is small enough to imply that would increase without
horizontal transmission3(= 0). But one can check on Figure
3 that a positive value ofy implies a time oscillation of
susceptibles and infected, with a delay of the curve of teigc



compared to the curve of suscetibles. Specifically, Figyre 4
which represents the phase-plaifg k(7)) on a time horizon

of 10 years, shows a convegence to an equilibrium point of
the model.

1604
1404
1204

1004

100‘ ' ‘1‘50‘ ‘ ‘Z‘DD‘ ‘ ‘250‘ ‘ ‘3(‘]0‘ ‘ ‘3%0‘ ‘ ‘AOD
Fig. 4. Scenario 3, phase-plaf§, k(1)) on 10 years

VI. CONCLUSION

In this article, we have proved the existence and the unique-
ness of a non negative mild solution for a SI model that
describes the evolution of a disease in a closed population.
This disease is characterized by an exponential velocithef
infection load, a contagious process between individuais,
an external source of contamination. This last is supposed t
be proportional to the susceptible population and is matiele
with a loopback boundary condition. The simulations made
show that, accordingly to the values of fundamental biaabi
parameters, the total population density converges wiitte ti
to equlibrium points of the dynamical system.
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