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THE HITTING TIMES WITH TABOO
FOR A RANDOM WALK ON AN INTEGER LATTICE

Ekaterina Vl. Bulinskaya1 ,2

Abstract

For a symmetric, homogeneous and irreducible random walk on Zd, d ∈ N, having
zero mean and a finite variance of jumps, we study the passage times (taking values in
[0,∞]) determined by the starting point x, the hitting state y and the taboo state z.
We find the probability that these passages times are finite and analyze the tails of their
cumulative distribution functions. In particular, it turns out that for the random walk
on Zd, except for a simple (nearest neighbor) random walk on Z, the order of the tail
decrease is specified by dimension d only. In contrast, for a simple random walk on Z,
the asymptotic properties of hitting times with taboo essentially depend on the mutual
location of the points x, y and z. These problems originated in our recent study of
branching random walk on Zd with a single source of branching.

Keywords and phrases: random walks on integer lattices, hitting times, taboo proba-
bilities, branching random walk.

2010 AMS classification: 60G50, 60J27, 60G17.

1 Introduction

A random walk is a classical model being the source of numerous interesting problems having
elegant solutions. The monographs [17], [19] and [22] devoted to various properties of random
walks have become the reference books for many researchers. The recent publications such
as [12] and [18] demonstrate its non-vanishing popularity. The reason is the abundance of
applications of this simple probabilistic model (see, e.g., [3] and [28]). Moreover, a lot of new
complicated models were constructed on the basis of random walk (one can mention those
investigated in [11] and [20]). Thus, many assertions of the theory of random walks have been
obtained as auxiliary (technical) lemmas needed for understanding other models of interest.

The present paper also provides results concerning random walk on integer lattice Zd (d ∈ N)
which arose during the study of another model, namely, branching random walk (BRW) on Zd

with a single source of branching (different modifications of the model were considered, e.g., in
papers [2], [9], [25] and [30]). Its main features are the following. If the starting point of the
process is x ∈ Zd, x 6= 0, then the parent particle performs random walk on Zd until hitting the
origin. If the starting point is 0, or the parent particle has just hit it, then after exponentially
distributed time the particle may die producing a random number of offsprings. Otherwise,
it leaves the origin (jumps randomly to a point x′ ∈ Zd\{0}) and behaves afterwards as a
memoryless particle starting at x′. At the birth moment the newborn particles are located

1The work is partially supported by RFBR grant 10-01-00266.
2Lomonosov Moscow State University.
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at the origin. They and all their descendants evolve according to the scheme described above
independently of each other as well as of their parents history.

In the framework of BRW a natural question arises: what is the limit distribution, as
t → ∞, of the number of particles µ(t; y) at each point y ∈ Zd at time t? Evidently, µ(t; y)
essentially depends on the trajectory of the parent particle. Indeed, if the parent particle hits
the origin earlier than the time t then µ(t; y) can take any value in Z+. Otherwise, µ(t; y) = 1
or µ(t; y) = 0 if the parent particle is located at time t at point y or outside it, respectively.

This is the motivation to introduce the notion of hitting time with taboo for a random walk
on Zd. More precisely, for any x, y, z ∈ Zd such that y 6= z, let function Hx,y,z(t), t ≥ 0, be
(improper) cumulative distribution function (c.d.f.) of the first hitting time (or the first return
time if x = y) of point y if the starting point of the random walk is x and the point z is a
taboo state. In the next section we give a formal definition of this function. In the present
work we find the limit value Hx,y,z(∞) = limt→∞ Hx,y,z(t) and analyze the asymptotic behavior
of Hx,y,z(∞)−Hx,y,z(t), as t → ∞, for a symmetric, homogeneous, irreducible random walk on
Zd (d ∈ N) having zero mean and a finite variance of jumps.

It turns out that the most interesting case is d = 1 since there are two quite different
kinds of asymptotic behavior of Hx,y,z(t), t → ∞, depending on whether the random walk is
simple (nearest neighbor) or not. It is also worth mentioning that, for the random walk on Zd,
except for a simple random walk on Z, the value Hx,y,z(∞) ∈ (0, 1) and the order of decrease
of function Hx,y,z(∞)−Hx,y,z(t) is determined by dimension d only, regardless of x, y and z. In
contrast, for a simple random walk on Z, the mutual location of points x, y and z determines
the value Hx,y,z(∞) ∈ [0, 1] as well as the order of decrease of Hx,y,z(∞)−Hx,y,z(t) as t → ∞.

Finally, we recall that the properties of hitting times (or, more generally, passage times
including first entrance and last exit times) and taboo probabilities for a Markov chain with
stationary transition probabilities were exposed in [13] and [23], respectively. For the taboo
probabilities see also [31] and references therein. The counterpart of the function Hx,y,z(t) for
a Markov chain with stationary transition probabilities has been used earlier (see, e.g., [10],
p. 202, and [16], p. 31). However, it was treated as an auxiliary tool and has not been studied
per se.

2 Main results

We assume that all random variables (taking values in [−∞,∞]) are defined on a probability
space (Ω,F ,P). We study a class of random walks on Zd more general than that proposed in
[18], Ch.1, Sec.2.

Definition 1 For d ∈ N, let A = (a(x, y))x,y∈Zd be a matrix such that elements a(x, y) ≥ 0
whenever x 6= y, a(x, x) < 0,

∑

y∈Zd a(x, y) = 0 and supx∈Zd |a(x, x)| < ∞. Then a continuous

time Markov chain S = {S(t), t ≥ 0} having the state space Zd, i.e. S(t) : Ω → Zd for each

t ≥ 0, and generator A is called a random walk on Zd.

The existence of such a Markov chain is guarantied by Theorem 2 in [15], Ch.3, Sec.2.
From here on we consider only a symmetric, homogeneous, irreducible random walk S

having a finite variance of jumps. Symmetry and homogeneity mean that for x, y ∈ Zd one
has a(x, y) = a(y, x) and a(x, y) = a(0, y − x) =: a(y − x), respectively. Random walk is called
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irreducible if for any x, y ∈ Zd there exists t > 0 such that P(S(t) = y|S(0) = x) > 0, i.e. all
the points of the lattice Zd can be reached. Furthermore, a random walk is said to have a finite

variance of jumps if
∑

x∈Zd ‖x‖2a(0, x) < ∞ where 0 is the origin of Zd and ‖ · ‖ is a norm in
this space.

The conditions imposed on elements a(x, y) allow us to use an explicit construction of the
random walk on Zd with generator A (see, e.g., Theorem 1.2 in [5], Ch.9, Sec.1). According
to this construction S is a regular jump process with right continuous trajectories. A jump of
the process from state x ∈ Zd to state y ∈ Zd, x 6= y, occurs with probability a(x, y)/a(x, x)
independently of the earlier evolution of S. Moreover, for transition times of the process
τ (0) := 0 and τ (n) := inf{t ≥ τ (n−1) : S(t) 6= S(τ (n−1))}, n ≥ 1, the following statement
holds. Random variables {τ (n+1) − τ (n)}∞n=0 are independent and each of them has exponential
distribution with parameter a := −a(0, 0). In what follows we consider the version of the
process S constructed in this way.

Note that for the sequence {τ (n)}∞n=1 of transition times of S one can consider embedded

chain {Sn, n ∈ Z+} defined by way of Sn := S(τ (n)). Mention in passing that {Sn, n ∈ Z+} is
a discrete-time homogeneous Markov chain having transition probabilities a(x, y)/a for x 6= y,
x, y ∈ Zd (see, e.g., [5], Ch.8, Sec.4).

Recall some other facts concerning the introduced random walk on Zd. Let p(t; x, y), t ≥ 0,
x, y ∈ Zd, be the transition probabilities of the random walk, that is,

p(t; x, y) := P(S(t+ u) = y|S(u) = x) = P(S(t) = y|S(0) = x)

for any u ≥ 0. Then for h → 0+

p(h; x, y) = a(x, y)h+ o(h), if x 6= y,

p(h; x, x) = 1 + a(x, x)h + o(h).

Due to [5], Ch.8, Sec.3, the transition probabilities of the process S satisfy the backward
Kolmogorov equations

dp(t; x, y)

dt
=

∑

z∈Zd
a(x, z)p(t; z, y), p(0; x, y) = δy(x). (1)

As usual, δy(x) is equal to 1 or 0 for x = y or x 6= y, respectively. The Fourier transform
applied to (1) yields (see [25] and [29], Ch.2, Sec.1)

p(t; x, y) =
1

(2π)d

∫

[−π,π]d
eφ(θ)t+i(θ,y−x) dθ, x, y ∈ Z

d, (2)

where (·, ·) stands for the scalar product in Euclidean space Rd and

φ(θ) :=
∑

z∈Zd

a(0, z) cos(z, θ), θ ∈ [−π, π]d.

Furthermore, by the method of steepest descent one derives from (2) the asymptotic relation

p(t; x, y) ∼ γd
td/2

, x, y ∈ Z
d, t → ∞. (3)
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Here

γd :=
1

(2π)d/2
√

| detφ′′
θθ(0)|

and φ′′
θθ(0) :=

(

∂2φ(θ)

∂θi∂θj

∣

∣

∣

∣

θ=0

)

i,j∈{1,...,d}
.

A similar result for transition probabilities of a discrete time random walk on Zd was established
in [22], Ch.2, Sec.7.

Moreover, according to [29], Ch.2, Sec.1, equality (2) implies that

p(t; 0, 0)− p(t; x, y) ∼ γ̃d(y − x)

td/2+1
, x, y ∈ Z

d, t → ∞, (4)

where

γ̃d(z) :=
1

2(2π)d

∫

Rd

(υ, z)2e
1

2
(φ′′

θθ
(0)υ,υ) dυ, z ∈ Z

d.

Set Gλ(x, y) :=
∫∞
0

e−λtp(t; x, y) dt, λ ≥ 0, x, y ∈ Zd, that is, Gλ(x, y) is the Laplace
transform of the transition probability p(·; x, y). In view of (2) the introduced function can be
represented in the form

Gλ(x, y) =
1

(2π)d

∫

[−π,π]d

ei(θ,y−x)

λ− φ(θ)
dθ. (5)

Taking into account (3) it is easily seen that for d ≥ 3 the Green’s function G0(x, y) is
finite for all x, y ∈ Zd. However, for d = 1 or d = 2, one has limλ→0+ Gλ(x, y) = ∞. This
phenomenon corresponds to transience of the random walk for d ≥ 3 and its recurrence for
d = 1 or d = 2 (for more details see, e.g., [18], Ch.4, Sec.1 and 2).

By virtue of (4) the function limλ→0+ (Gλ(0, 0)−Gλ(x, y)) is finite for all d ∈ N and
x, y ∈ Zd. Therefore we can define

ρd(x) :=

{

a lim
λ→0+

(Gλ(0, 0)−Gλ(0, x)), if x 6= 0,

1, if x = 0.

Equality (5) allows us to give another formula for ρd(x) if x 6= 0

ρd(x) =
a

(2π)d

∫

[−π,π]d

cos(x, θ)− 1

φ(θ)
dθ. (6)

Now we are able to introduce some basic notation and formulate our main results. Set
τ := inf{t ≥ 0 : S(t) 6= S(0)}, i.e. the stopping time τ (with respect to the natural filtration of
the process S) is the time of the first exit from the starting point of the random walk. Taking
into account the explicit construction of the random walk one has τ = τ (1) almost surely (a.s.)
and, consequently, G(t) := P(τ ≤ t|S(0) = x) = 1− e−at, t ≥ 0.

Let τy,z := inf{t ≥ τ : S(t) = y, S(u) 6= z, τ ≤ u ≤ t} for y, z ∈ Zd, y 6= z. As usual,
inf{t ∈ ∅} = ∞. We call the stopping time τy,z a hitting time of the state y with the taboo state

z. Denote its (improper) c.d.f. given the starting point x by Hx,y,z(t) := P(τy,z ≤ t|S(0) = x),
x, y, z ∈ Zd, y 6= z, t ≥ 0.

Note that the random variable τ−y,z := inf{t ≥ 0 : S(t + τ) = y, S(u) 6= z, τ ≤ u ≤ t + τ},
y, z ∈ Zd, y 6= z, is not a stopping time w.r.t. the natural filtration of the process S. However,
τy,z can be also called a hitting time of the state y with the taboo state z, since in this case we
count time not from the moment of the process start but from the moment of the first exit out
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of the starting point. In a similar way, we set H−
x,y,z(t) := P(τ−y,z ≤ t|S(0) = x), x, y, z ∈ Zd,

y 6= z, t ≥ 0.
Obviously, τy,z = τ−y,z + τ a.s. Moreover, in view of strong Markov property of the random

walk w.r.t. the stopping time τ (see, e.g., [5], Ch.8, Sec.4) the random variables τ−y,z and τ are
independent. Hence, τy,z has an absolutely continuous (improper) distribution as a sum of two
independent random variables, one of them having a density. On the other hand, the explicit
construction of S shows that the distribution of τ−y,z has an atom at zero when x 6= y, namely,
H−

x,y,z(0) = a(x, y)/a.
For x, y ∈ Zd such that y 6= 0, we specify the functions Cd(x, y) by formulae

C1(x, y) :=
ρ1(y − x) + ρ1(x)− ρ1(y)

4aπγ1
+

aπy2γ3
1(ρ1(y − x)− ρ1(x)− ρ1(y))

ρ21(y)
+

2aπxyγ3
1

ρ1(y)
,

C2(x, y) :=
ρ2(y − x) + ρ2(x)− ρ2(y)

4aγ2
,

Cd(x, y) :=
2γd(ρd(y − x) + ρd(x)− ρd(y))

a(d− 2)(G0(0, 0) +G0(0, y))2
, d ≥ 3.

The following theorems are the main results of the paper.

Theorem 1 Let x, y, z ∈ Zd be such that y 6= z. Then for the random walk S on Zd, except

for a simple random walk on Z, one has

Hx,y,z(∞) =
ρd(x− z) + ρd(y − z)− ρd(y − x)

2ρd(y − z)
∈ (0, 1), d = 1 or d = 2, (7)

Hx,y,z(∞) =
G0(0, 0)ρd(y − z)−G0(0, 0)ρd(y − x) +G0(y, z)ρd(x− z)

ρd(y − z)(G0(0, 0) +G0(y, z))
∈ (0, 1), d ≥ 3, (8)

Moreover, as t → ∞,

Hx,y,z(∞)−Hx,y,z(t) ∼ C1(x− z, y − z)√
t

for d = 1, (9)

Hx,y,z(∞)−Hx,y,z(t) ∼ C2(x− z, y − z)

ln t
for d = 2, (10)

Hx,y,z(∞)−Hx,y,z(t) ∼ Cd(x− z, y − z)

td/2−1
for d ≥ 3 (11)

where Cd(·, ·), d ∈ N, are positive functions defined above.

Theorem 2 Let S be a simple random walk on Z. If x, y, z ∈ Z and y 6= z then

1−Hx,y,z(t) ∼
√
2 |y − x|√
a π

√
t
, x < y < z or z < y < x, (12)

1− 1

2|y − z| −Hy,y,z(t) ∼
1√

2 a π
√
t
, x = y, (13)

x− z

y − z
−Hx,y,z(t) = o(e−a ε t), z < x < y or y < x < z, (14)

1

2|y − z| −Hz,y,z(t) = o(e−a ε t), x = z, (15)

Hx,y,z(t) ≡ 0, x < z < y or y < z < x, (16)

for some ε ∈ (0, 1).
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Theorem 3 Theorems 1 and 2 hold true if function Hx,y,z at the left-hand sides of (7)–(16) is
replaced by H−

x,y,z, whereas the right-hand sides of these formulae remain intact.

The proofs of Theorems 1 and 2 are given in Sections 4 and 5, respectively. They bear on
application of the Laplace-Stieltjes and the Laplace transforms to the main equations involving
Hx,y,z and Hx,z,y as well as functions Hx,y, Hz,y, Hx,z and Hy,z. Here Hx,y(t), x, y ∈ Zd, t ≥ 0,
is the (improper) c.d.f. of the hitting time of point y given the starting point x. After that we
employ the Tauberian theorems techniques and, for d sufficiently large, we essentially use Faà
di Bruno’s formula for the n-th derivative of two functions superposition, n ≥ 1. An essential
difficulty arising on this way is to prove the positivity of functions Cd(x, y), x, y ∈ Zd, y 6= 0,
under the conditions of Theorem 1. Theorem 3 proved in Section 6 can be viewed as a corollary
of Theorems 1 and 2.

3 Auxiliary results

For a nonnegative function κ(t) and a nonnegative nondecreasing function χ(t), t ≥ 0, we set

κ̂(λ) :=

∫ ∞

0

e−λtκ(t) dt, χ̌(λ) :=

∫ ∞

0

e−λt dχ(t), λ > 0,

whenever the integrals exist. Recall a useful relation linking the Laplace-Stieltjes transform of
the bounded function χ(t) and the Laplace transform of χ(∞)−χ(t) where χ(∞) := limt→∞ χ(t),
namely,

̂(χ(∞)− χ)(λ) =
χ(∞)− χ̌(λ)

λ
, λ > 0. (17)

This relation results from the formula of integration by parts.
Introduce a stopping time τy := inf{t ≥ τ : S(t) = y} called the hitting time of point y ∈ Zd.

Denote its (conditional) c.d.f. given the starting point x by Hx,y(t) := P(τy ≤ t|S(0) = x),
x, y ∈ Zd, t ≥ 0. The limit value Hx,y(∞) := limt→∞ Hx,y(t) and the asymptotic behavior of
function Hx,y(∞)−Hx,y(t), as t → ∞, were found in papers [6]–[8], [25] and [27] for y = 0 and
x ∈ Zd. In Lemma 1 we reformulate these results in a more general way.

Lemma 1 Let x, y ∈ Zd. Then

Hx,y(∞) = 1 for d = 1 and d = 2, (18)

Hx,x(∞) = 1− 1

aG0(0, 0)
for d ≥ 3 and y = x, (19)

Hx,y(∞) =
G0(x, y)

G0(0, 0)
for d ≥ 3 and y 6= x. (20)

Moreover, as t → ∞, one has

1−Hx,y(t) ∼
ρ1(y − x)

a γ1 π
√
t

for d = 1, (21)

1−Hx,y(t) ∼
ρ2(y − x)

a γ2 ln t
for d = 2, (22)

Hx,y(∞)−Hx,y(t) ∼
2γd ρd(y − x)

a (d− 2)G2
0(0, 0) t

d/2−1
for d ≥ 3. (23)
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Proof. In view of definitions of τ and τx as well as of conditional probability and a Markov
chain we see that

p(t; x, x) = P(S(t) = x, τ > t|S(0) = x) + P(S(t) = x, τ ≤ t|S(0) = x)

= P(τ > t|S(0) = x) + P(S(t) = x, τx ≤ t|S(0) = x)

= 1−G(t) +

∫ t

0

P(S(t) = x|τx = u, S(0) = x) dP(τx ≤ u|S(0) = x)

= 1−G(t) +

∫ t

0

P(S(t) = x|S(u) = x) dHx,x(u).

Thus we deduce the following formula

p(t; x, x) = 1−G(t) +

∫ t

0

p(t− u; x, x) dHx,x(u), x ∈ Z
d, t ≥ 0. (24)

Note that (5) implies the identity Gλ(x, x) = Gλ(0, 0) for any x ∈ Zd. Therefore, application
of the Laplace-Stieltjes transform to (24) leads to

Ȟx,x(λ) = 1−
̂(1−G)(λ)

Gλ(x, x)
= 1−

̂(1−G)(λ)

Gλ(0, 0)
= Ȟ0,0(λ). (25)

In particular, by the Laplace-Stieltjes transform uniqueness (see, e.g., [14], Ch.13, Sec.1) it
follows that

Hx,x(t) = H0,0(t), t ≥ 0, x ∈ Z
d. (26)

For different d, asymptotic properties of H0,0(t), t → ∞, were established in [6], [25] and
[27]. More exactly, the limit value H−

0,0(∞) := limt→∞H−
0,0(t) and the asymptotic behavior

of H−
0,0(∞) − H−

0,0(t), t → ∞, were found for the function H−
0,0(t), t ≥ 0, related to H0,0 by

H0,0(t) = G ∗H−
0,0(t) (as usual, ∗ denotes the convolution). However, these results are easily

extended to the case of function H0,0(t). Hence, due to (26) relations (18), (19) and (21)–(23)
are proved for x = y.

Let x 6= y. Combined definitions of τy, conditional probability and a Markov chain imply

p(t; x, y) = P(S(t) = y, τy ≤ t|S(0) = x)

=

∫ t

0

P(S(t) = y|τy = u, S(0) = x) dP(τy ≤ u|S(0) = x)

=

∫ t

0

P(S(t) = y|S(u) = y) dHx,y(u).

Consequently, for x 6= y and t ≥ 0 we get the formula

p(t; x, y) =

∫ t

0

p(t− u; y, y) dHx,y(u). (27)

By virtue of (5) identities Gλ(x, y) = Gλ(x− y, 0) = Gλ(y − x, 0) and Gλ(y, y) = Gλ(0, 0) are
valid. Then application of the Laplace-Stieltjes transform to (27) yields

Ȟx,y(λ) =
Gλ(x, y)

Gλ(y, y)
=

Gλ(x− y, 0)

Gλ(0, 0)
=

Gλ(y − x, 0)

Gλ(0, 0)
= Ȟx−y,0(λ) = Ȟy−x,0(λ). (28)
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Now using the Laplace-Stieltjes transform uniqueness we obtain

Hx,y(t) = Hx−y,0(t) = Hy−x,0(t), t ≥ 0. (29)

The limit value Hz,0(∞), z ∈ Zd\{0}, and the asymptotic behavior of Hz,0(∞) − Hz,0(t),
t → ∞, were found in [7] and [8]. It follows that by (29) relations (18), (20) and (21)–(23) are
established for x 6= y. The proof of Lemma 1 is completed.

The next lemma provides a linear integral equation involving functionsHx,y,z(t) andHx,z,y(t)
which is the basis of our theorems proofs.

Lemma 2 Let x, y, z ∈ Zd and y 6= z. Then the following equation holds

Hx,y(t) = Hx,y,z(t) +

∫ t

0

Hz,y(t− u) dHx,z,y(u), t ≥ 0. (30)

Proof. Firstly note that the random variables τy and τy,z coincide a.s. on event {τy,z < ∞}
in view of their definition, that is τyI(τy,z < ∞) = τy,zI(τy,z < ∞) a.s. (here I(B) stands for the
indicator of a set B). Consequently, {τy ≤ t, τy,z ≤ t} = {τy,z ≤ t} for each t ≥ 0. Moreover,
one can see that τyI(τz,y < ∞) ≥ τz,yI(τz,y < ∞) a.s. Therefore, for every nonnegative t, one
has {τy ≤ t, τy,z > t} = {τy ≤ t, τy,z = ∞} = {τy ≤ t, τz,y < ∞} = {τy ≤ t, τz,y ≤ t}. These
relations allow us to write

Hx,y(t) = P(τy ≤ t, τy,z ≤ t|S(0) = x) + P(τy ≤ t, τy,z > t|S(0) = x)

= P(τy,z ≤ t|S(0) = x) + P(τy ≤ t, τz,y ≤ t|S(0) = x)

= Hx,y,z(t) +

∫ t

0

P(τy ≤ t|τz,y = u, S(0) = x) dHx,z,y(u).

Using definitions of τy and τz,y as well as that of a Markov chain it can be verified that
P(τy ≤ t|τz,y = u, S(0) = x) = P(τy ≤ t− u|S(0) = z). The previous reasoning supplemented
with this equality entails the desired statement. Lemma 2 is proved.

The obtained equation has a natural interpretation. Namely, the term at the left-hand side
of (30) accounts for the random walk trajectories starting at point x and hitting point y until
time t. Every path of such kind belongs to one of two types. The trajectories of the first type
do not pass point z before hitting y. They are taken into account by the first summand at
the right-hand side of (30). As to a trajectory of the second type, it hits point z at time u,
0 ≤ u ≤ t, before reaching y so that the part of the trajectory after hitting z is a path starting
at z and reaching y until time t − u. The second summand at the right-hand side of (30) is
responsible for the trajectories of the second type.

The next statement is a Lemma 2 corollary which provides the Laplace-Stieltjes transform
of a solution of equation (30).

Corollary 1 If x, y, z ∈ Zd and y 6= z then for any λ > 0

Ȟx,y,z(λ) =
Ȟx,y(λ)− Ȟx,z(λ)Ȟz,y(λ)

1− Ȟz,y(λ)Ȟy,z(λ)
. (31)
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Proof. Due to Lemma 2 we have a system of two linear integral equations in the functions
Hx,y,z(t) and Hx,z,y(t)

{

Hx,y(t) = Hx,y,z(t) +Hx,z,y ∗Hz,y(t),
Hx,z(t) = Hx,z,y(t) +Hx,y,z ∗Hy,z(t).

Application of the Laplace-Stieltjes transform to each equation of the system leads to a new
system of algebraic equations in Ȟx,y,z(λ) and Ȟx,z,y(λ)

{

Ȟx,y(λ) = Ȟx,y,z(λ) + Ȟx,z,y(λ)Ȟz,y(λ),
Ȟx,z(λ) = Ȟx,z,y(λ) + Ȟx,y,z(λ)Ȟy,z(λ).

Solving this system we obtain (31). The proof is complete.
The next proposition clarifies the invariance of functions Hx,y,z(·) indexed by x, y, z ∈ Zd,

z 6= y, under shifts and reflections of space Zd.

Corollary 2 Let r, x, y, z ∈ Zd and y 6= z. Then

Hx+r,y+r,z+r(t) = Hx,y,z(t), H−x,−y,−z(t) = Hx,y,z(t), t ≥ 0. (32)

Proof. The desired assertion is a direct consequence of formulae (26), (29) and (31).
For proving Theorem 1 we also need the following lemma. Its derivation is based on con-

sidering of all the possible jumps of the random walk after latency period τ .

Lemma 3 For x, y, z ∈ Zd such that y 6= z, one has

H−
x,y,z(∞)−H−

x,y,z(t) =
∑

r∈Zd,r 6=x,r 6=y,r 6=z

a(x, r)

a
(Hr,y,z(∞)−Hr,y,z(t)), t ≥ 0. (33)

Proof. In view of definitions of random variables τ and τ−y,z one has

H−
x,y,z(∞)−H−

x,y,z(t) = P(t < τ−y,z < ∞|S(0) = x)

=
∑

r∈Zd,r /∈{x,y,z}

P(t < τ−y,z < ∞, S(τ) = r|S(0) = x)

=
∑

r∈Zd,r /∈{x,y,z}

P(S(τ) = r|S(0) = x)P(t < τ−y,z < ∞|S(τ) = r, S(0) = x).

Here P(t < τ−y,z < ∞|S(τ) = r, S(0) = x) = P(t < τy,z < ∞|S(0) = r) by the identity
τy,z = τ + τ−y,z a.s. and due to strong Markov property of the random walk w.r.t. the stopping
time τ (see, e.g., [5], Ch.8, Sec.4). Moreover, according to the explicit construction of S the
relation P(S(τ) = r|S(0) = x) = a(x, r)/a is also true. Combining the obtained equalities with
the previous argument one comes to (33). Lemma 3 is proved.

The next result which is known as Faà di Bruno’s formula plays an important role while
establishing Theorem 1 for d ≥ 3.

Theorem 4 (see [24], Appendix, Subsec.9) Let functions W (u) and V (u) have n-th deriva-

tives. Then for the n-th derivative of function U(u) = W (V (u)) the following formula is valid

U (n)(u) =
∑

n1,n2,n3,...∈Z+:
n1+2n2+3n3+...=n

W (n1+n2+n3+...)(V )
n!

n1!n2!n3! . . .

(

V ′

1!

)n1
(

V ′′

2!

)n2
(

V ′′′

3!

)n3

. . .. (34)
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The last auxiliary result will be useful for proving Theorem 2.

Lemma 4 For each x ∈ N the following equality holds true

∫ π

−π

1− cosxθ

1− cos θ
dθ = 2πx. (35)

Proof. For each n ∈ N one has

π
∫

−π

cosnθ − cos (n + 1)θ

1− cos θ
dθ −

π
∫

−π

cos (n− 1)θ − cosnθ

1− cos θ
dθ

=

π
∫

−π

2 cosnθ − cos (n + 1)θ − cos (n− 1)θ

1− cos θ
dθ =

π
∫

−π

2 cosnθ(1− cos θ)

1− cos θ
dθ =

π
∫

−π

2 cosnθ dθ = 0.

Whence for all n ∈ N the values of the following integrals are the same and equal, for instance,
the value of the integral for n = 1

∫ π

−π

cos (n− 1)θ − cosnθ

1− cos θ
dθ =

∫ π

−π

1− cos θ

1− cos θ
dθ = 2π.

Hence, for each x ∈ N we obtain

∫ π

−π

1− cosxθ

1− cos θ
=

x
∑

n=1

∫ π

−π

cos (n− 1)θ − cosnθ

1− cos θ
dθ =

x
∑

n=1

2π = 2πx.

Thus, equality (35) is established and the proof of Lemma 4 is complete.

4 Proof of Theorem 1

Firstly, in view of Corollary 2 it suffices to prove Theorem 1 for z = 0. Secondly, we have to
consider separately the cases d = 1, d = 2 and d ≥ 3, since the demonstration of the theorem
essentially depends on dimension d. Before passing to the non-simple random walk on Z let us
write down some formulae which have the same form for all d ∈ N.

Let x, y ∈ Zd\{0} and x 6= y. Using (17), (25), (28) and (31) as well as recalling that
∫∞
0

e−λt(1−G(t)) dt = (λ+ a)−1, λ ≥ 0, we deduce the following relations

̂(Hx,y,0(∞)−Hx,y,0)(λ) =
Hx,y,0(∞)

λ
− Gλ(x, y)Gλ(0, 0)−Gλ(0, x)Gλ(0, y)

(G2
λ(0, 0)−G2

λ(0, y))λ
, (36)

̂(H0,y,0(∞)−H0,y,0)(λ) =
H0,y,0(∞)

λ
− Gλ(0, y)

(G2
λ(0, 0)−G2

λ(0, y))(λ+ a)λ
, (37)

̂(Hy,y,0(∞)−Hy,y,0)(λ) =
Hy,y,0(∞)

λ
− 1

λ
+

Gλ(0, 0)

(G2
λ(0, 0)−G2

λ(0, y))(λ+ a)λ
. (38)
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4.1 The case d = 1

In this subsection we focus on a non-simple random walk on Z although some arguments are
valid for a simple random walk on Zd as well. At the beginning we find the limit value Hx,y,0(∞)
for x, y ∈ Z, y 6= 0, due to the formula Hx,y,0(∞) = limλ→0+ Ȟx,y,0(λ). To this end we write
the following asymptotic representation of the function Ȟ0,r(λ), r ∈ Z,

Ȟ0,r(λ) = 1− ρ1(r)
√
λ

a γ1
√
π

+ o(
√
λ), λ → 0+, (39)

which results, in view of (17), from application of Tauberian theorem (Theorem 4 in [14], Ch.13,
Sec.5) to relation (21). Then substituting (39) in (31) and taking into account (29) we calculate
limλ→0+ Ȟx,y,0(λ) and, consequently, we get formula for Hx,y,0(∞) which is true for a simple
random walk on Z as well. However, to complete the derivation of (7) for d = 1 we have to
show that Hx,y,0(∞) ∈ (0, 1). Note that by virtue of (18) equality (30) implies the equivalences
Hx,y,0(∞) = 0 ⇔ Hx,0,y(∞) = 1 and Hx,y,0(∞) = 1 ⇔ Hx,0,y(∞) = 0. Hence, to verify that
Hx,y,0(∞) ∈ (0, 1) for all x, y ∈ Z, y 6= 0, it suffices to check that Hx,y,0(∞) > 0 for all x, y ∈ Z,
y 6= 0. In its turn the latter holds true if, for instance, relation (9) is satisfied with C1(x, y) > 0
for all x, y ∈ Z, y 6= 0. Thus, the initial problem of validating that Hx,y,0(∞) ∈ (0, 1) is reduced
to proving (9) and showing positivity of the function C1(·, ·). The rest part of the subsection
is devoted to establishing the last two claims.

The demonstration of (9) is based on formulae (36), (37) and (38) in which we substitute
asymptotic decompositions of functions Gλ(0, 0) and Gλ(0, 0) − Gλ(0, r), as λ → 0+, for
r = x, r = y and r = y − x. Due to Tauberian theorem (Theorem 4 in [14], Ch.13, Sec.5) the
asymptotic behavior of Gλ(0, 0) for d = 1 is encoded in relation (3), namely,

Gλ(0, 0) =
γ1
√
π√
λ

+ o

(

1√
λ

)

, λ → 0 + . (40)

Furthermore, using the same Tauberian theorem we infer that

Gλ(0, 0)−Gλ(0, r) = a−1ρ1(r)− 2
√
π γ̃1(r)

√
λ+ o(

√
λ), λ → 0+, r ∈ Z\{0}. (41)

Indeed, a−1ρ1(r) =
∫∞
0

(p(t; 0, 0)− p(t; 0, r)) dt < ∞ on account of (4) and

Gλ(0, 0)−Gλ(0, r) − a−1ρ1(r) =

∫ ∞

0

e−λt(p(t; 0, 0)− p(t; 0, r)) dt− a−1ρ1(r)

= λ

∫ ∞

0

e−λt

(
∫ t

0

(p(u; 0, 0)− p(u; 0, r)) du

)

dt− λ

∫ ∞

0

e−λta−1ρ1(r) dt

= −λ

∫ ∞

0

e−λt

(
∫ ∞

t

(p(u; 0, 0)− p(u; 0, r)) du

)

dt. (42)

Here
∫∞
t

(p(u; 0, 0)− p(u; 0, r)) du ∼ 2γ̃1(r) t
−1/2 (as t → ∞) by formula (4) and Theorem 31 in

[26]. Now we substitute relation (41) and the formula for Hx,y,0(∞) appearing in (7) into (36),
(37) and (38). After collecting terms we substitute (40) in the obtained formulae. Omitting
tiresome calculations we deduce that for x, y ∈ Z, y 6= 0, and λ → 0+

̂(Hx,y,0(∞)−Hx,y,0)(λ) ∼ ρ1(x) + ρ1(y − x)− ρ1(y)

4 a
√
π γ1

√
λ

+
a
√
π (ρ1(y)γ̃1(x) + ρ1(y − x)γ̃1(y)− ρ1(x)γ̃1(y)− ρ1(y)γ̃1(y − x))

ρ21(y)
√
λ

.
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This can be rewritten in the form

̂(Hx,y,0(∞)−Hx,y,0)(λ) ∼
C1(x, y)

√
π√

λ
, λ → 0+, (43)

given that γ̃1(r) = πr2γ3
1 , r ∈ Z. The latter identity is valid by virtue of definitions of γ1 and

γ̃1(r) since γ1 = 1/
√

−2πφ′′(0) and

γ̃1(r) =
r2

4π

∫ +∞

−∞
υ2eφ

′′(0) υ2/2 dυ =
r2

−4πφ′′(0)
√

−φ′′(0)

∫ +∞

−∞
u2e−u2/2 du =

r2

−2φ′′(0)
√

−2πφ′′(0)
.

We took into account that the variables change u = υ
√

−φ′′(0) reduces the integration to

writing
∫ +∞
−∞ u2e−u2/2 du =

√
2π. Note that relation (43) is valid for a simple random walk on

Z as well. However, in this case the function C1(x, y) takes nonnegative values (not strictly
positive values).

If C1(x, y) > 0 then application of Tauberian theorem (Theorem 4 in [14], Ch.13, Sec.5) to
relation (43) leads to the desired statement (9). Thus, to complete the proof of Theorem 1 for
d = 1 we only need to verify the positivity of function C1(x, y), x, y ∈ Z, y 6= 0.

According to Corollary 2 we may assume that y > 0. Then there exist three possible relative
positions of points x, y and 0, namely, x ≥ y, 0 ≤ x < y and x < 0. Let us consider at first
the case x ≥ y. To check strict positivity of C1(x, y) for such x and y we search for a lower
estimate of it. To this end note that ρ1(x) + ρ1(y − x) − ρ1(y) ≥ 0 in view of formula for
Hy,x,0(∞) appearing in (7) and the evident inequality Hy,x,0(∞) ≤ 1. Obviously, C1(0, y) ≥ 0
and, consequently, ρ21(y)− 4a2π2y2γ4

1 ≥ 0. Combining these inequalities we see that for x ≥ y

C1(x, y) =
(ρ1(x) + ρ1(y − x)− ρ1(y))(ρ

2
1(y)− 4a2π2y2γ4

1)

4 a π ρ21(y) γ1
+

2ρ1(y − x)aπy2γ3
1

ρ21(y)

+
2aπγ3

1y(x− y)

ρ1(y)
≥ 2ρ1(y − x)aπy2γ3

1

ρ21(y)
+

2aπγ3
1y(x− y)

ρ1(y)
> 0.

Before passing to the case 0 ≤ x < y we derive one more useful relation. Recall that
τy,0 ≥ τ−y,0 a.s. because τy,0 = τ−y,0 + τ a.s. Since the random variable τ is exponentially
distributed, P(τy,0 < ∞) = P(τ−y,0 < ∞). Therefore P(t < τy,0 < ∞) ≥ P(t < τ−y,0 < ∞) and
hence Hx,y,0(∞) − Hx,y,0(t) ≥ H−

x,y,0(∞) − H−
x,y,0(t). Due to Lemma 3 and the monotonicity

property of the Laplace transform it follows that

̂(Hx,y,0(∞)−Hx,y,0)(λ) ≥
∑

r∈Z,r 6=x,r 6=y,r 6=0

a(x, r)

a
̂(Hr,y,0(∞)−Hr,y,0)(λ), λ > 0. (44)

Now turn to the case 0 ≤ x < y. We show the positivity of C1(x, y) successively for
x = y − 1, x = y − 2, . . ., x = 0. If x = y − 1 then there exists a point r > y such that
a(y− 1, r) > 0 as otherwise the random walk is simple. Therefore, by virtue of (43) and of the
just established inequality C1(r, y) > 0, 0 < y < r, there is a summand of the order 1/

√
λ at

the right-hand side of (44). Consequently, by (43) the left-hand side of (44) is also of the order
1/
√
λ, λ → 0+, and the relation C1(y− 1, y) > 0 with y > 0 is proved. Recall that the random

walk under consideration is irreducible, that is, the greatest common divisor of all r ∈ Z\{0}
such that a(r) > 0 equals 1 (see [4], Ch.12, Sec.3). This implies for x = y − 2 that there exists
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a point r > y or r = y − 1 such that a(y − 2, r) > 0. Since for such r we have just shown
the positivity of C1(r, y), in view of (43) it means that the left-hand side of (44) has the order
of growth 1/

√
λ, as λ → 0. So we conclude that C1(y − 2, y) > 0 with y > 0. Considering

successively the cases x = y − 3, x = y − 4, . . ., x = 0, we prove according to the described
scheme that C1(x, y) > 0 for all x ∈ [0, y), x ∈ Z.

The case x < 0 < y is also treated by indirect methods, since the immediate estimation of
C1(x, y) for such x and y is rather difficult. We consider in succession x = −1, x = −2, . . .. At
first we assume that for the random walk S there exist at least three points r1 > 0, r2 > 0 and
r3 > 0 such that a(r1) > 0, a(r2) > 0 and a(r3) > 0. If x = −1 then at the right-hand side of
(44) there is at least one summand indexed by r where r > 0, r 6= y and a(−1, r) > 0. Similarly
to the previous discussion we infer that the left-hand side of (44) has the order of growth 1/

√
λ,

as λ → 0+, and C1(−1, y) > 0. If x = −2 then at the right-hand side of (44) there exists at
least one summand indexed by r = −1 or r > 0, such that r 6= y and a(−2, r) > 0. Since for
such r the positivity of C1(r, y) has been already proved, in view of (43) and (44) we deduce
that C1(−2, y) > 0. The positivity of C1(x, y) for x = −3, x = −4, . . . is verified in the same
manner.

We continue to deal with the case x < 0 < y assuming that there exist exactly two points
r1 > 0 and r2 > 0 such that a(r1) > 0 and a(r2) > 0. Let x = −1. If there is a point r > 0,
r 6= y, such that a(−1, r) > 0 (i.e. r1 = r+1 or r2 = r+1) then by virtue of (43) and (44) as well
as of the verified inequality C1(r, y) > 0 we get the desired relation C1(−1, y) > 0. Otherwise,
one has r1 = 1 and r2 = y + 1. If y > 1 then a(−2, y − 1) = a(y + 1) > 0 and, consequently,
C1(−2, y) > 0 in view of (43), (44) and the established earlier estimate C1(y − 1, y) > 0.
Therefore, if r1 = 1, r2 = y+1 and y > 1 we obtain C1(−1, y) > 0 due to (43) and (44) as well
as the relation a(−1,−2) = a(1) > 0 and the just proved inequality C1(−2, y) > 0. However,
for r1 = 1, r2 = y + 1 and y = 1, the previous arguments do not work and we have to employ
the following facts concerning the embedded chain {Sn, n ∈ Z+}.

For the embedded chain {Sn, n ∈ Z+} introduce a passage time T := min{n > 0 : Sn ≥ −1}.
According to [1], Theorems 15.1 and 15.2,

P(T < ∞|S(0) = −1) = 1, P(T > n|S(0) = −1) ∼ c√
n
, n → ∞, (45)

where c is some positive constant.
For brevity we write P−1(·) := P(·|S(0) = −1). Since we assume that r1 = 1 and r2 = 2, the

process {Sn, n ∈ Z+} can perform jumps to the nearest-neighbor points or to the next nearest
points. Hence,

P−1(T = n, Sn = −1) = P−1(T = n, Sn−1 = −2, Sn = −1) + P−1(T = n, Sn−1 = −3, Sn = −1)

= P−1(Sk < −1, 0 < k < n− 1, Sn−1 = −2, Sn = −1)

+ P−1(Sk < −1, 0 < k < n− 1, Sn−1 = −3, Sn = −1)

=
a(−2,−1)

a
P−1(Sk < −1, 0 < k < n− 1, Sn−1 = −2)

+
a(−3,−1)

a
P−1(Sk < −1, 0 < k < n− 1, Sn−1 = −3)

≥ min{a(1), a(2)}
a

P−1(T = n). (46)
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Let us return to a lower estimate of H−1,1,0(∞)−H−1,1,0(t) = P−1(t < τ1,0 < ∞), as t → ∞.
Denote by N = {N(t), t ≥ 0} the Poisson process constructed by means of the random sequence
{τ (n+1) − τ (n)}∞n=0, i.e. N is the Poisson process with intensity a. Considering all the possible
jumps of S, taking into account (46) and invoking the explicit construction of S we derive that

P−1(t < τ1,0 < ∞) =
∞
∑

n=1

P−1(τ1,0 = τ (n), t < τ1,0 < ∞)

=
∞
∑

n=1

P−1(Sk 6= 0, Sk 6= 1, 0 < k < n, Sn = 1, t < τ (n) < ∞)

=

∞
∑

n=1

P−1(Sk ≤ −1, 0 < k < n− 1, Sn−1 = −1, Sn = 1, N(t) < n)

=

∞
∑

n=1

P−1(Sk ≤ −1, 0 < k < n− 1, Sn−1 = −1, Sn = 1)P(N(t) < n)

≥ a(−1, 1)

a

∞
∑

n=1

P−1(Sk < −1, 0 < k < n− 1, Sn−1 = −1)P(N(t) < n)

=
a(2)

a

∞
∑

n=1

P−1(T = n− 1, Sn−1 = −1)P(N(t) < n)

≥ a(2)min{a(1), a(2)}
a2

∞
∑

n=1

P−1(T = n− 1)

n−1
∑

k=0

e−at(at)k

k!

=
a(2)min{a(1), a(2)}

a2

∞
∑

k=0

P−1(T ≥ k)
e−at(at)k

k!
. (47)

Thus, finding a lower estimate of P−1(t < τ1,0 < ∞) is reduced to establishing a lower estimate

of the last series. It is not difficult to check that (N(t) − at)/
√
at

Law−→ ξ with ξ ∼ N (0, 1), as
t → ∞. Consequently, P(N(t) ∈ (at− b

√
at, at + b

√
at)) → P(ξ ∈ (−b, b)) > 0, as t → ∞, for

each b > 0. Hence, in view of (45)

∞
∑

k=0

P−1(T ≥ k)
e−at(at)k

k!
≥ P(T ≥ [at+ b

√
at])P(N(t) ∈ (at− b

√
at, at + b

√
at))

∼ c√
at

P(ξ ∈ (−b, b)), t → ∞. (48)

Combining (43), (47) and (48) as well as taking into account the monotonicity property of the
Laplace transform we conclude that C1(−1, 1) > 0.

Thus, we have shown that C1(−1, y) > 0 for each y > 0. Let us pass to the starting point
x = −2. Recall that we assume that there exist exactly two points r1 > 0 and r2 > 0 such that
a(r1) > 0 and a(r2) > 0. If there is point r > 0, r 6= y, or r = −1 such that a(−2, r) > 0 (that is,
r1 = r+2 or r2 = r+2) then due to (43) and (44) as well as the verified inequality C1(r, y) > 0
we get the desired estimate C1(−2, y) > 0. Otherwise, one has r1 = 2 and r2 = y + 2. In
particular, a(−4,−2) > 0 and a(−4, y − 2) > 0. Since the random walk is irreducible, one can
guarantee that y − 2 6= 0. Consequently, C1(−4, y) > 0 in view of (43), (44) and the earlier
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established inequality C1(y−2, y) > 0 with y > 0 and y 6= 2. In its turn C1(−2, y) > 0 by virtue
of (43), (44) and the just proved estimate C1(−4, y) > 0. Therefore, the positivity of C1(x, y)
for x = −2 and y > 0 is demonstrated. For x = −3, x = −4, . . ., verification of C1(x, y)
positivity, y > 0, is implemented similarly to the case x = −2. Consequently, Theorem 1 for
d = 1 is proved.

4.2 The case d = 2

As in the previous subsection one can find the limit value Hx,y,0(∞) for x, y ∈ Z2, y 6= 0, by
the formula Hx,y,0(∞) = limλ→0+ Ȟx,y,0(λ). For this purpose we write the following asymptotic
representation of the function Ȟ0,r(λ), r ∈ Z2,

Ȟ0,r(λ) = 1 +
ρ2(r)

a γ2 lnλ
+ o

(

1

lnλ

)

, λ → 0+, (49)

which results from application of Tauberian theorem (Theorem 4 in [14], Ch.13, Sec.5) to
relation (22) and from employing (17). Substituting (49) in (31) and taking into account (29)
we find limλ→0+ Ȟx,y,0(λ) and, thus, Hx,y,0(∞) is obtained. However, to complete the derivation
of (7) for d = 2 one has to show that Hx,y,0(∞) ∈ (0, 1). Similarly to Subsection 4.1, equalities
(18) and (30) entail that Hx,y,0(∞) = 0 ⇔ Hx,0,y(∞) = 1 and Hx,y,0(∞) = 1 ⇔ Hx,0,y(∞) = 0.
Therefore, for establishing that Hx,y,0(∞) ∈ (0, 1) for all x, y ∈ Z2, y 6= 0, it suffices to verify
the inequality Hx,y,0(∞) > 0 for all x, y ∈ Z2, y 6= 0. In its turn the latter holds true if,
for instance, relation (10) is satisfied with C2(x, y) > 0 for all x, y ∈ Z2, y 6= 0. Hence, the
initial problem of checking that Hx,y,0(∞) ∈ (0, 1) is reduced to proving of (10) and showing
the positivity of function C2(·, ·). The rest part of this subsection is devoted to validating the
last two claims.

The proof of (10) bears on formulae (36)–(38) in which we substitute asymptotic decom-
positions of functions Gλ(0, 0) and Gλ(0, 0) − Gλ(0, r), as λ → 0+, for r = x, r = y and
r = y − x. Due to Tauberian theorem (Theorem 2 in [14], Ch.13, Sec.5) the asymptotic
behavior of Gλ(0, 0) for d = 2 is implied by (3), namely,

Gλ(0, 0) = −γ2 lnλ+ o(lnλ), λ → 0 + . (50)

Using the same Tauberian theorem and relation (42), valid for all d ∈ N, we deduce that

Gλ(0, 0)−Gλ(0, r) = a−1ρ2(r) + γ̃2(r) λ lnλ+ o(λ lnλ), λ → 0+, r ∈ Z
2\{0}. (51)

Indeed, in view of (4) one has a−1ρ2(r) =
∫∞
0

(p(t; 0, 0)− p(t; 0, r)) dt < ∞ and by formula (4)
and Theorem 31 in [26] one infers that

∫∞
t

(p(u; 0, 0)− p(u; 0, r)) du ∼ γ̃2(r)/t, as t → ∞. Now
we substitute relation (51) and the formula for Hx,y,0(∞) appearing in (7) into (36)–(38). After
collecting terms we substitute (50) in the obtained formulae. Omitting tedious calculations we
establish that

̂(Hx,y,0(∞)−Hx,y,0)(λ) ∼
ρ2(x) + ρ2(y − x)− ρ2(y)

−4 a γ2 λ lnλ
, λ → 0+, x, y ∈ Z

2, y 6= 0.

If C2(x, y) > 0 then application of Tauberian theorem (Theorem 4 in [14], Ch.13, Sec.5) to the
last asymptotic relation gives (10). Thus, to complete the proof of Theorem 1 for d = 2 we only
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have to verify the positivity of C2(x, y) for all x, y ∈ Z2, y 6= 0. To prove the claim we employ
the method of ad absurdum. Assume that there exist x and y such that x ∈ Z2, y ∈ Z2\{0}
and C2(x, y) = 0. Then the definition of C2(x, y) implies that

ρ2(x) + ρ2(y − x)− ρ2(y) = 0. (52)

In view of (7) the last equality is equivalent to the relation Hy,x,0(∞) = 1. Therefore, formulae
(18) and (30) entail that Hy,0,x(t) = 0 and Hy,x,0(t) = Hy,x(t) for t ≥ 0. Hence, by virtue of
(22) one has C2(y, x) > 0 and C2(y, x) = ρ2(y−x)/(a γ2). Taking into account the definition of
C2(y, x) the last equality can be rewritten as ρ2(y)−ρ2(x) = 3ρ2(y−x). This relation combined
with assumption (52) leads to contradiction. Hence, C2(x, y) > 0 for all x, y ∈ Z2, y 6= 0. The
proof of Theorem 1 for d = 2 is complete.

4.3 The case d ≥ 3

In this subsection we assume that d ≥ 3. Basing on the formula Hx,y,0(∞) = limλ→0+ Ȟx,y,0(λ),
x, y ∈ Zd, y 6= 0, we find the limit valueHx,y,0(∞) with the help of (19), (20) and (31). To prove
(8) completely we have to check that Hx,y,0(∞) ∈ (0, 1). Obviously, in view of (19), (20) and
(30) the relation Hx,y,0(∞) ≤ Hx,y(∞) < 1 holds true. For verifying inequality Hx,y,0(∞) > 0 it
suffices to establish (11) and show the positivity of Cd(x, y). So the rest part of the subsection
is devoted to validating these two assertions.

Further on we suppose that x and y are fixed points within Zd\{0}. Formulae (36) – (38)
can be rewritten in the following form

̂(Hx,y,0(∞)−Hx,y,0)(λ) =
ρd(y)(ρd(y − x) + ρd(x)− ρd(y))

a2(G0(0, 0) +G0(0, y))
J1(λ; 0, y) + J2(λ; x, y) + J3(λ; x, y)

−G0(0, 0)(ρd(y − x) + ρd(x)− ρd(y))

a(G0(0, 0) +G0(0, y))
J4(λ; y)−

a(G0(0, 0)G0(x, y)−G0(0, x)G0(0, y))

ρd(y)(G0(0, 0) +G0(0, y))
J5(λ; y),

(53)

̂(H0,y,0(∞)−H0,y,0)(λ) =
ρd(y)

a2(G0(0, 0) +G0(0, y))
J1(λ; y; y)−

G0(0, y)

a(G0(0, 0) +G0(0, y))
J4(λ; y)

− G0(0, y)

ρd(y)(G0(0, 0) +G0(0, y))
J5(λ; y) +

1

a
J6(λ; y, y), (54)

̂(Hy,y,0(∞)−Hy,y,0)(λ) =
ρd(y)

a2(G0(0, 0) +G0(0, y))
J1(λ; 0, y)−

G0(0, 0)

a(G0(0, 0) +G0(0, y))
J4(λ; y)

+
G0(0, 0)

ρd(y)(G0(0, 0) +G0(0, y))
J5(λ; y)−

1

a
J6(λ; 0, y) (55)

where for r ∈ Zd and λ > 0

J1(λ; r, y) :=
Kd(λ; r)

G2
λ(0, 0)−G2

λ(0, y)
, J2(λ; r, y) :=

(Kd(λ; y − r)−Kd(λ; y))Gλ(0, 0)

G2
λ(0, 0)−G2

λ(0, y)
,

J3(λ; r, y) :=
(Kd(λ; 0)−Kd(λ; r))Gλ(0, y)

G2
λ(0, 0)−G2

λ(0, y)
, J4(λ; y) :=

Kd(λ; 0)−Kd(λ; y)

G2
λ(0, 0)−G2

λ(0, y)
,

J5(λ; y) :=
Kd(λ; 0)−Kd(λ; y)

Gλ(0, 0)−Gλ(0, y)
, J6(λ; r, y) :=

Gλ(0, r)

(λ+ a)(G2
λ(0, 0)−G2

λ(0, y))
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and

Kd(λ; r) :=
G0(0, r)−Gλ(0, r)

λ
.

Let us briefly describe the further scheme of the proof of (11). At first we differentiate
[d/2] − 1 times (symbol [·] stands for the integer part of a number) the both sides of (53),
(54) and (55) w.r.t. variable λ at point λ > 0. Then we retrieve the asymptotic behavior

of function J
([d/2]−1)
1 (λ; r, y), as λ → 0+, for each r ∈ Zd. Moreover, we verify that the func-

tions J
([d/2]−1)
2 (λ; r, y), J

([d/2]−1)
3 (λ; r, y), J

([d/2]−1)
4 (λ; y), J

([d/2−1])
5 (λ; y) and J

([d/2]−1)
6 (λ; r, y) are

o(J
([d/2]−1)
1 (λ; r, y)), as λ → 0+, for each r. Afterwards one can employ Corollary 43 in [26] and,

thus, find the asymptotic behavior of the functions Hx,y,0(∞)−Hx,y,0(t), H0,y,0(∞)−H0,y,0(t)
and Hy,y,0(∞)−Hy,y,0(t), as t → ∞.

Before studying the limiting behavior of J
([d/2]−1)
1 (λ; r, y) we have to investigate the asymp-

totic properties of the functions Kd(λ; r), (Gλ(0, 0) − Gλ(0, y))
−1, (G2

λ(0, 0) − G2
λ(0, y))

−1,
Gλ(0, r)/(G

2
λ(0, 0)−G2

λ(0, y)), Gλ(0, r)/(λ+ a) and their derivatives up to the order [d/2]− 1
for each r ∈ Zd.

Integrating by parts it is easy to check the following equality

Kd(λ; r) =

∫ ∞

0

e−λt

(
∫ ∞

t

p(u; 0, r) du

)

dt, r ∈ Z
d, λ > 0. (56)

Then for each n ∈ N function Kd(λ; r) has the n-th derivative w.r.t. λ > 0 which can be
calculated by the formula

K
(n)
d (λ; r) = (−1)n

∫ ∞

0

e−λt tn
(
∫ ∞

t

p(u; 0, r) du

)

dt (57)

for each r ∈ Zd. For convenience we set K
(0)
d (λ; r) := Kd(λ; r). Let us analyze for each r the

asymptotic behavior of the n-th derivative (0 ≤ n ≤ [d/2]− 1, n ∈ Z) of the function Kd(λ; r)
at point λ, as λ → 0+. To this end we need the relation implied by (3) and Theorem 31 in
[26], namely,

∫ ∞

t

p(u; 0, r) du ∼ 2γd
(d− 2)td/2−1

, t → ∞, r ∈ Z
d. (58)

Then in view of (57) one has, as λ → 0+,

(−1)nK
(n)
d (λ; r) →

∫ ∞

0

tn
(
∫ ∞

t

p(u; 0, r) du

)

dt < ∞, 0 ≤ n <

[

d− 1

2

]

− 1. (59)

Moreover, using Tauberian theorem (Theorem 2 in [14], Ch.13, Sec.5) we observe that, as
λ → 0+,

(−1)d/2−2K
(d/2−2)
d (λ; r) ∼ 2γd

(d− 2)
ln

1

λ
only for even d. (60)

Note that for uneven d the numbers [(d − 1)/2] − 1 and [d/2] − 1 coincide whereas for even
d one has [(d − 1)/2] − 1 = d/2 − 2. Employing relations (57) and (58) as well as Tauberian
theorem (Theorem 4 in [14], Ch.13, Sec.5) we infer that, as λ → 0+,

(−1)[d/2]−1K
([d/2]−1)
d (λ; r) ∼

{

2γd
√
π

(d−2)
√
λ
, if d is uneven,

2γd
(d−2)λ

, if d is even.
(61)
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We stress that the right-hand sides of (60) and (61) do not depend on point r ∈ Zd.
Now we investigate the asymptotic properties of function Gλ(0, 0)−Gλ(0, y) and its deriva-

tives up to the order [d/2] − 1, as λ → 0+. Recall that for λ ≥ 0 one has the identity
Gλ(0, 0)−Gλ(0, y) =

∫∞
0

e−λt(p(t; 0, 0)− p(t; 0, y)) dt where the asymptotic behavior of the
function p(t; 0, 0)− p(t; 0, y) (as t → ∞) is given by (4). Then by virtue of the counterpart of
(57) for the function Gλ(0, 0)−Gλ(0, y) we get that, as λ → 0+,

(−1)n(Gλ(0, 0)−Gλ(0, y))
(n) →

∫ ∞

0

tn(p(t; 0, 0)− p(t; 0, y)) dt < ∞, 0 ≤ n ≤
[

d

2

]

−1. (62)

Using Theorem 4 we are ready to estimate the asymptotic growth of the n-th derivative,
0 ≤ n ≤ [d/2]− 1, of the function (Gλ(0, 0) − Gλ(0, y))

−1, as λ → 0+. For this purpose we
consider function V −1 as the external function W (V ) and we substitute Gλ(0, 0) − Gλ(0, y)

instead of internal function V (·) in Theorem 4. Since W (n)(V ) = (V −1)
(n)

= (−1)nn!V −n−1 for
every n ∈ Z+ and Gλ(0, 0)−Gλ(0, y) → a−1ρd(y) > 0, as λ → 0+, then in view of Theorem 4
and relation (62) we obtain the estimate we are interested in

(

1

Gλ(0, 0)−Gλ(0, y)

)(n)

= O(1), λ → 0+, 0 ≤ n ≤
[

d

2

]

− 1. (63)

Let us turn to the study of the asymptotic behavior of the function Gλ(0, r) and its n-th
derivatives, 0 < n ≤ [d/2]− 1, as λ → 0+, for each r ∈ Zd. In view of the counterpart of (57)
for Gλ(0, r) as well as of relation (3) we see that, as λ → 0+,

(−1)nG
(n)
λ (0, r) →

∫ ∞

0

tnp(t; 0, r)dt < ∞, 0 ≤ n ≤
[

d− 1

2

]

− 1. (64)

Moreover, employing Tauberian theorem (Theorem 2 in [14], Ch.13, Sec.5) we find that

(−1)d/2−1G
(d/2−1)
λ (0, r) ∼ γd ln

1

λ
, λ → 0+, only for even d. (65)

As mentioned above, the numbers [(d − 1)/2]− 1 and [d/2]− 1 coincide for uneven d whereas
for even d one has [(d− 1)/2]− 1 = d/2− 2.

Now for estimating the asymptotic behavior of the n-th order derivatives, 0 ≤ n ≤ [d/2]−1,
of the function Gλ(0, r)/(λ+ a), as λ → 0+, it suffices to apply the Leibniz formula as well as
relations (64) and (65). Indeed,

(

Gλ(0, r)

λ+ a

)(n)

=
n

∑

k=0

Ck
n G

(k)
λ (0, r)

(

1

λ+ a

)(n−k)

=
n

∑

k=0

Ck
n G

(k)
λ (0, r)

(−1)n−k(n− k)!

(λ+ a)n−k+1

where n ∈ Z+ and, hence, for each r ∈ Zd we obtain the desired estimates

(

Gλ(0, r)

λ+ a

)(n)

= O(1), λ → 0+, 0 ≤ n ≤
[

d− 1

2

]

− 1, (66)

(

Gλ(0, r)

λ+ a

)(d/2−1)

= O

(

ln
1

λ

)

, λ → 0+, only for even d. (67)
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Repeating the argument used for deriving relations (64) and (65) we find the asymptotic
behavior of the function Gλ(0, 0) + Gλ(0, y) and its derivatives up to the order [d/2] − 1, as
λ → 0+,

(−1)n(Gλ(0, 0)+Gλ(0, y))
(n) →

∞
∫

0

tn(p(t; 0, 0) + p(t; 0, y))dt < ∞, 0 ≤ n ≤
[

d− 1

2

]

−1, (68)

(−1)d/2−1 (Gλ(0, 0) +Gλ(0, y))
(d/2−1) ∼ 2γd ln

1

λ
only for even d. (69)

To investigate the asymptotic properties of the function (Gλ(0, 0) + Gλ(0, y))
−1 and its

derivatives of order n, 0 < n ≤ [d/2] − 1, as λ → 0+, we employ Theorem 4 once again.
We take V −1 as the external function W (V ) and consider the function Gλ(0, 0) + Gλ(0, y)

as V (·) in Theorem 4. Since W (n)(V ) = (V −1)
(n)

= (−1)nn!V −n−1 for all n ∈ Z+ and
Gλ(0, 0) +Gλ(0, y) → G0(0, 0) +G0(0, y) > 0, as λ → 0+, due to Theorem 4 as well as re-
lations (68) and (69) we get the estimates

(

1

Gλ(0, 0) +Gλ(0, y)

)(n)

= O(1), λ → 0+, 0 ≤ n ≤
[

d− 1

2

]

− 1, (70)

(

1

Gλ(0, 0) +Gλ(0, y)

)(d/2−1)

= O

(

ln
1

λ

)

, λ → 0+, only for even d. (71)

To establish asymptotic behavior of the function (G2
λ(0, 0)−G2

λ(0, y))
−1 and its derivatives

up to the order [d/2] − 1, as λ → 0+, it suffices to apply the Leibniz formula along with
estimates (63), (70) and (71). Indeed,

(

1

G2
λ(0, 0)−G2

λ(0, y)

)(n)

=

n
∑

k=0

Ck
n

(

1

Gλ(0, 0)−Gλ(0, y)

)(k)(
1

Gλ(0, 0) +Gλ(0, y)

)(n−k)

for n ∈ Z+, and, consequently,

(

1

G2
λ(0, 0)−G2

λ(0, y)

)(n)

= O(1), λ → 0+, 0 ≤ n ≤
[

d− 1

2

]

− 1, (72)

(

1

G2
λ(0, 0)−G2

λ(0, y)

)(d/2−1)

= O

(

ln
1

λ

)

, λ → 0+, only for even d. (73)

Let us investigate the asymptotic properties of the function Gλ(0, r)/(G
2
λ(0, 0)−G2

λ(0, y))
and its n-th derivatives, 0 ≤ n ≤ [d/2]− 1, for each r ∈ Zd, as λ → 0+. The Leibniz formula
implies that for all λ > 0 and n ∈ Z+

(

Gλ(0, r)

G2
λ(0, 0)−G2

λ(0, y)

)(n)

=
n

∑

k=0

Ck
nG

(k)
λ (0, r)

(

1

G2
λ(0, 0)−G2

λ(0, y)

)(n−k)

.

Taking into account (64), (65), (72) and (73), for each r ∈ Zd, we infer that

(

Gλ(0, r)

G2
λ(0, 0)−G2

λ(0, y)

)(n)

= O(1), λ → 0+, 0 ≤ n ≤
[

d− 1

2

]

− 1, (74)
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(

Gλ(0, r)

G2
λ(0, 0)−G2

λ(0, y)

)(d/2−1)

= O

(

ln
1

λ

)

, λ → 0+, only for even d. (75)

Since all the basic relations are established, we turn to finding the asymptotic behavior of
the function J

([d/2]−1)
1 (λ; r, y) for each r ∈ Zd, as λ → 0+. By the definition of J1(λ; r, y) after

applying the Leibniz formula to its ([d/2]− 1)-th derivative we obtain

J
([d/2]−1)
1 (λ; r, y) =

[d/2]−1
∑

k=0

Ck
[d/2]−1

(

1

G2
λ(0, 0)−G2

λ(0, y)

)(k)

K
([d/2]−1−k)
d (λ; r).

Analyzing every summand in the last sum with the help of relations (59)–(61) and (72), (73)
we conclude that the first summand gives the main contribution to the asymptotic behavior of
J
([d/2]−1)
1 (λ; x, y), λ → 0+. Indeed, the first summand has the order of growth 1/

√
λ for uneven

d and has the order 1/λ for even d, respectively. On the other hand, the rest summands are
O(1) for uneven d and are O(ln2 λ) for even d, respectively. Therefore, for each r ∈ Zd, as
λ → 0+, one gets

(−1)[
d

2 ]−1J
([ d2 ]−1)
1 (λ; r, y) ∼

{

2γd
√
π

(d−2)(G2
0
(0,0)−G2

0
(0,y))

√
λ
, if d is uneven,

2γd
(d−2)(G2

0
(0,0)−G2

0
(0,y))λ

, if d is even.
(76)

To estimate the asymptotic behavior of the functions J
([d/2]−1)
2 (λ; r, y) and J

([d/2]−1)
3 (λ; r, y),

as λ → 0+, we use the Leibniz formula once again, namely,

J
([d/2]−1)
2 (λ; r, y) =

[d/2]−1
∑

k=0

Ck
[d/2]−1

(

Gλ(0, 0)

G2
λ(0, 0)−G2

λ(0, y)

)(k)

(Kd(λ; y − r)−Kd(λ; y))
([d/2]−1−k),

J
([d/2]−1)
3 (λ; r, y) =

[d/2]−1
∑

k=0

Ck
[d/2]−1

(

Gλ(0, y)

G2
λ(0, 0)−G2

λ(0, y)

)(k)

(Kd(λ; 0)−Kd(λ; r))
([d/2]−1−k).

By virtue of (59)–(61), (74) and (75) at the right-hand sides of the last equalities there are only
the first summands which grow as o(1/

√
λ) for uneven d and as o(1/λ) for even d, respectively,

as λ → 0+. The rest summands are O(1) for uneven d and are o(ln2 λ) for even d. Thus, on
account of (76) for each r ∈ Zd, as λ → 0+, we come to the desired estimates

J
([d/2]−1)
2 (λ; r, y) = o

(

J
([d/2]−1)
1 (λ; 0, y)

)

, J
([d/2]−1)
3 (λ; r, y) = o

(

J
([d/2]−1)
1 (λ; 0, y)

)

. (77)

Let us study the asymptotic growth of the function J
([d/2]−1)
4 (λ; y) as λ → 0+. The definition

of J4(λ; y) and the Leibniz formula entail

J
([d/2]−1)
4 (λ; y) =

[d/2]−1
∑

k=0

Ck
[d/2]−1

(

1

G2
λ(0, 0)−G2

λ(0, y)

)(k)

(Kd(λ; 0)−Kd(λ; y))
([d/2]−1−k).

Due to relations (59)–(61), (72) and (73) we note that the first summand at the last sum is
o(1/

√
λ) for uneven d and is o(1/λ) for even d, respectively, as λ → 0+. Meanwhile, the rest
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summands have the order of growth O(1) for uneven d and o(ln2 λ) for even d, respectively.
Hence, taking into account (76) we conclude that for each r ∈ Zd

J
([d/2]−1)
4 (λ; y) = o

(

J
([d/2]−1)
1 (λ; r, y)

)

, λ → 0 + . (78)

We turn to estimating of the asymptotic behavior of the function J
([d/2]−1)
5 (λ; y), as λ → 0+.

The definition of J5(λ; y) and the Leibniz formula imply that

J
([d/2]−1)
5 (λ; y) =

[d/2]−1
∑

k=0

Ck
[d/2]−1

(

1

Gλ(0, 0)−Gλ(0, y)

)(k)

(Kd(λ; 0)−Kd(λ; y))
([d/2]−1−k).

On account of relations (59)–(61) and (63) we see that the first summand at the last sum is
o(1/

√
λ) for uneven d and is o(1/λ) for even d, respectively. All the other summands have the

order of growth O(1) for uneven d and o(lnλ) for even d, respectively, as λ → 0+. By (76) it
follows that for each r ∈ Zd

J
([d/2]−1)
5 (λ; y) = o

(

J
([d/2]−1)
1 (λ; r, y)

)

, λ → 0 + . (79)

The last step is the revealing the asymptotic properties, as λ → 0+, of the function
J
([d/2]−1)
6 (λ; r, y). By the definition of J6(λ; r, y) together with the Leibniz formula one can

write

J
([d/2]−1)
6 (λ; r, y) =

[d/2]−1
∑

k=0

Ck
[d/2]−1

(

1

G2
λ(0, 0)−G2

λ(0, y)

)(k)(
Gλ(0, r)

λ+ a

)([d/2]−1−k)

.

Recalling relations (66), (67), (72) and (73), we deduce that if d is uneven then all the summands
at the last sum are O(1), as λ → 0+. However, if d is even then the first and the last summands
have the order of growth O(lnλ) whereas the others have the order of growth O(1), as λ → 0+.
In any case in view of (76) the following formula holds true

J
([d/2]−1)
6 (λ; r, y) = o

(

J
([d/2]−1)
1 (λ; r, y)

)

, λ → 0 + . (80)

Combining results (53) – (55) and (76) – (80) we conclude that
∫ ∞

0

e−λtt[d/2]−1(Hx,y,0(∞)−Hx,y,0(t)) dt ∼ 2γd(ρd(y − x) + ρd(x)− ρd(y))

a(d− 2)(G0(0, 0) +G0(0, y))2

×
{ √

π/
√
λ, if d is uneven,

1/λ, if d is even,
(81)

∫ ∞

0

e−λtt[
d

2 ]−1(H0,y,0(∞)−H0,y,0(t)) dt ∼
∫ ∞

0

e−λtt[
d

2 ]−1(Hy,y,0(∞)−Hy,y,0(t)) dt

∼ 2γd
a(d− 2)(G0(0, 0) +G0(0, y))2

{ √
π/

√
λ, if d is uneven,

1/λ, if d is even,
(82)

as λ → 0+. If Cd(x, y) > 0 for all x, y ∈ Zd\{0}, x 6= y (it is easily seen that Cd(0, y) and
Cd(y, y) are always positive for d ≥ 3) then application of Corollary 43 in [26] to the last
asymptotic relations implies (11).
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Thus, to complete the proof of Theorem 1 for d ≥ 3 we only have to verify the positivity
of Cd(x, y) for x, y ∈ Zd\{0}, x 6= y. The main idea of the demonstration is the same as
that exploited for proving the positivity of C2(·, ·) in Subsection 4.2. Namely, we assume the
contrary, that is, for some d ∈ N, x ∈ Zd\{0, y} and y ∈ Zd\{0} the relation Cd(x, y) = 0 is
valid. This is equivalent to the following relations

G0(0, 0) +G0(0, y) = G0(x, y) +G0(0, x) ⇔ G0(0, 0)−G0(0, x) = G0(x, y)−G0(0, y). (83)

Note that the formula for Hy,x,0(∞) appearing in (8) and the definition of function ρd(·) allow
us to write

Hy,x,0(∞) =
G0(0, 0)(G0(x, y)−G0(0, y)) +G0(0, y)(G0(0, 0)−G0(0, x))

G2
0(0, 0)−G2

0(0, x)
.

Combining (83) and the last equality we see that

Hy,x,0(∞) =
(G0(0, 0)−G0(0, x))(G0(0, 0) +G0(0, y))

G2
0(0, 0)−G2

0(0, x)

=
G0(0, 0) +G0(0, y)

G0(0, 0) +G0(0, x)
=

G0(x, y) +G0(0, x)

G0(0, 0) +G0(0, x)
.

However, by formula (30) one has Hy,x,0(∞) ≤ Hy,x(∞) and due to (20) it follows that

G0(x, y) +G0(0, x)

G0(0, 0) +G0(0, x)
≤ G0(x, y)

G0(0, 0)
⇔ G0(0, 0) ≤ G0(x, y).

The obtained contradiction completes the proof of (11) and the proof of Theorem 1 as well.

5 Proof of Theorem 2

Firstly note that in view of Corollary 2 it suffices to establish Theorem 2 for z = 0. Recall that
for a simple random walk on Z the transition intensities a(r, r + 1) = a(r, r − 1) = a/2 and
a(r, r + k) = 0 for all r ∈ Z and k ∈ Z such that |k| > 1. By definition of the function φ(θ)
and by that of the constant γ1 one gets φ(θ) = a(cos θ − 1), θ ∈ [−π, π], and γ1 = 1/

√
2aπ.

Hence, equality (6) and Lemma 4 imply that ρ1(r) = |r|, r ∈ Z\{0}. Observe that the formula
for Hx,y,0(∞) in (7) is valid for a simple random walk on Z as well. Therefore, we infer that
Hx,y,0(∞) = 0 for y < 0 < x and x < 0 < y, Hx,y,0(∞) = x/y for 0 < x < y and y < x < 0,
Hx,y,0(∞) = 1 for 0 < y < x and x < y < 0, H0,y,0(∞) = 1/(2|y|) and Hy,y,0(∞) = 1−1/(2|y|).
Thus, for y < 0 < x and x < 0 < y one has Hx,y,0(·) ≡ 0, that is, relation (16) is proved.
For 0 < y < x and x < y < 0 due to (30) we conclude that Hx,y,0(∞) = 1 = Hx,y(∞) and
Hx,0,y(∞) = 0. This is equivalent to relations Hx,0,y(·) ≡ 0 and Hx,y,0(·) ≡ Hx,y(·). Since the
asymptotic behavior of the function Hx,y(∞)−Hx,y(t) is established in Lemma 1, relation (12)
is also proved. Moreover, formula (43) is true for a simple random walk on Z and, consequently,
applying Tauberian theorem (Theorem 4 in [14], Ch.13, Sec.5) we find the asymptotic behavior
of Hy,y,0(∞) − Hy,y,0(t), as t → ∞, with C1(y, y) = 1/(2

√
aπ) > 0. Thus, relation (13) is

proved. So we have to investigate only the asymptotic properties of Hx,y,0(∞)−Hx,y,0(t) when
x ∈ [0, y), x ∈ Z, that is, to verify relations (14) and (15).
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To this end recall a well-known result (the gambler ruin problem) for embedded chain
{Sn, n ∈ Z+}. Namely, P(0 < Sk < y, 0 < k ≤ n|S(0) = x) ≤ (1− ε0)

n for some ε0 ∈ (0, 1) and
x ∈ [0, y], x ∈ Z (see, e.g., [21], Ch.1, Sec.9). Bearing on this result we derive that

Hx,y,0(∞)−Hx,y,0(t) =
∑∞

n=0
P (t < τy,0 < ∞, N(t) = n|S(0) = x)

≤
∑∞

n=0
P (0 < Sk < y, 0 < k ≤ n,N(t) = n|S(0) = x)

=
∑∞

n=0
P (0 < Sk < y, 0 < k ≤ n|S(0) = x) P (N(t) = n|S(0) = x)

≤
∑∞

n=0
(1− ε0)

n (at)
ne−at

n!
= e−a ε0 t.

It follows that relations (14) and (15) are valid with ε ∈ (0, ε0). Theorem 2 is proved completely.

6 Proof of Theorem 3

On account of Corollary 2 it is sufficient to prove Theorem 3 for z = 0. Since τy,0 = τ−y,0 + τ
a.s., one has Hx,y,0(t) = H−

x,y,0 ∗G(t), t ≥ 0. This immediately implies Hx,y,0(∞) = H−
x,y,0(∞),

x ∈ Zd, y ∈ Zd\{0}. Furthermore, by formula (17) we get that for λ > 0

̂(H−
x,y,0(∞)−H−

x,y,0)(λ) =
̂(Hx,y,0(∞)−Hx,y,0)(λ)− a−1Ȟx,y,0(λ). (84)

In view of (9) – (13) and Tauberian theorem (Theorem 4 in [14], Ch.13, Sec.5) it is easy to
see that the first summand at the right-hand side of (84) makes the main contribution to the
asymptotic behavior of the left-hand side of (84). More exactly, this is true if d ≤ 3, x ∈ Zd,
y ∈ Zd\{0}, except for a simple random walk on Z in the cases 0 ≤ x < y, y < x ≤ 0,

x < 0 < y or y < 0 < x. Therefore, ̂(H−
x,y,0(∞)−H−

x,y,0)(λ) ∼ ̂(Hx,y,0(∞)−Hx,y,0)(λ), as
λ → 0+, and due to (9)–(13) and Tauberian theorem (Theorem 4 in [14], Ch.13, Sec.5) we
prove Theorem 3 for the mentioned d, x and y.

When the random walk on Z is simple and 0 ≤ x < y or y < x ≤ 0, the estimate of
H−

x,y,0(∞) − H−
x,y,0(t), as t → ∞, is a direct consequence of Theorem 2 and the inequality

Hx,y,0(∞) − Hx,y,0(t) ≥ H−
x,y,0(∞) − H−

x,y,0(t) used in the proof of Theorem 1 for d = 1.
Moreover, for a simple random walk on Z when x < 0 < y or y < 0 < x we may assert that
H−

x,y,0(t) ≡ 0 by virtue of the established identity H−
x,y,0(∞) = Hx,y,0(∞) and relation (16).

Thus, for these cases Theorem 3 is also proved.
To find the asymptotic behavior ofH−

x,y,0(∞)−H−
x,y,0(t), as t → ∞, for d ≥ 4, we differentiate

[d/2] − 1 times the both sides of equality (84) w.r.t. λ > 0. The asymptotic relation for the
([d/2]− 1)-th derivative of the first summand in (84) is given by formulae (81) and (82). Let
us analyze the asymptotic properties of the ([d/2]− 1)-th derivative of the second summand in
(84). Integration by parts gives

∫ ∞

0

e−λtt[d/2]−1 dHx,y,0(t) = − λ

∫ ∞

0

e−λtt[d/2]−1(Hx,y,0(∞)−Hx,y,0(t)) dt

+

([

d

2

]

− 1

)
∫ ∞

0

e−λtt[d/2]−2(Hx,y,0(∞)−Hx,y,0(t)) dt. (85)
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Obviously, the first summand in (85) is o
(∫∞

0
e−λtt[d/2]−1(Hx,y,0(∞)−Hx,y,0(t)) dt

)

, as λ → 0+.
By formulae (11), (81), (82) as well as Tauberian theorem (Theorem 2 in [14], Ch.13, Sec.5) we
infer that the second summand in (85) is also o

(∫∞
0

e−λtt[d/2]−1(Hx,y,0(∞)−Hx,y,0(t)) dt
)

, as
λ → 0+. Thus, the ([d/2]−1)-th derivative of the second summand in (84) does not make a con-
tribution to the asymptotic behavior of the ([d/2]−1)-th derivative of the left-hand side of (84).
Therefore,

∫∞
0

e−λtt[d/2]−1(H−
x,y,0(∞)−H−

x,y,0(t)) dt ∼
∫∞
0

e−λtt[d/2]−1(Hx,y,0(∞)−Hx,y,0(t)) dt
where the asymptotic relation for the last expression is provided by formulae (81) and (82).
Consequently, employing Corollary 43 in [26] we complete the proof of Theorem 3 when d ≥ 4.
Theorem 3 is proved.

The author is grateful to Associate Professor E.B. Yarovaya for permanent attention and to
Professor V.A. Vatutin for valuable remarks. Special thanks are to Professors I.Kourkova and
G.Pagès for invitation to LPMA UPMC.
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