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Abstract

In this paper, we study the compactness in L1
loc of the semigroup (St)t≥0 of entropy weak solutions

to strictly convex scalar conservation laws in one space dimension. The compactness of St for each
t > 0 was established by P. D. Lax [10]. Upper estimates for the Kolmogorov’s ε-entropy of the image
through St of bounded sets in L1∩L∞ were given by C. De Lellis and F. Golse [5]. Here, we provide
lower estimates on this ε-entropy of the same order as the one established in [5], thus showing that
such an ε-entropy is of size ≈ (1/ε). Moreover, we extend these estimates of compactness to the case
of convex balance laws.

1 Introduction

Consider a scalar conservation law in one space dimension

ut + f(u)x = 0, (1)

where u = u(t, x) is the state variable, and f : R→ R is a twice continuously differentiable, (uniformly)
strictly convex function:

f ′′(u) ≥ c > 0 ∀ u ∈ R. (2)

Without loss of generality, we will suppose

f ′(0) = 0, (3)

since one may always reduce the general case to this one by performing the space-variable and flux
transformations x→ x+ tf ′(0) and f(u)→ f(u)− uf ′(0). We recall that problems of this type do not
possess classical solutions since discontinuities arise in finite time even if the initial data are smooth.
Hence, it is natural to consider weak solutions in the sense of distributions that, for sake of uniqueness,
satisfy an entropy criterion for admissibility [4]:

u(t, x−) ≥ u(t, x+) for a.e. t > 0, ∀ x ∈ R , (4)

where u(t, x±) denote the one-sided limits of u(t, ·) at x. The equation (1) generates an L1-contractive
semigroup of solutions (St)t≥0 that associates, to every given initial data u0 ∈ L1(R) ∩ L∞(R), the
unique entropy admissible weak solution Stu0

.
= u(t, ·) of the corresponding Cauchy problem (cfr. [4, 9]).

This yields the existence of a continuous semigroup (St)t≥0 acting on the whole space L1(R). Such a
semigroup St was shown by Lax [10] to be compact as a mapping from L1(R) to L1

loc(R), for every t > 0.
De Lellis and Golse [5], following a suggestion by Lax [10], used the Kolmogorov’s ε-entropy concept,
which is recalled below, to provide a quantitative version of this compactness effect.
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Definition 1. Let (X, d) be a metric space and K a totally bounded subset of X. For ε > 0, let Nε(K)
be the minimal number of sets in a cover of K by subsets of X having diameter no larger than 2ε. Then
the ε-entropy of K is defined as

Hε(K | X)
.
= log2Nε(K).

Throughout the paper, we will call an ε-cover, a cover of K by subsets of X having diameter no larger
than 2ε.

De Lellis and Golse obtained an upper bound for the ε-entropy of the set of solutions to (1) at any
given time t > 0, as ε→ 0+; that is to say, they showed how strong is the compactifying effect. Precisely,
they established the following result.

Theorem 1 ([5]). Consider a twice continuously differentiable f : R → R, satisfying (2), (3). Given
any L,m,M > 0, define the set of bounded, compactly supported initial data

C[L,m,M ]
.
=
{
u0 ∈ L1(R) ∩ L∞(R) | Supp (u0) ⊂ [−L,L], ‖u0‖L1 ≤ m, ‖u0‖L∞ ≤M

}
. (5)

Then for ε > 0 sufficiently small, one has

Hε

(
ST (C[L,m,M ]) | L1(R)

)
≤ 4

ε

(
4L(T )2

cT
+ 4L(T )

√
2m

cT

)
∀ T > 0 , (6)

with
L(T )

.
= L+ 2 sup

|z|≤M
|f ′′(z)|

√
2mT/c. (7)

The aim of this paper is to show that the ε-entropy estimates provided by Theorem 1 turn out to
be optimal, since we shall establish a lower bound on such an ε-entropy which is of the same order
as De Lellis and Golse’s upper bounds. Hence, we deduce that Hε(ST (C[L,m,M ]) | L1(R)) is exactly of
size ≈ ε−1. Precisely, we prove the following.

Theorem 2. Under the assumptions and in the same setting of Theorem 1, for any T > 0, and for
ε > 0 sufficiently small, one has

Hε

(
ST (C[L,m,M ]) | L1(R)

)
≥ 1

ε
· L2

48 · ln(2) · |f ′′(0)|T
. (8)

As suggested in [10], the knowledge of the ε-entropy magnitude of the solution set of (1) may play
an important role to provide estimates on the accuracy and resolution of numerical methods for (1).

The main steps of the proof of the lower bound (8) consist in:

1. Introducing a suitable class of piecewise affine functions and showing that any element of such
a class can be obtained, at any given time t, as the value u(t, ·) of an entropy admissible weak
solution of (1), with initial data in C[L,m,M ].

2. Providing an optimal estimate of the maximum number of functions in such a class that can
be contained in a subset of ST (C[L,m,M ]) having diameter no larger than 2ε. This estimate is
established with a similar combinatorial argument as the one used in [1].

Remark 1. Since by (2), (7), we have L(T )
√

2m
cT ≤

L(T )2

2cT , one derives from (6) the estimate

Hε

(
ST (C[L,m,M ]) | L1(R)

)
≤ 1

ε
· 24L(T )2

c T
.

Therefore, the size 1
ε ·

L2

|f ′′(0)|T of the lower bound (8) turns out to be the same as the one of the upper

bound on the ε-entropy of ST (C[L,m,M ]) provided by Theorem 1, upon replacing L with L(T ), and |f ′′(0)|
with c.
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Next, we address the more general case of convex balance laws. Namely, given a twice continuously
differentiable map f : R→ R satisfying (2), (3), we will analyze the compactifying effect of the balance
law

ut + f(u)x = g(t, x, u). (9)

As for (1) we will consider weak solutions of (9) that satisfy the entropy admissibility condition (4). The
source term is assumed to be a continuously differentiable map g : R+ × R × R → R, that satisfies the
following assumptions:

g(t, x, 0) = 0 ∀ (t, x) ∈ R+ × R, (10)

∃ C > 0 s.t. |gx(t, x, u)| ≤ C|u| ∀ (t, x, u) ∈ R+ × R× R , (11)

∃ ω ∈ L1
loc(R+) s.t. |gu(t, x, u)| ≤ ω(t) for a.e. t ∈ R+, ∀ (x, u) ∈ R2 . (12)

In particular, (10), (12) together imply

∃ ω ∈ L1
loc(R+) s.t. |g(t, x, u)| ≤ ω(t) · |u| for a.e. t ∈ R+, ∀ (x, u) ∈ R2 . (13)

Under assumptions (12) or (13), for each u0 ∈ L1(R) ∩ L∞(R), there exists a unique entropy admissible
solution u(t, x) of (9) with initial condition u(0, ·) = u0, see [4, 7, 9].

Remark 2. Condition (10) in particular implies the fact that the source term g, if not zero, does depend
on u, since otherwise one would have g = g(t, x) = 0, for all t, x. Because of (10), all solutions u(t, ·)
to (9) with initial data of compact support remain compactly supported for all times t > 0.

We shall denote by Et the evolution operator that associates, to every initial data u0 ∈ L1(R)∩L∞(R),
the entropy admissible solution Etu0

.
= u(t, ·) of the corresponding Cauchy problem for (9). We establish

the following.

Theorem 3. Let f : R → R be a twice continuously differentiable map that satisfies (2), (3), and
g : R+ × R × R → R be a continuously differentiable map that satisfies (10), (11), (12). Then, in the
same setting of Theorem 1, for any T > 0 and for ε > 0 sufficiently small, one has

Hε

(
ET (C[L,m,M ]) | L1(R)

)
≥ 1

ε
·
L2 · exp

(
−‖ω‖L1(0,T ))

48 · ln(2) · |f ′′(0)|T
. (14)

Since balance laws are not considered in [5], following the same lines of the proof in [5] we also establish
the same type of upper bound for Hε(ET (C[L,m,M ]) | L1(R)) as the one given in Theorem 1.

Let us introduce the following notations. Given t > 0, M > 0 and a, b ∈ R with a < b, we set

∆a,b,t(M)
.
=
{

(s, x) | s ∈ [0, t], a− (t− s) · ‖f ′‖
L∞(−M,M)

≤ x ≤ b+ (t− s) · ‖f ′‖
L∞(−M,M)

}
, (15)

and
ka,b,t(M)

.
= max

{
|gx(s, x, u)| ; (s, x) ∈ ∆a,b,t(M) , u ∈ [−M,M ]

}
. (16)

We obtain the following result.

Theorem 4. In the same setting of Theorem 1, assume that f : R → R is a twice continuously differ-
entiable map that satisfies (2), (3), and g : R+ × R × R → R is a continuously differentiable map that
satisfies (10), (12). Then, for ε > 0 sufficiently small, one has

Hε

(
ET (C[L,m,M ]) | L1(R)

)
≤ 1

ε
·

8L(T )2 ·
(

1 + 2(1 + c T 2KL,T ) exp
(
‖ω‖

L1(0,T )

))
c T

∀ T > 0,

where

L(T )
.
= L+ 2‖f ′′‖

L∞(−MT ,MT )

√
2mT

c

[
1 + T

√
cKL,T

]
· exp(‖ω‖

L1(0,T )
),

KL,T
.
= k−LT ,LT ,T (MT ),
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with
LT

.
= L+ ‖f ′′‖

L∞(−MT ,MT )
·MT T,

and
MT

.
= exp

(
‖ω‖

L1(0,T )

)
·M .

Remark 3. Theorems 3 and 4 remain true if the source term has the form g = g(t, u), and satisfies
only the condition (12), together with g(·, 0) ∈ L1

loc. Clearly, in this case, the solution u(t, ·) of (9) will
not be in general compactly supported, but instead the difference between u(t, ·) and the solution of (9)
with zero initial data has always compact support. So, it will be convenient to compute the ε-entropy of
the translated set ET (C[L,m,M ]) − ET 0, which obviously coincides with the one of ET (C[L,m,M ]). In this
way we will see in Subsection 4.3 that one can establish, for ε > 0 sufficiently small, the estimate

Hε

(
ET (C[L,m,M ]) | L1(R)

)
≤ 1

ε
·

8L(T )2 · (1 + 2 exp(‖ω‖
L1(0,T )

))

c T
∀ T > 0 , (17)

where

L(T )
.
=L+ 2‖f ′′‖

L∞(−Mg
T ,M

g
T )

√
2mT

c
· exp(‖ω‖

L1(0,T )
),

with
Mg
T
.
=exp(‖ω‖L1(0,T ))(M + ‖g(·, 0)‖L1(0,T )).

Moreover, for any T > 0, and for ε > 0 sufficiently small, we derive the estimate

Hε

(
ET (C[L,m,M ]) | L1(R)

)
≥ 1

ε
·

L2 · exp
(
−‖ω‖L1(0,T )

)
24 · ln(2) · ‖f ′′‖L∞(−GT ,GT ) T

. (18)

where
GT

.
= 1 + ‖g(·, 0)‖L1(0,T ) exp(‖ω‖L1(0,T )). (19)

As a final remark, we observe that it would be interesting to provide upper and lower quantitative
compactness estimates for the solution set of genuinely nonlinear 2 × 2 systems of conservation laws
(whose L1

loc compactness follows from the estimates provided in [6], as observed in [11]), while it remains
a completely open problem whether such a compactness property continues to hold (and possibly derive
similar quantitative estimates) for general systems of N conservation laws with genuinely nonlinear
characteristic fields.

The paper is organized as follows. In Section 2 we provide a tight lower bound for the ε-entropy of the
solution set of a convex conservation law, establishing Theorem 2. In Section 3 we derive an Oleinik type
inequality for convex balance laws with smooth source term, and then extend the results of Section 2 to
the case of convex balance laws, proving Theorem 3. Finally, in Section 4 we derive an upper bound for
the ε-entropy of the solution set of a convex balance law, proving Theorem 4; also, we prove Remark 3.

Acknowledgements. The authors would like to warmly thank the anonymous referee for a comment
and a suggestion that has contributed to simplify some proofs and to obtain slightly more general results
for balance laws. They wish to thank Institut Henri Poincaré (Paris, France) for providing a very
stimulating environment at the “Control of Partial Differential Equations and Applications” program in
the Fall 2010, during which a part of this work was written. FA and KTN are partially supported by
the European Union Seventh Framework Programme [FP7-PEOPLE-2010-ITN] under grant agreement
n.264735-SADCO. OG is partially supported by the Agence Nationale de la Recherche, Project CISIFS,
grant ANR-09-BLAN-0213-02.

2 Lower compactness estimates for conservation laws

2.1 Proof of Theorem 2

For arbitrary positive constants L, M , m and b, let us consider the set

A[L,m,M,b]
.
=
{
uT ∈ BV(R) | Supp (uT ) ⊂ [−L,L], ‖uT ‖L1

≤ m, ‖uT ‖L∞ ≤M, DuT ≤ b
}
,
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where the last inequality has to be understood in the sense of measures, i.e. the Radon measure DuT
satisfies DuT (J) ≤ b · |J | for every Borel set J ⊂ R, |J | being the Lebesgue measure of J . We obtain a
proof of Theorem 2 as a consequence of the following two propositions that shall be established below.

Proposition 1. Suppose that f : R → R is a twice continuously differentiable map satisfying (2), (3).
Then, given any L,m,M, T > 0, for

0 ≤ h ≤ min

(
M,

m

2L
,

L

8T |f ′′(0)|

)
, (20)

sufficiently small, one has

A[LT , Lh, h, (2T |f ′′(0)|)−1] ⊂ ST (C[L,m,M ]), (21)

with
LT

.
= L− 2T |f ′′(0)| · h. (22)

Proposition 2. Given L,m,M, b > 0, for any ε > 0 satisfying

ε ≤ min(m,LM)

6
, (23)

one has

Hε(A[L,m,M,b] | L1(R)) ≥ 1

ε
· 2bL2

27 ln(2)
. (24)

Notice that the lower bound (24) is independent on m and M , which appear only in the constraint (23).
Moreover, because of (20), the constant LT given by (22) satisfies LT ≥ (3/4)L. Hence, applying (24),
with L = LT , b = (2T |f ′′(0)|)−1, and relying on (21), we recover the estimate (8), which proves Theo-
rem 2.

2.2 Proof of Proposition 1

1. We shall first prove the inclusion

A[LT , 2Lh, h, (2T |f ′′(0)|)−1] ∩ C1(R) ⊂ ST (C[L,m,M ]), (25)

(C1(R) denoting the set of continuously differentiable maps on R with values in R). More precisely, we
will show that any element uT ∈ C1(R) of the set on the left-hand side of (21) can be obtained as the
value at time T of a weak admissible solution to (1), which is backward constructed starting from uT by
reversing the direction of time. Namely, given

uT ∈ A[LT , 2Lh, h, (2T |f ′′(0)|)−1] ∩ C1(R), (26)

set
w0(x)

.
= uT (−x) ∀ x ∈ R, (27)

and consider the entropy weak solution w(t, x)
.
= Stw0 of (1) with initial data w0. By well-known

properties of solutions to scalar conservation laws, and because of (20), (26), w verifies the L1 and L∞

bounds (cfr. [4, Theorem 6.2.3, Theorem 6.2.6]):

‖w(t, ·)‖L1 ≤ ‖w0‖L1 ≤ 2Lh ≤ m,

‖w(t, ·)‖L∞ ≤ ‖w0‖L∞ ≤ h ≤M,
∀ t > 0. (28)

Next, observe that the function

u(t, x)
.
= w(T − t,−x), (t, x) ∈ [0, T ]× R, (29)

is a weak solution of (1) in the sense of distribution, which, by (27), clearly satisfies

u(T, ·) = uT .
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On the other hand, if we show that for all t ∈ [0, T [ , x 7→ w(t, x) is smooth on R, it would follow that
u(t, x) automatically satisfies the admissibility condition (4) as an equality and thus provides an entropy
weak solution of (1) which attains the value uT at time T . To this end, recalling from (26), (27) that
w0(·) ∈ C1(R), by the classical method of characteristics (e.g, see [2, Chapter 3]) one can show that,
setting

T1
.
= sup{τ ∈ [0, T ] |w(t, ·) ∈ C1(R) ∀ t ∈ [0, τ ])}, (30)

there holds
T1 < T =⇒ sup

a>0
lim

t→T1−
‖wx(t, ·)‖L∞(−a,a) =∞ . (31)

Next, observing that the function
v(t, x)

.
= wx(t, x),

is the unique broad solution on [0, T1[×R of the semilinear equation

vt(t, x) + f ′(w(t, x)) · vx(t, x) = −f ′′(w(t, x)) · v(t, x)2

(e.g, see [2, Theorems 3.1 and 3.6]), it follows that the value

z(t)
.
= v(t, x(t)), (32)

of v along a characteristic x(·) of (1) satisfies the equation

ż(t) = −f ′′(w(t, x(t))) · z2(t), t ∈ [0, T1[ . (33)

As a consequence of (2), (33), we deduce that z(·) is decreasing on [0, T1[, and thus one has z(t) ≤ z(0)
for all t ∈ [0, T1[. Hence, if we show that

z(t) ≥ −2(Tf ′′(0))−1 ∀ 0 ≤ t < T1 , (34)

it would follow that z(t) is uniformly bounded on [0, T1[ which, in turn, implies the uniform boundedness
of wx(t, x) for t ∈ [0, T1[ , x ∈ R. Therefore, by (31), to prove that T = T1, it suffices to establish the
lower bound (34). Notice that by the continuity of z(·), in order to prove (34), it will not be restrictive to
treat only the case z(0) < 0. On the other hand recall that by (26), (27) we have z(0) ≥ −(2Tf ′′(0))−1.
Next, observe that by the continuity assumption on f ′′, we may assume that

f ′′(h) ≤ 3

2
f ′′(0), (35)

for |h| sufficiently small. Hence, relying on (33), (35), we derive ż(t) ≥ − 3
2f
′′(0) · z2(t), which yields

1

z(t)
≤ 1

z(0)
+

3

2
f ′′(0) t ≤ −f

′′(0)T

2
∀ 0 ≤ t < T1. (36)

Clearly, from (36) we recover the bound (34). Thus, by the above observation we conclude that T1 = T ,
and that u(t, ·) = w(T − t,−·) ∈ C1(R) for all t ∈ ]0, T [ . Therefore, to complete the proof of uT ∈
ST (C[L,m,M ]), we only need to show that the initial condition u(0, ·) = w(T,−·) is an element of the
set C[L,m,M ] defined in (5). By the estimates (28) we already know that u(0, ·) satisfies the L1 and
L∞ bounds of C[L,m,M ]. On the other hand, observing that the solution w propagates along classical
characteristics, and relying on (3), (26), (27), (28), (35), we derive (for h sufficiently small) the bound
on the support of w:

Supp(w(t, ·)) ⊂ [−l(t), l(t)], ∀t ∈ [0, T ] , (37)

where l(t)
.
= LT + 3

2 t|f
′′(0)| · h. In turn, (37) together with (22) yields

Supp(u(0, ·)) = Supp(w(T,−·)) ∈ [−L,L].

Hence, u(0, ·) ∈ C[L,m,M ] and the proof of (25) is completed.

2. In order to establish (21), observing that for any uT ∈ A[LT , Lh, h, b0], b0
.
= (2T |f ′′(0)|)−1, the

map x 7→ uT (x)− b0 x is nonincreasing, we may find a sequence of nonincreasing functions vnT in C1(R),

6



such that vnT (x) ≤ uT (x)− b0 x, for all x ∈ R, limn→∞ ‖vnT − uT + b0 · ‖L1 = 0, and ‖vnT + b0 · ‖L1 ≤ 2Lh.
Hence, for any given uT ∈ A[LT , Lh, h, b0], we may consider a sequence {unT } ⊂ A[LT , 2Lh, h, b0] ∩ C1(R,R)
such that limn→∞ ‖unT − uT ‖L1 = 0. Let wn(t, ·) .

= St(w
n
0 ) and w(t, ·) .

= St(w0) be the entropy weak
solutions of (1) with initial data, respectively, wn0 (·) .

= unT (−·) and w0(·) .
= uT (−·). By the L1-stability

property of the semigroup St we deduce that wn(t, ·) → w(t, ·) in L1 for all t ≥ 0. On the other hand,
by the arguments at point 1., we know that the functions defined by setting un(t, x)

.
= wn(T − t,−x)

are entropy weak solutions of (1), which attain the value unT at time T , and whose initial conditions
satisfy un(0, ·) ∈ C[L,m,M ], for all n. Thus, it follows that the L1

loc-limit u of un provides an entropy
weak solutions of (1) as well, that u(0, ·) ∈ C[L,m,M ], and that u(T, ·) = uT , completing the proof of the
proposition.

2.3 Proof of Proposition 2

1. Following a similar strategy as the one pursued in [1], we will establish a lower bound on the cov-
ering number Nε(A[L,m,M,b]), by first introducing a two-parameters class of piecewise affine functions
in A[L,m,M,b], and next providing an estimate of the maximum number of such functions contained in a
subset of A[L,m,M,b] having diameter no larger than 2ε. Namely, given any integer n ≥ 2, and a constant
h > 0, for every n-tuple ι = (ιi)i=0,...,n−1 ∈ {−1, 1}n consider the function Fι : R → [−h, h], with
support contained in [−L,L], defined by (see Figure 1):

Fι(x) =


hn

2L

(
x+ L− k 2L

n

)
if ιk = 1,

hn

2L

(
x+ L− (k + 1)

2L

n

)
if ιk = −1,

∀ x ∈
[
− L+ k

2L

n
, −L+ (k + 1)

2L

n

]
,

k ∈ {0, . . . , n− 1}.

2L
n

−h

h

−L 0 L

Figure 1: The function Fι for n = 10 and ι = (−1,−1, 1, 1, 1,−1, 1,−1,−1, 1)

Notice that every Fι, ι ∈ {−1, 1}n, belongs to A[L,m,M,b] provided that

h ≤M, h ≤ m

L
, nh ≤ 2Lb . (38)

Moreover, given any ι, ι ∈ {−1, 1}n, one has

‖Fι −Fι‖L1
=

2hL

n
d(ι, ι),

where
d(ι, ι)

.
= Card {k ∈ {1, . . . , n} | ιk 6= ιk} .

It follows that
‖Fι −Fι‖L1

≤ ε ⇐⇒ d(ι, ι) ≤ nε

2hL
.

Notice that, given any fixed ι ∈ {−1, 1}n, the set Iι(ε) of n-tuples ι ∈ {−1, 1}n such that d(ι, ι) ≤ nε
2hL

depends on ι, but the number of elements of Iι(ε) is independent of the choice of ι. Denote C(ε) such a
number. By standard combinatorial properties, counting the n-tuples that differ for a given number of
entries, we compute

C(ε) =

b nε
2hL c∑
`=0

(
n

`

)
, (39)
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where bαc .= max{z ∈ Z | z ≤ α} denotes the integer part of α. In order to provide an estimate of C(ε),
we rewrite the right-hand side of (39) using the fact that, if X1, . . . , Xn are independent random variables
with Bernoulli distribution P(Xi = 0) = P(Xi = 1) = 1

2 , then for any k ≤ n one has

P(X1 + · · ·+Xn ≤ k) =
1

2n

k∑
`=0

(
n

`

)
. (40)

We may estimate the left-hand side of (40) setting Sn = X1 + · · ·+Xn, and using Hoeffding’s inequality
([8, Theorem 2]) that, for any fixed µ > 0, gives

P(Sn − E(Sn) ≤ −µ) ≤ exp

(
−2µ2

n

)
, (41)

where E(Sn) denotes the expectation of Sn. Since, by the above assumptions on X1, . . . , Xn, we have
E(Sn) = n

2 , taking µ = n
2 − b

nε
2hLc, k = b nε2hLc, and assuming

nε

2hL
≤ n

2
, (42)

we deduce from (39)-(41) that

1

2n
C(ε) ≤ exp

(
−2

(n2 − b
nε
2hLc)

2

n

)
≤ exp

(
−n

2

(
1− ε

hL

)2)
.

(43)

2. To obtain a large lower bound on the covering number of A[L,M,m,b], let us maximize the map

Ψ(h, n)
.
=
n

2

(
1− ε

hL

)2
,

with the parameters h, n, subject to (38) and (42). If we first optimize Ψ(h, n) with respect to h (letting
n be sufficiently large so that the first two constraints in (38) be satisfied) we find that the maximum is
attained for

hn
.
=

2bL

n
. (44)

Next, optimizing Ψ(hn, n) for n satisfying (42), we deduce that the maximum is attained for

n
.
=

2bL2

3ε
. (45)

One can check that
nε

2hnL
=
n

6
<
n

2
,

so that, with hn, n defined by (44), (45), conditions (38), (42) are both verified provided that ε satis-
fies (23). Hence, we deduce from (43) that

C(ε)
2n
≤ exp

(
−Ψ(hn, n)

)
= exp

(
−1

ε
· 4bL2

27

)
.

Now observe that any ε-cover of A[L,M,m,b], in particular, contains the set

F .
=
{
Fι : R→ [−hn, hn] ; ι ∈ {−1, 1}n

}
,

and that each element of this cover contains at most C(2ε) functions of F . Since the cardinality of F
is 2n, it follows that the number of sets in an ε-cover of A[L,M,m,b] is at least

Nε(A[L,M,m,b]) ≥
2n

C(2ε)
≥ exp

(
1

ε
· 2bL2

27

)
,

which yields (24), thus completing the proof of Proposition 2.
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3 Lower compactness estimates for balance laws

3.1 Proof of Theorem 3

In order to establish Theorem 3, we will make use of a local Oleinik type estimate for balance laws (9).
An inequality of this kind was established in [13, Theorem 1.2]. Here, we provide a slightly more accurate
estimate, determining how the constant C appearing in [13, Theorem 1.2] depends on the time t and on
the set of points x, y for which the inequality holds. For source terms of the form g = g(u), a global
Oleinik type estimate was obtained in [7, Section 4]. Recall the notation ka,b,t(M) from (16).

Lemma 1. Let f : R → R be a twice continuously differentiable map that satisfies (2), and g : R+ ×
R×R→ R be a continuously differentiable map that satisfies (10), (12). Given u0 ∈ L1(R)∩L∞(R), let
u : R+×R→ R be the corresponding entropy admissible solution of (9) with initial condition u(0, ·) = u0,
and set

Mt
.
= ‖u0‖L∞ · exp

(
‖ω‖

L1(0,t)

)
t ≥ 0. (46)

Then, for all t > 0, and for any given a, b ∈ R, a < b, there holds

u(t, y)− u(t, x)

y − x
≤

(1 + c t2ka,b,t(Mt)) · exp
(
‖ω‖

L1(0,t)

)
c t

∀ x, y ∈ [a, b], x < y.

(47)

Remark 4. From the proof of the lemma it will be clear that, when the source term has the form
g = g(t, u), and satisfies (12), but not necessarily (10), one obtains the global Oleinik estimate

u(t, y)− u(t, x)

y − x
≤

exp
(
‖ω‖

L1(0,t)

)
c t

∀ x, y ∈ R, x < y , (48)

which is a bit more accurate than the one provided in [7] (showing that the constant C appearing in [7,
Section 4] is precisely 1/c).

Relying on Lemma 1, we will establish the analogous result of Proposition 1 in the case of balance laws,
which together with Proposition 2 yields the conclusion of Theorem 3.

Proposition 3. Under the assumptions of Lemma 1, assume that f , g satisfy also (3) and (11), respec-
tively. Then, given any L,m,M, T > 0, for

h ≤ min

(
M,

m

2L
,

L

8T |f ′′(0)|
,

exp
(
− ‖ω‖L1(0,T )

)
8|f ′′(0)|CT 2

)
exp

(
− ‖ω‖

L1(0,T )

)
, (49)

sufficiently small (C being the constant appearing in (11)), one has

A[
L̃T ,Lh,h,(2T |f ′′(0)| exp(‖ω‖L1(0,T )))

−1
] ⊂ ET (C[L,m,M ]), (50)

with
L̃T

.
= L− 2T |f ′′(0)| exp

(
‖ω‖

L1(0,T )

)
· h. (51)

Note that, thanks to (49), the constant L̃T given in (51) satisfies L̃T ≥ (3/4)L. Hence, relying on (50),

and applying (24), with L = L̃T , b = (2T |f ′′(0)| exp(‖ω‖L1(0,T )))
−1, we recover the estimate (14), which

proves Theorem 3.

3.2 Proof of Lemma 1

1. It will be sufficient to prove (47) when the initial data u0 ∈ L1(R) ∩ BV (R), since one can then
recover (47) for general data u0 ∈ L1(R)∩L∞(R) exploiting the L1-continuity of the evolution operator
Et, t > 0, and the lower semicontinuity of the positive variation. Therefore, we may assume that u(t, ·) .

=
Etu0 ∈ BV (R) for all t ≥ 0, and thus we can rely on Dafermos’ theory of generalized characteristics (we

9



refer to [4, Section 11.9]). Moreover, it is not restrictive to suppose that u(t, ·) is right continuous, and
to establish (47) only at points x, y ∈ [a, b] where u(t, ·) is continuous (since one then derives (47) at the
points of discontinuity taking the right limits of u(t, ·)).

Observe that, if ξ(·) denotes the maximal backward generalized characteristic emanating from a
point (t, x), then by [4, Theorem 11.9.1] there is some C1 function v(·) that, together with ξ(·), satisfies
on ]0, t[ the characteristic equation {

ξ̇(s) = f ′(v(s)),

v̇(s) = g(s, ξ(s), v(s)),
(52)

with
ξ(t) = x, v(t) = u(t, x). (53)

Furthermore, there holds u(s, ξ(s)±) = v(s) for all s ∈ ]0, t[ , and

u0(ξ(0)−) ≤ v(0) ≤ u0(ξ(0)+). (54)

Therefore, since (13), (52) imply
d

ds
|v(s)| ≤ ω(s) · |v(s)|, (55)

applying Gronwall’s lemma, and using (53), (54), we deduce

|u(t, x)| ≤ max{|u0(ξ(0)−)|, |u0(ξ(0)+)|} · exp
(
‖ω‖

L1(0,t)

)
.

In turn, this yields
‖u(s, ·)‖

L∞
≤Mt ∀ s ∈ [0, t], t ≥ 0, (56)

with Mt defined by (46). Relying on (56), and because of (52), we deduce that the set ∆a,b,t(Mt) defined
in (15) is a backward domain of determinacy relative to the interval [a, b] and to the time t, since it
contains all backward generalized characteristics emanating from points (t, x), x ∈ [a, b].

2. Fix t > 0, a, b ∈ R, a < b, and consider x < y two points of continuity of u(t, ·) inside [a, b]. Let
ξx(·) and ξy(·) be the (unique) backward generalized characteristics (cfr. [4, Theorems 11.9.5]) emanating
from (t, x) and (t, y), respectively. By [4, Theorems 11.9.1 & 11.9.3] there will be some C1 functions
vx(·), vy(·), so that (ξx(·), vx(·)) and (ξy(·), vy(·)) satisfy on ]0, t[ the characteristic equations (52) with

ξx(t) = x, vx(t) = u(t, x) and ξy(t) = y, vy(t) = u(t, y). (57)

Observe that, if u(t, x) ≥ u(t, y), the inequality (47) is certainly satisfied since its right-hand side is
always positive. Therefore, by virtue of (57) we will consider only the case vx(t) < vy(t). Then, set

σ
.
= inf

{
σ ∈ ]0, t] | vx(s) < vy(s) ∀ s ∈ [σ, t]

}
, (58)

and observe that, by the strict convexity assumption (2) on f , and because of (52), one has

y − x ≥ ξy(s)− ξx(s) ∀ s ∈ [σ, t]. (59)

Moreover, since ξx(·) and ξy(·) do not cross at any time s ∈ ]0, t] (cfr. [4, Section 11.9]), it follows that

ξy(s) ≥ ξx(s) ∀ s ∈ [0, t]. (60)

Then, relying on (12), (52), (56), (59), and recalling (16), we deduce that for all s ∈ ]σ, t[, there holds

v̇y(s)− v̇x(s) = g(s, ξy(s), vy(s))− g(s, ξy(s), vx(s)) + g(s, ξy(s), vx(s))− g(s, ξx(s), vx(s))

≤ ω(s)(vy(s)− vx(s)) + ka,b,t(Mt)(ξ
y(s)− ξx(s))

≤ ω(s)(vy(s)− vx(s)) + ka,b,t(Mt)(y − x).

(61)
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Hence, using Gronwall’s lemma, from (61) we derive

vy(s)− vx(s) ≥ (vy(t)− vx(t)) exp
(
−
∫ t

s

ω(τ)dτ
)
− (t− s)ka,b,t(Mt)(y − x)

≥ (vy(t)− vx(t)) exp
(
−
∫ t

0

ω(τ)dτ
)
− t ka,b,t(Mt)(y − x)

∀ s ∈ [σ, t]. (62)

Two cases now may occur. If σ > 0, by the definition (58) and because of the continuity of vx(·), vy(·)
it follows that vx(σ) = vy(σ), which together with (62), and recalling (57), yields

u(t, y)− u(t, x) ≤ t ka,b,t(Mt) exp
(∫ t

0

ω(τ)dτ
)

(y − x) . (63)

Instead, if σ = 0, using (62), and relying on (2), (60), we deduce

0 ≤ ξy(0)− ξx(0)

= y − x−
∫ t

0

(f ′(vy(s))− f ′(vx(s)))ds

≤ y − x− c
∫ t

0

(vy(s)− vx(s))ds

≤
(
1 + c t2ka,b,t(Mt)

)
(y − x)− c t(vy(t)− vx(t)) exp

(
−
∫ t

0

ω(τ)dτ
)
,

which, by virtue of (57), yields

u(t, y)− u(t, x) ≤
(
1 + c t2ka,b,t(Mt)

)
(y − x)

c t
exp

(∫ t

0

ω(τ)dτ
)
. (64)

Hence, from (63), (64) we recover the inequality (47) concluding the proof of the lemma.

Notice that the assumption (10) was used, in conjunction with (12), only to establish the a-priori
bound (56) on the L∞ norm of the solution, which in turn was needed to define a bound on Dxg over a
domain of determinacy of the solution. Therefore, as observed in Remark 4, the conclusion of the lemma
continues to hold (with ka,b,t(Mt) = 0 in (47)) in the case the source term g = g(t, u) satisfies only the
assumption (12).

3.3 Proof of Proposition 3

In the same spirit of the proof of Proposition 1, we will first show that

A[L̃T , 2Lh, h, (2T |f ′′(0)|)−1] ∩ C
1(R) ⊂ ET (C[L,m,M ]). (65)

To this end, given
uT ∈ A[L̃T ,2Lh,h,(2T |f ′′(0)| exp(‖ω‖L1(0,T )))

−1] ∩ C
1(R), (66)

setting
g̃(t, x, u)

.
= −g(T − t,−x, u) ,

we consider the entropy weak solution w(t, x)
.
= Ẽtw0 of

wt + f(w)x = g̃(t, x, w),

with initial data
w0(x)

.
= uT (−x) ∀x ∈ R. (67)

By the estimate (56) established in the proof of Lemma 1, and because of (49), (66), (67), there holds

‖w(t, ·)‖
L∞
≤ exp

(
‖ω‖

L1(0,T )

)
‖uT ‖L∞

≤ exp
(
‖ω‖

L1(0,T )

)
h ≤M.

∀ t ∈ [0, T ] . (68)
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Next, observe that the function

u(t, x)
.
= w(T − t,−x), ∀(t, x) ∈ [0, T ]× R ,

is a weak distributional solution of (9), which, by (67), satisfies

u(T, ·) = uT .

Moreover, if we show that for all t ∈ [0, T [ , x 7→ w(t, x) is smooth on R, it would follow that u(t, x)
provides an entropy admissible weak solution of (9) on [0, T ]×R. To establish the smoothness of w(t, ·),
recalling that by (66), (67) one has w0(·) ∈ C1(R), we will show as in the proof of Proposition 1 that,
letting T1 be the quantity defined by (30), there holds T1 = T . To this purpose, notice first that the
Oleinik type estimate in Lemma 1 provides an upper bound for wx(t, ·), t > 0, on any bounded set
of R. Therefore, because of (31), in order to prove that T1 = T it will be sufficient to establish a lower
bound for wx. With this aim, observing that the function v(t, x)

.
= wx(t, x), is the unique broad solution

on [0, T1[×R of the semilinear equation

vt(t, x) + f ′(w(t, x)) · vx(t, x) = g̃x(t, x, w(t, x)) + g̃u(t, x, w(t, x)) · v(t, x)− f ′′(w(t, x)) · v(t, x)2

(see [2, Theorem 3.6]), we deduce that the value z(t)
.
= v(t, x(t)) of v along a characteristic x(·) of (9)

satisfies the equation

ż(t) = g̃x(t, x(t), w(t, x(t))) + g̃u(t, x(t), w(t, x(t))) · z(t)− f ′′(w(t, x(t))) · z2(t), t ∈ [0, T1[ . (69)

Notice that, by the continuity of f ′′ we may assume that

f ′′(ρ) ≤ 3

2
f ′′(0) for |ρ| ≤ ρh

.
= exp

(
‖ω‖

L1(0,T )

)
· h , (70)

when h > 0 is sufficiently small. Moreover, observe that, by the continuity of z(·), and because of (66),
(67), it will be sufficient to provide a uniform lower bound for z(·) on every compact interval [τ1, τ2] ⊂
[0, T1[ , during which z(t) < 0, and such that

z(τ1) ≥ −
(
2T f ′′(0) exp

(
‖ω‖L1(0,T )

))−1
. (71)

Hence, fix any such interval [τ1, τ2], and relying on (10), (11), (12), (68), (70), derive from (69) the lower
bound

ż(t) ≥ −C · ρh + ω(t) · z(t)− 3

2
f ′′(0) · z2(t), t ∈ [τ1, τ2] . (72)

Next, setting

z1(t)
.
= exp

(
−
∫ t

0

ω(s)ds
)
· z(t),

we deduce from (72) that there holds

ż1(t) ≥ −3

2
f ′′(0) exp(‖ω‖L1(0,T )) ·

( 2Ch

3f ′′(0)
+ z21(t)

)
, t ∈ [τ1, τ2] , (73)

which yields

arctan

(√
3f ′′(0)

2Ch
·z1(t)

)
≥ arctan

(√
3f ′′(0)

2Ch
·z1(τ1)

)
−
√

3f ′′(0)Ch

2
exp

(
‖ω‖L1(0,T )

)
·T , t ∈ [τ1, τ2] .

(74)
Then, recalling (71), and setting ξh,T

.
= exp

(
‖ω‖L1(0,T )

)√
f ′′(0)Ch · T , we obtain

arctan
(√3f ′′(0)

2Ch
· z1(t)

)
≥ − arctan

(√3

8
· 1

ξh,T

)
−
√

3

2
· ξh,T , t ∈ [τ1, τ2] ,

which, in turn, implies

arctan
(√3f ′′(0)

2Ch
· z1(t)

)
≥ −π

2
+ arctan

(√8

3
· ξh,T

)
−
√

3

2
· ξh,T , t ∈ [τ1, τ2] . (75)
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On the other hand, one can easily check that

arctan

(√
8

3
ξ

)
−
√

3

2
ξ ≥ arctan

(√
1

3

)
−
√

3

4
=

2π − 3
√

3

12
> 0 ∀ ξ ∈ [0, 1/

√
8 ] . (76)

Therefore, since (49) implies that ξh,T ≤ 1/
√

8, we deduce from (75)-(76) that there will be some constant
Ch,T > 0 such that, for every interval [τ1, τ2] ⊂ [0, T1[ , where z(t) < 0, and for which there holds (71),
one has z(t) > −Ch,T , for all t ∈ [τ1, τ2]. This yields a uniform lower bound for wx on [0, T1[×R , which
by the above observations implies that T1 = T , and that u(t, ·) = w(T − t,−·) ∈ C1(R), for all t ∈ ]0, T [ .

To complete the proof of uT ∈ ET (C[L,m,M ]), we only need to show that the initial condition u(0, ·) =
w(T,−·) is an element of the set C[L,m,M ] defined in (5). By the estimates (68) we already know that
u(0, ·) satisfies the L∞ bound of C[L,m,M ]. On the other hand, observing that the solution w propagates
along classical characteristics, and relying on (3), (66), (67), (68), (70), we derive (for h sufficiently small)
the bound on the support of w:

Supp(w(t, ·)) ⊂ [−l(t), l(t)], ∀t ∈ [0, T ] ,

with
l(t)

.
= L̃T + t ρh‖f ′′‖L∞(−ρh,ρh)

≤ L̃T +
3

2
T |f ′′(0)| exp

(
‖ω‖

L1(0,T )

)
· h ,

(77)

which, in turn, recalling (51), yields

Supp(u(0, ·)) = Supp(w(T,−·)) ∈ [−L,L]. (78)

Finally, relying on (49), (68), (78), we derive

‖w(t, ·)‖
L1
≤ 2L exp

(
‖ω‖

L1(0,T )

)
h ≤ m ∀ t ∈ [0, T ]. (79)

Hence, (68), (78), (79) together yield u(0, ·) ∈ C[L,m,M ], which concludes the proof of (65).

The proof of Proposition 3 is then completed with the same density argument performed at point 2.
of the proof of Proposition 1, relying on the L1 stability property of the evolution operator Et.

4 Upper compactness estimates for balance laws

4.1 Proof of Theorem 4

Following the arguments of De Lellis and Golse in [5], we shall establish an upper estimate on the ε-
entropy of ET (C[L,m,M ]) relying on the upper bound on the ε-entropy of a class of nondecreasing functions
provided by:

Lemma 2. ([5,Lemma 3.1]) Given any, L, V > 0, setting

I[L,V ]
.
= {v : [0, L]→ [0, V ] | v is nondecreasing },

for 0 < ε < LV
6 , there holds

Hε(I[L,V ] | L1([0, L])) ≤ 4

⌊
LV

ε

⌋
.

In order to derive an a-priori bound on the support of solutions to balance laws in terms of the L1 norm
of their initial data, we will use the next technical lemma whose proof is provided below.

Lemma 3. Given v ∈ BV(R), compactly supported and satisfying

Dv ≤ B in the sense of measures, (80)

for some constant B > 0, there holds

‖v‖
L∞
≤
√

2B‖v‖L1 . (81)
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Now, supposing Lemma 3 proven, one establishes Theorem 4 as follows.

1. Given any u0 ∈ C[L,m,M ], we shall first derive an a-priori bound on the L1 norm of the corresponding
entropy weak solution u(t, ·) .

= Etu0 of (9), relying on the Oleinik type estimates provided by Lemma 1.
To this end, observe that by standard arguments for conservation laws (e.g. cfr. proof of [4, Theo-
rem 11.8.2]), and thanks to (13), we find

d

dt
‖u(t, ·)‖

L1
≤ ‖g(t, ·, u(t, ·))‖

L1
≤ ω(t) · ‖u(t, ·)‖

L1
.

Hence, applying Gronwall’s lemma, and by the definition (5), we deduce

‖u(t, ·)‖
L1
≤ exp

(
‖ω‖

L1(0,t)

)
· ‖u0‖L1

≤ exp
(
‖ω‖

L1(0,T )

)
·m ∀ t ∈ [0, T ] . (82)

Moreover, as discussed in the proof of Proposition 3, because of (5) and (56), we have

‖u(t, ·)‖
L∞
≤MT

.
= exp

(
‖ω‖

L1(0,T )

)
·M ∀ t ∈ [0, T ] , (83)

and with (3), (54) and (55), that

Supp(u(t, ·)) ⊂ [−l(t), l(t)] ∀ t ∈ [0, T ], (84)

with

l(t) ≤ L+ ‖f ′′‖
L∞(−MT ,MT )

∫ T

0

‖u(t, ·)‖
L∞

dt. (85)

On the other hand, observe that (83)-(85) and the estimate (47) imply u(t, ·) ∈ BV(R), and

Du(t) ≤
(1 + c t2KL,T ) · exp

(
‖ω‖

L1(0,T )

)
c t

∀ t ∈ ]0, T ], (86)

with
KL,T

.
= k−LT ,LT ,T (MT ) , LT

.
= L+ ‖f ′′‖

L∞(−MT ,MT )
·MT T ,

(k−LT ,LT ,T (MT ) being defined in (16)). Hence, applying Lemma 3 and relying on (82), (86), we derive

‖u(t, ·)‖
L∞
≤
√

2m

c
· exp

(
‖ω‖

L1(0,T )

)√ (1 + c t2KL,T )

t
∀ t ∈ ]0, T ] , (87)

which, together with (85), yields

l(t) ≤ L+ ‖f ′′‖
L∞(−MT ,MT )

√
2m

c
· exp

(
‖ω‖

L1(0,T )

) ∫ T

0

√
(1 + c t2KL,T )

t
dt

≤ L(T )
.
= L+ 2‖f ′′‖

L∞(−MT ,MT )

√
2mT

c

[
1 + T

√
cKL,T

]
· exp

(
‖ω‖

L1(0,T )

)
.

(88)

Then, thanks to (2) and (87)-(88), we deduce

‖u(T, ·)‖
L∞
≤ L(T )

2cT
. (89)

2. In connection with uT
.
= ETu0, consider now the function

u](x)
.
=

(1 + c T 2KL,T ) exp
(
‖ω‖

L1(0,T )

)
cT

x+
L(T )

2cT
− uT (x− L(T )) , x ∈ [0, 2L(T )] .
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By virtue of (86), u] is nondecreasing and, thanks to (89), satisfies

0 ≤ u](x) ≤

(
1 + 2(1 + c T 2KL,T ) exp

(
‖ω‖

L1(0,T )

))
L(T )

cT
∀ x ∈ [0, 2L(T )] .

Hence, one has
u] ∈ I[

2L(T ),
(
1+2(1+c T 2KL,T ) exp(‖ω‖

L1(0,T )
)
)

L(T )
cT

] .
Since u] is obtained from the restriction of uT to [−L(T ), L(T )] by a change of sign, a translation by
a fixed function, and a shift of a fixed constant, it follows that the ε-entropy relative to L1(0, 2L(T ))
of the set gathering all functions u] obtained from ETu0, u0 ∈ C[L,m,M ], in this way, equals the one
of ET (C[L,m,M ]) relative to L1(−L(T ), L(T )). Therefore, the conclusion of Theorem 4 follows by an
application of Lemma 2, and observing that, because of (84) and (88), one clearly has

Hε(ET (C[L,m,M ]) |L1(R)) = Hε(ET (C[L,m,M ]) |L1(−L(T ), L(T ))).

4.2 Proof of Lemma 3

We shall first establish the conclusion of the Lemma 3 for compactly supported functions v, that belong
to C∞0 (R), and thus by (80) satisfy v′(x) ≤ B for all x ∈ R. Assume that Supp (v) ⊂ [−L,L], and
consider a point x ∈ [−L,L] such that |v(x)| = ‖v‖∞. We discuss two cases according to the sign of v(x).

If v(x) > 0, defining y
.
= min{x ∈ [−L, x] | v > 0 on ]x, x]}, one has v(y) = 0, and

v2(x) = 2

∫ x

y

v(x) v′(x) dx ≤ 2B

∫ x

y

v(x) dx ≤ 2B‖v‖
L1(R)

.

If v(x) < 0, defining y
.
= max{x ∈ [x, L] | v < 0 on [x, x[}, one has

v2(x) = −2

∫ y

x

v(x) v′(x) dx ≤ −2B

∫ x

y

v(x) dx ≤ 2B‖v‖
L1(R)

.

Hence, in both cases we get the estimate (81) when v is smooth.
For general v ∈ BV(R) satisfying the assumptions of the lemma, consider ρ ∈ C∞0 (R), with ρ ≥ 0

and
∫
R ρ = 1, define the mollifier ρν(x)

.
= 1

ν ρ
(
x
ν

)
, for ν > 0, and then introduce a smooth approximation

of v setting
vν

.
= ρν ∗ v.

Observe that, by standard properties of convolutions, and applying the integration-by-parts formula for
BV functions, relying on (80) one gets

v′ν −B = ρ′ν ∗ v − ρν ∗B = ρν ∗ (Dv −B) ≤ 0.

Hence, by the above conclusion we can apply (81) to vν , finding

‖vν‖L∞ ≤
√

2B‖vν‖L1 . (90)

Since vν → v in L1(R) as ν → 0+, and because there holds ‖vν‖∞ → ‖v‖∞ as ν → 0+, we then recover
from (90) the estimate (81) for v, thus completing the proof of the lemma.

4.3 Proof of Remark 3

Let us discuss the case when g = g(t, u) satisfies (12), but does not necessarily satisfy (10). As observed
in Remark 4, in this case we can still rely on the Oleinik type estimate (48). On the other hand, the
solution of (9) will be in general not compactly supported, since the solution with zero initial data will be
in general different from zero. Then, to establish the same type of estimates of Theorem 3 and Theorem 4,
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it will be more appropriate to consider the ε-entropy of the set of functions ET (C[L,m,M ])−ET 0 (which
are compactly supported by the finite speed of propagation of solutions along characteristics) rather than
the ε-entropy of ET (C[L,m,M ]). Clearly, the two sets have the same ε-entropy, being obtained one from
the other by a translation.

1. Upper estimate. Observe now that, if t 7→ v0(t) denotes the solution of the Cauchy problem

v̇ = g(t, v), v(0) = 0, (91)

then the function defined by setting v(t, x)
.
= v0(t), for all x ∈ R, results to be the (admissible) solution

of (9) with initial data u0 ≡ 0. Hence, one has

Et0 = v0(t) , ∀ t > 0. (92)

Thus, setting

L1(t)
.
=inf

{
x ∈ Supp (Etu0−Et0) | u0 ∈ C[L,m,M ]

}
, L2(t)

.
=sup

{
x ∈ Supp (Etu0−Et0) | u0 ∈ C[L,m,M ]

}
,

(93)
for every u0 ∈ C[L,m,M ] there holds

Etu0(x) = v0(t) ∀ t > 0, ∀x < L1(t) or x > L2(t). (94)

Relying on (12), (94), one then deduces as in the proof of Theorem 4 that

d

dt
‖Etu0 − Et0‖L1

≤ ‖g(t, Etu0)− g(t, Et0)‖
L1
≤ ω(t) · ‖Etu0 − Et0‖L1

,

which, in turn, yields the estimate on the L1 norm

‖Etu0 − Et0‖L1
≤ exp

(
‖ω‖

L1(0,t)

)
· ‖u0‖L1

≤ exp
(
‖ω‖

L1(0,T )

)
·m ∀ t ∈ [0, T ] . (95)

With similar arguments, one can derive as in the proof of Lemma 1 the a-priori bound on the L∞ norm

‖Etu0−Et0‖L∞ ≤ exp
(
‖ω‖

L1(0,t)

)
·‖u0‖L∞ ≤MT

.
= exp

(
‖ω‖

L1(0,T )

)
·M ∀ t ∈ [0, T ] . (96)

On the other hand, applying Lemma 3, and thanks to (48) and (95), we derive

‖Etu0 − Et0‖L∞ ≤
√

2m

c t
· exp

(
‖ω‖

L1(0,T )

)
∀ t ∈ ]0, T ] . (97)

Given any u1, u2 ∈ C[L,m,M ], we introduce

l1(u1, t)
.
= inf Supp (Etu1 − Et0) and l2(u2, t)

.
= sup Supp (Etu2 − Et0).

As in the proof of Lemma 1, we will make use of generalized characteristics (see again [4, Section
11.9]). We consider the maximal backward characteristic emanating from (t, l1(u1, t)) associated to
E(·)u1, denoted ξ1(·), and the minimal backward characteristic emanating from (t, l2(u2, t)) associated
to E(·)u2, denoted ξ2(·). Then there are some C1 functions v1(·) and v2(·) so that (ξ1(·), v1(·)) and
(ξ2(·), v2(·)) satisfy on ]0, t[ the characteristic equation (52), with g(s, v(s)) in place of g(s, ξ(s), v(s)),
and with ξ1(t) = l1(u1, t), v1(t) = Etu1(l1(u1, t)), and ξ2(t) = l2(u2, t), v2(t) = Etu2(l2(u2, t)). Observe
that by the properties of the characteristics one clearly has −L ≤ ξi(0) ≤ L, i = 1, 2, and

|vi(s)| = |Es(ui)(ξi(s))| ≤ ‖Es(ui)‖L∞ ∀s ∈ ]0, t[, i = 1, 2.

Moreover, using that g(·, 0) ∈ L1
loc, and applying Gronwall’s inequality we find

|v0(s)| ≤ exp(‖ω‖L1(0,t)) · ‖g(·, 0)‖
L1(0,t)

∀ s ∈ [0, t] . (98)

Hence, relying on (92), (96), (98), we derive the estimates

max(|v1(s)|, |v2(s)|) ≤M
g

T
.
= exp(‖ω‖L1(0,T ))(M + ‖g(·, 0)‖L1(0,T )) ∀ s ∈ [0, t] ,
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and using (3), ∣∣l2(u2, t)− l1(u1, t)
∣∣ ≤ 2L+ ‖f ′′‖

L∞(−Mg
T ,M

g
T )

∫ t

0

|v2(s)− v1(s)|ds. (99)

On the other hand, thanks to (97), we get

|v2(s)− v1(s)| ≤ ‖Es(u2)− Es(0)‖L∞ + ‖Es(u1)− Es(0)‖L∞

≤ 2

√
2m

cs
· exp

(
‖ω‖

L1(0,T )

)
∀ s ∈ ]0, t].

(100)

Recalling (93), by the arbitrariness of u1, u2 ∈ C[L,m,M ], we deduce from (99), (100) the estimate

L2(t)− L1(t) ≤ 2L(T )
.
= 2L+ 4‖f ′′‖L∞(−Mg

T ,M
g
T )

√
2mT

c
· exp

(
‖ω‖

L1(0,T )

)
∀ t ∈ [0, T ],

which in turn, together with (2), (97), yields

‖ETu0 − ET 0‖
L∞
≤ L(T )

2cT
. (101)

Then, for any given u0 ∈ C[L,m,M ], setting uT
.
= ETu0 − ET 0, we consider the function

u](x)
.
=

exp
(
‖ω‖

L1(0,T

)
cT

x+
L(T )

2cT
− uT (x+ L1(T )) , x ∈ [0, 2L(T )] ,

that results to be an element of I
[2L(T ),

L(T )
cT (1+2 exp(‖ω‖L1(0,T ))]

, by virtue of (48) and (101). With the

same arguments of the proof of Theorem 4, applying Lemma 2, we thus obtain the estimate (17).

2. Lower estimate. For what concerns the lower bound on the ε-entropy of the set of solutions of (9),
with g = g(t, u) satisfying (12) together with g(·, 0) ∈ L1

loc, following the same lines of the proof of
Proposition 3 one can show that, for

h ≤
(

1,M,
m

L
,

L

4T‖f ′′‖L∞(−GT ,GT )

)
exp

(
− ‖ω‖

L1(0,T )

)
, (102)

sufficiently small, there holds

A
T

.
= A[

L̃T ,Lh,h,(T‖f ′′‖L∞(−GT ,GT ) exp(‖ω‖L1(0,T )))
−1
] ⊆ Tτ

T

(
ET (C[L,m,M ])

)
− ET 0, (103)

with
L̃T

.
= L− T‖f ′′‖L∞

(−GT ,GT )
· exp

(
‖ω‖

L1(0,T )

)
h, (104)

where GT is defined by (19), and Tτ
T

denotes the shift operator

u(x) 7→ Tτ
T

(u)(x)
.
= u(x− τT ),

associated to some constant τ
T

to be defined later (see (110)). By the same density argument as in
Propositions 1 and 3, it is sufficient to prove, instead of (103), that

A
T
∩ C1(R) ⊆ Tτ

T

(
ET (C[L,m,M ])

)
− ET 0. (105)

Now, given any uT ∈ C1(R) ∩ A
T

, consider the entropy weak solution w(t, x)
.
= Ẽtw0 of

wt + f(w)x = g̃(t, w) where g̃(t, u)
.
= −g(T − t, u),

with initial data
w0(x)

.
= uT (−x) + v0(T ) ∀ x ∈ R, (106)
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and observe that the function u(t, x)
.
= w(T − t,−x) is a weak distributional solution of (9), which, by

(92), (106), satisfies
u(T, ·) = uT + ET 0 . (107)

Moreover, note that because of (92), (106) one has Ẽt v
0(T ) = v0(T − t), and Ẽtw0 = v0(T − t) for all

x with |x| large enough. Hence, with the same arguments as above, by virtue of (12), (102), (106), and
because uT ∈ AT , one deduces that

‖w(t, ·)− Ẽtv0(T )‖
L∞
≤ exp

(
‖ω‖

L1(0,t)

)
· ‖uT ‖L∞ ≤ exp

(
‖ω‖

L1(0,T )

)
·h ≤M ∀ t ∈ [0, T ] ,

(108)

‖w(t, ·)− Ẽtv0(T )‖
L1
≤ exp

(
‖ω‖

L1(0,t)

)
· ‖uT ‖L1

≤ exp
(
‖ω‖

L1(0,T )

)
·Lh ≤ m ∀ t ∈ [0, T ] .

(109)
Recalling the definition (19) of GT , from (98), (102) and (108) we derive

‖w(s, ·)‖L∞ ≤ GT , ∀s ∈ [0, T ].

Thus, observing that ẼT v0(T )=v0(0)=0, setting

L̃1(T )
.
=− sup{x ∈ Supp (ẼTw0) |w0(−·)∈A

T
+v0(T )},

L̃2(T )
.
=− inf{x ∈ Supp (ẼTw0) |w0(−·)∈A

T
+v0(T )},

and relying on (102) and (104), we deduce that

Supp(w(T,−·)) ⊂ [L̃1(T ), L̃2(T )] , L̃2(T )− L̃1(T )≤2L̃T + 2T‖f ′′‖
L∞(−GT ,GT )

· exp
(
‖ω‖

L1(0,T )

)
h ≤ 2L .

Then, setting
τ
T

.
= L̃1(T ) + L, (110)

we find that Supp(T−τ
T

(w(T,−·))) = Supp(T−τ
T

(ẼTw0(−·))) ⊂ [−L,L], which, together with the esti-
mates (108)-(109), yields

T−τ
T

(u(0, ·)) = T−τ
T

(w(T,−·)) ∈ C[L,m,M ].

Therefore, since w(t, x) verifies the upper one-side inequality (48), if we establish the lower bound

wx(t, ·) ≥ −C̃t in the sense of measures, (111)

for some constant C̃t > 0, and for all t ∈ ]0, T [, it would follow that u(t, ·) ∈ Liploc(R) for all t ∈ (0, T ),
and hence, observing that T−τ

T
(u(t, ·)) = Et

(
T−τ

T
(u(0, ·))

)
, we deduce by (107) that

T−τ
T

(uT ) ∈ ET (C[L,m,M ])− ET 0.

In turn, this relation clearly implies uT ∈ Tτ
T

(ET (C[L,m,M ]))− ET 0, proving (105) and hence (103).
Concerning (111), we follow the proof of Propositions 1 and 3. We introduce T1 by (30) and as before

define v by v(t, x)
.
= wx(t, x). We get that v is the unique broad solution on [0, T1[×R of the semilinear

equation
vt(t, x) + f ′(w(t, x)) · vx(t, x) = g̃u(t, w(t, x)) · v(t, x)− f ′′(w(t, x)) · v(t, x)2.

We introduce z(t)
.
= v(t, x(t)) as the value of v along a characteristic associated to (9) and consider a

compact interval [τ1, τ2] ⊂ [0, T1[ , during which z(t) < 0, and such that

z(τ1) ≥ −(T‖f ′′‖L∞(−GT ,GT ) exp(‖ω‖L1(0,T )))
−1. (112)

We obtain that
ż(t) ≥ ω(t) · z(t)− ‖f ′′‖L∞(−GT ,GT ) · z2(t), t ∈ [τ1, τ2] .

Now defining z1 as previously by z1(t)
.
= exp

(
−
∫ t
0
ω(s)ds

)
· z(t), we deduce

ż1(t) ≥ −‖f ′′‖L∞(−GT ,GT ) exp(‖ω‖L1(0,T ))z
2
1 , t ∈ [τ1, τ2] ,
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which yields

z1(t, ·) ≥
− exp(‖ω‖L1(0,T ))

1
z1(T ) − t‖f ′′‖L∞(−GT ,GT )

.

With (112), this establishes T1 = T and (111) with C̃t
.
= ((T − t)‖f ′′‖L∞(−GT ,GT ))

−1. This completes
the proof of (103).

Since by (102), (104) we have L̃T ≥ (3/4)L, relying on (103), observing that

Hε

(
ET (C[L,m,M ]) |L1(R)

)
= Hε

(
Tτ

T
(ET (C[L,m,M ]))−ET 0 |L1(R)

)
,

and applying (24), with b = (T‖f ′′‖L∞(−GT ,GT ) exp(‖ω‖L1(0,T )))
−1, L = L̃T , we derive the estimate (18).
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