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Multitensor lifting and strictly unital higher category theory

In this article we extend the theory of lax monoidal structures, also known as multitensors, and the monads on categories of enriched graphs that they give rise to. Our first principal result -the lifting theorem for multitensors -enables us to see the Gray tensor product of 2-categories and the Crans tensor product of Gray categories as part of this framework. We define weak n-categories with strict units by means of a notion of reduced higher operad, using the theory of algebraic weak factorisation systems. Our second principal result is to establish a lax tensor product on the category of weak n-categories with strict units, so that enriched categories with respect to this tensor product are exactly weak (n+1)-categories with strict units.

Introduction

This paper continues the developments of [START_REF] Batanin | Algebras of higher operads as enriched categories[END_REF] and [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] on the interplay between monads and multitensors in the globular approach to higher category theory, and expands considerably on an earlier preprint [START_REF] Batanin | Algebras of higher operads as enriched categories II[END_REF]. To take an important example, according to [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] there are two related combinatorial objects which can be used to describe the notion of Gray category. One has the monad A on the category G 3 (Set) of 3-globular sets whose algebras are Gray categories, which was first described in [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF]. On the other hand there is a multitensor (ie a lax monoidal structure) on the category G 2 (Set) of 2-globular sets, such that categories enriched in E are exactly Gray categories. The theory described in [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] explains how A and E are related as part of a general theory which applies to all operads of the sort defined originally in [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF].

However there is a third object which is missing from this picture, namely, the Gray tensor product of 2-categories. It is a simpler object than A and E, and categories enriched in 2-Cat for the Gray tensor product are exactly Gray categories. The purpose of this paper is to exhibit the Gray tensor product as part of our emerging framework. This is done by means of the lifting theorem for multitensors -theorem (3.3) of this article.

Strict n-categories can be defined by iterated enrichment, and the lifting theorem leads one to hope that such an inductive definition can be found for a wider class of higher categorical structures. The second main result of this article -theorem(6.2) -says that one has a similar process of iterated enrichment to capture weak n-categories with strict units. In this result the appropriate (lax) tensor product L ≤n of weak n-categories with strict units is identified, so that categories enriched in weak n-categories with strict units using this tensor product are exactly weak (n+1)-categories with strict units.

In order to formulate this second result, we identify a new class of higher operad, these being the reduced T ≤n -operads of section (5.3). Moreover we describe the notion of contractibility for such operads which enables one to formalise the idea that a given higher categorical structure should have strict units. Then weak n-categories with strict units are defined as algebras of the universal contractible reduced T ≤n -operad, analogous to how weak n-categories were defined operadically in [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF]. It turns out that the lifting theorem is particularly compatible with these new notions, and it is this fact which is chiefly responsible for theorem (6.2).

Let us turn now to a more detailed introduction to this article. Recall [START_REF] Batanin | Algebras of higher operads as enriched categories[END_REF][START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] that a multitensor (E, u, σ) on a category V consists of n-ary tensor product functors E n : V n → V , whose values on objects are denoted in any of the following ways E(X 1 , ..., X n )

E n (X 1 , ..., X n ) E 1≤i≤n X i E i X i
depending on what is most convenient, together with unit and substitution maps

u X : Z → E 1 X σ Xij : E i E j X ij → E ij X ij
for all X, X ij from V which are natural in their arguments and satisfy the obvious unit and associativity axioms. It is also useful to think of (E, u, σ) more abstractly as a lax algebra structure on V for the monoid monad 1 M on CAT, and so to denote E as a functor E : M V → V . The basic example to keep in mind is that of a monoidal structure on V , for in this case E is given by the n-ary tensor products, u is the identity and the components of σ are given by coherence isomorphisms for the monoidal structure. A category enriched in E consists of a V -enriched graph X together with composition maps

κ xi : E i X(x i-1 , x i ) → X(x 0 , x n )
for all n ∈ N and sequences (x 0 , ..., x n ) of objects of X, satisfying the evident unit and associativity axioms. With the evident notion of E-functor (see [START_REF] Batanin | Algebras of higher operads as enriched categories[END_REF]), one has a category E-Cat of E-categories and E-functors together with a forgetful functor U E : E-Cat → GV. 1 Recall that for a category V , an object of M V is a finite sequence (X 1 , ..., Xn) of objects of V , that one only has morphisms in M V between sequences of the same length, and that such a morphism (X 1 , ..., Xn) → (Y 1 , ..., Yn) consists of morphisms f i :

X i → Y i for 1 ≤ i ≤ n.
When E is a distributive multitensor, that is when E n commutes with coproducts in each variable, one can construct a monad ΓE on GV over Set. The object map of the underlying endofunctor is given by the formula ΓEX(a, b) = a=x0,...,xn=b

E i X(x i-1 , x i ),
the unit u is used to provide the unit of the monad and σ is used to provide the multiplication. The identification of the algebras of ΓE and categories enriched in E is witnessed by a canonical isomorphism E-Cat ∼ = G(V ) ΓE over GV . In section [START_REF] Barr | Toposes triples and theories[END_REF] we recall the relevant aspects of the theory of multitensors and monads from [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF].

If one restricts attention to unary operations, then E 1 , u and the components σ X : E 2 1 X → E 1 X provide the underlying endofunctor, unit, and multiplication for a monad on V . This monad is called the unary part of E. When the unary part of E is the identity monad, the multitensor is a functor operad. This coincides with existing terminology, see [START_REF] Mcclure | Cosimplicial objects and little n-cubes I[END_REF] for instance, except that we don't in this paper consider any symmetric group actions. Since units for functor operads are identities, we denote any such as a pair (E, σ), where as for general multitensors E denotes the functor part and σ the substitution.

By definition then, a functor operad is a multitensor. On the other hand, as observed in [START_REF] Batanin | Algebras of higher operads as enriched categories[END_REF] lemma(2.7), the unary part of a multitensor E acts on E, in the sense that as a functor E factors as

M V V E1 V / / U E 1 / /
and in addition, the substitution maps are morphisms of E 1 -algebras. Moreover an E-category structure on a V -enriched graph X includes in particular an E 1 -algebra structure on each hom X(a, b) of X with respect to which the composition maps are morphisms of E 1 -algebras. These observations lead to Question 1.1. Given a multitensor (E, u, σ) on a category V can one find a functor operad (E ′ , σ ′ ) on V E1 such that E ′ -categories are exactly E-categories?

The first main result of this paper, theorem (3.3), says that question (1.1) has a nice answer: when E is distributive and accessible and V is cocomplete, one can indeed find a unique distributive accessible such E ′ .

One case of our lifting theorem in the literature is in the work of Ginzburg and Kapranov on Koszul duality [START_REF] Ginzburg | Koszul duality for operads[END_REF]. Formula (1.2.13) of that paper, in the case of a Kcollection E coming from an operad, implicitly involves the lifting of the multitensor corresponding (as in [START_REF] Batanin | Algebras of higher operads as enriched categories[END_REF] example (2.6)) to the given operad. For instance, our lifting theorem gives a general explanation for why one must tensor over K in that formula. As we shall see in section (3.4), another existing source of examples comes from Day convolution [START_REF] Day | Closed categories of functors[END_REF].

Taking E to be the multitensor on G n (Set) such that ΓE is the monad whose algebras are weak (n+1)-categories, one might hope that the statement that "E ′categories are exactly E-categories" in this case expresses a sense in which weak (n+1)-categories are categories enriched in weak n-categories for an appropriate tensor product E ′ . However as we explain in section(5.2), the presence of weak identity arrows as part of the structure of weak (n+1)-category prevents such a pleasant interpretation directly, because composition with weak identity arrows gives the homs of an E-category extra structure, as can already be seen for the case n = 1 of bicategories.

Having identified this issue, it is natural to ask Question 1.2. Does the lifting theorem produce the tensor products enabling weak n-categories with strict units to be obtained by iterated enrichment?

For this question to be well-posed it is necessary to define weak n-categories with strict units.

To do this it is worth first meditating a little on the operadic definition of weak n-category. Indeed since such a definition first appeared in [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF], as the algebras of a weakly initial higher operad of a certain type, there have been a number of works that have refined our understanding. In [START_REF] Leinster | Higher operads, higher categories[END_REF] this topic was given a lovely exposition, the focus was shifted to considering operads that were strictly initial with the appropriate properties rather than weakly so, and an alternative notion of contractibility was given which, for expository purposes, is a little simpler. Thus in this article we use Leinster contractibility throughout, however as we point out in remark (4.4), one can give a completely analogous development using the original notions.

On a parallel track, Grandis and Tholen initiated an algebraic study of the weak factorisation systems arising in abstract homotopy theory in [START_REF] Grandis | Natural weak factorisation systems[END_REF], this was refined by Garner in [START_REF] Garner | Understanding the small object argument[END_REF] and then applied to higher category theory in [START_REF] Garner | A homotopy-theoretic universal property of leinster's operad for weak ω-categories[END_REF] and [START_REF] Garner | Homomorphisms of higher categories[END_REF]. We devote a substantial part of section(4) to a discussion of these developments, both by way of an updated review of the definition of weak n-category, and because we make essential use of Garner's theory of weak factorisation systems later in the article.

Assimilating these developments one can present an operadic definition of weak n-categories in the following way. One has a presheaf category T ≤n -Coll 0 of T ≤ncollections over Set (called "normalised collections" in [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF]) and there are two finitary monads on T ≤n -Coll 0 the first of whose algebras are T ≤n -operads over Set. To give an algebra structure for the second of these monads is to exhibit a given T ≤ncollection over Set as contractible, and one obtains this monad from an algebraic weak factorisation system, in the sense of [START_REF] Garner | Understanding the small object argument[END_REF], on T ≤n -Coll 0 . In general the monad coproduct of a pair of finitary monads on a locally finitely presentable category is itself finitary, and so its category of algebras will also be locally finitely presentable. Applied to the two monads in question, the algebras of their monad coproduct are contractible T ≤n -operads over Set, the initial such being the operad for weak ncategories.

We now adapt this to give an operadic definition weak n-category with strict units in the following way. First, one considers only reduced T ≤n -operads, which are those that contain a unique unit operation of each type. Second, one strengthens the notion of contractibility, by giving an algebraic weak factorisation system on the category PtRd-T ≤n -Coll of pointed reduced T ≤n -collections. This notion of underlying collection includes the substitution of unique unit operations as part of the structure. The purpose of this refined contractibility notion is to encode the idea that the unique unit operations of the operads under consideration really do behave as strict identities. So as before one has a pair of finitary monads, but this time on the category PtRd-T ≤n -Coll, one whose algebras are reduced operads, and the other whose algebras are pointed reduced collections that are exhibited as contractible in this stronger sense. One then imitates the scheme laid out in the previous paragraph, defining the operad for weak n-categories with strict units as the initial object of the category of algebras of the coproduct of these two monads on PtRd-T ≤n -Coll.

A novelty of this definition is that it uses the extra generality afforded by the theory of algebraic weak factorisation system's of [START_REF] Garner | Understanding the small object argument[END_REF]. Namely, while in the standard theory of weak factorisation systems one considers those that are generated, via the small object argument of Quillen, by a set of generating cofibrations. In Garner's algebraic version of the small object argument, one can consider a category of generating cofibrations. The algebraic weak factorisation system we consider on PtRd-T ≤n -Coll has a category of generating cofibrations, and it is the morphisms of this category by means of which the strictness of units is expressed.

Having obtained a reasonable definition of weak n-category with strict units, we then proceed to answer question(1.2) in the affirmative, this being our second main result theorem(6.2). For any T ≤n+1 -operad B over Set, there is a T ≤n -operad h(B), whose algebras are by definition the structure possessed by the homs of a B-algebra. This is the object map of a functor h, and if one restricts attention to reduced B, and then contractible reduced B, h in either of these contexts becomes a left adjoint, which is the formal fact that enables theorem(6.2) to go through.

This paper is organised in the following way. In section(2) we review the theory of multitensors from [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF]. Then in section(3) we discuss the lifting theorem. The theorem itself is formulated and proved in section(3.2), applications are presented in sections(3.3) and (3.4), and the 2-functorial aspects of the lifting theorem are presented in section (3.5). We give a review of the definition of weak n-category and the theory of algebraic weak factorisation systems in section(4). In section [START_REF] Batanin | Centres and homotopy centres in enriched monoidal categories[END_REF] we present our definition of weak n-category with strict units, and then the tensor products which exhibit this notion as arising by iterated enrichment are produced in section [START_REF] Batanin | The universal property of the multitude of trees[END_REF].

Notation and terminology. Efforts have been made to keep the notation and terminology of this article consistent with [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF]. The various other standard conventions and abuses that we adopt include regarding the Yoneda embedding C → C as an inclusion, and so by the Yoneda lemma regarding x ∈ XC for X ∈ C as an arrow x : C → X in C. To any such X, and more generally any pseudo-functor X : C op → Cat, the Grothendieck construction gives the associated fibration into C, the domain of which we denote as el(X) and call the "category of elements of X". The objects of the topologists' simplicial category ∆ are as usual written as ordinals [n] = {0 < ... < n} for n ∈ N, and regarded as a full subcategory of Cat. Thus in particular [START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF] is the category consisting of one non-identity arrow, and E [1] denotes the arrow category of a category E. We use a different notation for the algebraists' simplicial category ∆ + , objects here being regarded as ordinals n = {1 < ... < n} for n ∈ N. In section(5.3), we adopt the abuse of identifying the left adjoint reflection of the inclusion of a full subcategory with the idempotent monad generated by the adjunction.

Review of the theory of multitensors

Given a category V , GV is the category of graphs enriched in V . Thus G1 = Set and G n (Set) is equivalent to the category of n-globular sets. As a category GV is at least as good as V . Two results from [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] which express this formally, are proposition(2.2.3) which explains how colimits in GV are constructed from those in V , and theorem(2.2.7) from which it follows that if V is locally presentable (resp. a Grothendieck topos, resp. a presheaf topos) then so is GV .

Certain colimits in GV are very easy to understand directly, namely those connected colimits in which the arrows of the diagram are identities on objects. For in this case, as pointed out in remark(2.2.5) of [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF], one can just take the object set of the colimit to be that of any of the V -graphs appearing in the diagram, and compute the colimit one hom at a time in the expected way. These colimits will play a basic role in the developments of section (3.2).

Formal properties of the endofunctor G : CAT → CAT were discussed in section(2.1) of [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF]. In particular G preserves Eilenberg Moore objects, so that given a monad T on a category V , one has an isomorphism G(V ) G(T ) ∼ = G(V T ) expressing that the algebras of the monad GT on GV are really just graphs enriched in the category V T of algebras of T .

As explained in the introduction to this article, given a distributive multitensor E on a category V with coproducts, the formula

ΓEX(a, b) = a=x0,...,xn=b E i X(x i-1 , x i )
describes the object map of the underlying endofunctor of the monad ΓE on the category GV of graphs enriched in V , whose algebras are E-categories. The assignment (V, E) → (GV, ΓE) is itself the object map of a locally fully faithful 2-functor Γ : DISTMULT -→ MND(CAT/Set) from the full sub-2-category DISTMULT of the 2-category of lax monoidal categories, lax monoidal functors and monoidal natural transformations, consisting of those (V, E) where V has coproducts and E is distributive, to the 2-category of monads, as defined in [START_REF] Street | The formal theory of monads[END_REF], in the 2-category CAT/Set.

From this perspective then, the category GV is regarded as being "over Set", that is to say, it is taken together with the functor (-) 0 : GV → Set which sends a V -graph to its set of objects. A monad in CAT/Set is called a monad over Set, and the monad ΓE is over Set because: (1) for any V -graph X, the objects of ΓEX are those of X; (2) for any morphism of V -graphs f : X → Y , the object map of ΓEf is that of f ; and (3) the components of the unit and multiplication of ΓE are identity-on-objects morphisms of V -graphs. From the point of view of structure, ΓE being over Set says that the structure of an E-category gives nothing at the level of objects.

Section(3), and especially theorem(3.3.1) of [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF], contains a careful analysis of how properties of E correspond to properties of the induced monad ΓE. The particular fact following from that discussion that we shall use below is recorded here in lemma (2.1). Recall that a multitensor E is λ-accessible for some regular cardinal λ, when the underlying functor E : M V → V preserves λ-filtered colimits, and that this condition is equivalent to each of the E n : V n → V preserving λfiltered colimits in each variable (see [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] section(3.3) for more discussion).

Lemma 2.1. Suppose that V is a cocomplete category, λ is a regular cardinal and E is distributive multitensor on V . Then E is λ-accessible iff ΓE is λ-accessible.

Monads T on GV over Set of the form ΓE for some distributive multitensor E on V a category with coproducts, are those that are path-like and distributive in the sense that we now recall. These properties concern only the functor part of the given monad, and so for the sake of the proof of theorem(3.3) below, we shall formulate these definitions more generally than in [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF], for functors over Set between categories of enriched graphs.

When the category V has an initial object ∅, sequences (X 1 , ..., X n ) of objects of V can be regarded as V -graphs. The object set for the V -graph (X 1 , ..., X n ) is {0, ..., n}, for 1 ≤ i ≤ n the hom from (i-1) to i is X i , and the other homs are ∅. An evocative informal picture of this V -graph is

0 1 ... n-1 n X1 / / X2 / / Xn-1 / / Xn / /
because it encourages one to imagine X i as being the object of ways of moving from (i-1) to i in this simple V -graph. Given a functor T : GV → GW over Set, one can define a functor T : M V → W whose object map is given by

T 1≤i≤n X i = T (X 1 , ..., X n )(0, n).
Note that since T is over Set, the W -graph T (X 1 , ..., X n ) also has object set {0, ..., n}, and so the expression on the right hand side of the above equation makes sense as a hom of this W -graph. By definition T amounts to functors T n :

V n → W for each n ∈ N.
Definition 2.2. Let V and W be categories with coproducts. A functor T : GV → GW over Set is distributive when for each n ∈ N, T n preserves coproducts in each variable. A monad T on GV over Set is distributive when its underlying endofunctor is distributive.

As in [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] section(4.2), this definition can be reexpressed in more elementary terms without mention of T .

Intuitively, path-likeness says that the homs of the W -graphs T X are in some sense some kind of abstract path object. Formally for a functor T : GV → GW over Set, given a V -graph X and sequence x = (x 0 , ..., x n ) of objects of X, one can define the morphism x : (X(x 0 , x 1 ), X(x 1 , x 2 ), ..., X(x n-1 , x n )) → X whose object map is i → x i , and whose hom map between (i -1) and i is the identity. For all such sequences x one has

T (x) 0,n : T i X(x i-1 , x i ) → T X(x 0 , x n )
and so taking all sequences x starting at a and finishing at b one induces the canonical map

π T,X,a,b : a=x0,...,xn=b T i X(x i-1 , x i ) → T X(a, b) in W .
Definition 2.3. Let V and W be categories with coproducts. A functor T : GV → GW over Set is path-like when for all X ∈ GV and a, b ∈ X 0 , the maps π T,X,a,b are isomorphisms. A monad T on GV over Set is path-like when its underlying endofunctor is path-like.

A basic result concerning these notions that will be useful below is Lemma 2.4. Let V , W and Y be categories with coproducts and R : V → W , T : GV → GW and S : GW → GY be functors.

(1) If R preserves coproducts then GR is distributive and path-like.

(2) If S and T are distributive and path-like, then so is ST .

Proof. (1): Since R preserves the initial object one has GR(Z 1 , ..., Z n ) = (RZ 1 , ..., RZ n ) and so GR : M V → W sends sequences of length n = 1 to ∅, and its unary part is just R. Thus GR is distributive since R preserves coproducts, and coproducts of copies of ∅ are initial. The summands of the domain of π GR,X,a,b are initial unless (x 0 , ..., x n ) is the sequence (a, b), thus π GR,X,a,b is clearly an isomorphism, and so GR is path-like.

(2): Since S and T are path-like and distributive one has

ST (Z 1 , ..., Z n )(0, n) ∼ = 0=r0≤...≤rm=n S 1≤i≤m T ri-1<j≤ri Z j
and so ST is path-like and distributive since S and T are, and since a coproduct of coproducts is a coproduct.

The aforementioned characterisation of monads of the form ΓE is then given by the following result.

Theorem 2.5. ( [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] theorem(4.2.4)). For a category V with coproducts, a monad T on GV over Set is of the form ΓE for a distributive multitensor E iff T is path-like and distributive, in which case one can take E = T .

So far we have discussed two important constructions, Γ which produces a monad from a multitensor, and (-) which produces a multitensor from a monad. We now recall a third construction (-) × which also produces a multitensor from a monad. If V has finite products and T is any monad on V , then one can define a multitensor T × on V as follows

T × 1≤i≤n X i = n i=1 T X i .
A category enriched in T × is exactly a category enriched in V T using the cartesian product. As explained in section(5.2) of [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF], this is an instance of a general phenomenon of a distributive law of a multitensor over a monad, in this case witnessed by the fact that any monad T will be opmonoidal with respect to the cartesian product on V . If moreover V has coproducts and V 's products distribute over them, so that cartesian product on V is a distributive multitensor, and if T preserves coproducts, then T × is a distributive multitensor. The 2-functoriality of Γ and the formal theory of monads [START_REF] Street | The formal theory of monads[END_REF] then ensures that at the level of monads one has a distributive law G(T )Γ( ) → Γ( )G(T ) between the monads Γ( ) and G(T ) on GV .

Fundamental to the globular approach to higher category are the monads T ≤n , defined for n ∈ N, on the category G n (Set) of n-globular sets, whose algebras are strict n-categories. Higher categorical structures in dimension n in this approach are by definition algebras of T ≤n -operads, and a T ≤n -operad is by definition a monad A on G n (Set) equipped with a cartesian monad morphism 2 α : A → T ≤n . In terms of the theory described so far, the monads T ≤n have a simple inductive description 2 That is, a natural transformation between underlying endofunctors, whose naturality squares are pullbacks, and which is compatible with the monad structures.

• T ≤0 is the identity monad on Set.

• Given the monad T ≤n on G n Set, define the monad T ≤n+1 = ΓT × ≤n on G n+1 Set. The fact that T ≤n algebras are strict n-categories is immediate from this definition, our understanding of what the constructions Γ and (-) × correspond to at the level of algebras and enriched categories, and the definition of strict n-category via iterated enrichment using cartesian product. Moreover, an inductive definition of the T ≤n via an iterative system of distributive laws [START_REF] Cheng | Iterated distributive laws[END_REF], is also an immediate consequence of this point of view.

That one has this good notion of T ≤n -operad expressable so generally in terms of cartesian monad morphisms, so that it fits within the framework of Burroni [START_REF] Burroni | T-categories (catégories dans un triple)[END_REF], Hermida [START_REF] Hermida | Representable multicategories[END_REF] and Leinster [START_REF] Leinster | Higher operads, higher categories[END_REF], is due to the fact that T ≤n is a cartesian monad. That is, its functor part preserves pullbacks and the naturality squares for its unit and multiplication are pullback squares. The underlying endofunctor T ≤n satisfies a stronger condition than pullback preservation, namely, it is a local right adjoint, that is to say, for any X ∈ G n (Set), the functor

(T ≤n ) X : G n (Set)/X -→ G n (Set)/T ≤n X
obtained by applying T ≤n to arrows into X, is a right adjoint. A cartesian monad whose functor part satisfies this stronger property is called a local right adjoint monad3 in this article, and this notion is important because for such monads one can define the nerve of an algebra in a useful way. See [START_REF] Berger | A cellular nerve for higher categories[END_REF], [START_REF] Weber | Familial 2-functors and parametric right adjoints[END_REF], [START_REF] Melliès | Segal condition meets computational effects[END_REF] and [START_REF] Berger | Monads with arities and their associated theories[END_REF] for further discussion.

All these pleasant properties enjoyed by the monads T ≤n can be understood in terms the compatibility of these properties with the constructions Γ and (-) × . See [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF], especially theorem(3.3.1) and example(5.2.4), for more details.

A T ≤n -operad over Set is a T ≤n -operad α : A → T ≤n such that the monad A is over Set and α's components are identities on objects. We denote by T ≤n -Op 0 the category of T ≤n -operads over Set. There is also a notion of E-multitensor for a given cartesian multitensor E on a category V , which consists of another multitensor F on V equipped with a cartesian morphism of multitensors φ : F → E. We denote by E-Mult the category of E-multitensors. Thanks to the functoriality of Γ and its compatibility with the categorical properties participating in these definitions one has Theorem 2.6. The constructions Γ and (-) give an equivalence of categories

T × ≤n -Mult ≃ T ≤n+1 -Op 0 .
This result first appeared as corollary(7.10) of [START_REF] Batanin | Algebras of higher operads as enriched categories[END_REF], and was subsequently generalised in [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] theorem(6.1.1) with T × ≤n replaced by a general cartesian multitensor E on a lextensive category V .

Lifting theorem

3.1. Overview. In [START_REF] Crans | A tensor product for Gray categories[END_REF] the so-called "Crans tensor product" of Gray categories was constructed by hand, and categories enriched in this tensor product were called "4-teisi" and were unpacked in [START_REF] Crans | On braidings, syllepses, and symmetries[END_REF], these being Crans' candidate notion of semi-strict 4-category. From the perspective of these papers it is not at all clear that one can proceed in the reverse order, first constructing a T ≤4 -operad for 4-teisi, and then obtaining the tensor product from this. By ordering the discussion in this way one makes a direct formal connection between the combinatorial work of Crans and the theory of higher operads. Even given an intuition that one can begin with the operad and then obtain the tensor product, it is very far from clear from the way that things are described in [START_REF] Crans | A tensor product for Gray categories[END_REF] and [START_REF] Crans | On braidings, syllepses, and symmetries[END_REF], how one would express such an intuition formally without drowning in the complexity of the combinatorial notions involved.

The lifting theorem applied to this example gives a formal expression of this intuition in a way independent of any of these combinatorial details. It does not however say anything about how the T ≤4 -operad for 4-teisi is constructed. Put simply, the T ≤4 -operad for 4-teisi is the input, and the Crans tensor product is the output for this application of the lifting theorem.

This section is organised as follows. In section(3.2) we formulate and prove the lifting theorem as an answer to question(1.1). Then in section(3.3) we discuss how this result brings the Gray and Crans tensor products, of 2-categories and Gray categories respectively, into our framework. Section(3.4) exhibits Day convolution as arising via an application of the lifting theorem. Finally in section(3.5) we exhibit the process of lifting a multitensor as a right 2-adjoint to an appropriate inclusion of functor operads among multitensors.

3.2. The theorem and its proof. The idea which enables us to answer question(1.1) is the following. Given a distributive multitensor E on V one can consider also the multitensor E 1 whose unary part is also E 1 , but whose non-unary parts are all constant at the initial object. This is clearly a sub-multitensor of E, also distributive, and moreover as we shall see one has E 1 -Cat ∼ = G(V E1 ) over GV . Thus from the inclusion E 1 ֒→ E one induces the forgetful functor U fitting in the commutative triangle

G(V E1 ) E-Cat GV o o U U E G(U E 1 )
For sufficiently nice V and E this forgetful functor has a left adjoint. The category of algebras of the induced monad T will be E-Cat since U is monadic. Thus problem is reduced to that of establishing that this monad T arises from a multitensor on V E1 . By theorem(2.5) this amounts to showing that T is path-like and distributive.

In order to implement this strategy, we must understand something about the explicit description of the left adjoint G(V E1 ) → E-Cat, and this understanding is a basic part of monad theory that we now briefly recall. Suppose that (M, η M , µ M ) and (S, η S , µ S ) are monads on a category E, and φ : M →S is a morphism of monads. Then φ induces the forgetful functor φ * : E S → E M and we are interested in computing the left adjoint φ ! to φ * . By the Dubuc adjoint triangle theorem [START_REF] Dubuc | Kan extensions in enriched category theory[END_REF], one may compute the value of φ ! at an M -algebra (X, x : M X→X) as a reflexive coequaliser

(1) (SM X, µ S M X ) (SX, µ S X ) φ ! (X, x) µ S X S(φ X ) / / Sη M X o o Sx / / q (X,x)
/ / in E S , when this coequaliser exists. Writing T for the monad induced by φ ! ⊣ φ * , the components of the unit η T of T are given by

X η S X --→ SX q (X,x) ----→ φ ! (X, x).
The coequaliser (1) is taken in E S , and we will need to have some understanding of how this coequaliser is computed in terms of colimits in E. So we suppose that E has filtered colimits and coequalisers, and that S is λ-accessible for some regular cardinal λ. Then the underlying object U S φ ! (X, x) in E of φ ! (X, x) is constructed in the following way. We shall construct morphisms

v n,X,x : SQ n (X, x) → Q n+1 (X, x) q n,X,x : Q n (X, x) → Q n+1 (X, x)
q <n,X,x : SX → Q n (X, x) starting with Q 0 (X, x) = SX by transfinite induction on n. Initial step. Define q <0 to be the identity, q 0 to be the coequaliser of µ S (Sφ) and Sx, q <1 = q 0 and v 0 = q 0 b. Note also that q 0 = v 0 η S .

Inductive step. Assuming that v n , q n and q <n+1 are given, we define v n+1 to be the coequaliser of S(q n )(µ S Q n ) and Sv n , q n+1 = v n+1 (η S Q n+1 ) and q <n+2 = q n+1 q <n+1 . Limit step. Define Q n (X, x) as the colimit of the sequence given by the objects Q m (X, x) and morphisms q m for m < n, and q <n for the component of the universal cocone at m = 0.

colim m<n S 2 Q m colim m<n SQ m colim m<n Q m Q n SQ n S 2 Q n µ<n / / v<n / / (Sv)<n / / o o η<n µ / / o o η on,2 on,1
We write o n,1 and o n,2 for the obstruction maps measuring the extent to which S and S 2 preserve the colimit defining Q n (X, x). We write µ S <n , (Sv) <n , v <n and η S <n for the maps induced by the µ S Q m , Sv m , v m and η S Q m for m < n respectively. Define v n as the coequaliser of o n,1 µ <n and o n,1 (Sv) <n , q n = v n (η S Q n ) and q <n+1 = q n q <n . Then since S preserves λ-filtered colimits, this sequence stabilises in the sense that for any ordinal n such that |n| ≥ λ, q n,X,x is an isomorphism. Thus for any such n one may take

φ ! (X, x) = (Q n (X, x), q -1 n v n ) q <n : (SX, µ X ) → (Q n (X, x), q -1 n v n )
as an explicit definition of φ ! (X, x) and the associated coequalising map in V S . The proof of this is essentially standard -see theorem(3.9) of [START_REF] Barr | Toposes triples and theories[END_REF] for example, and so we omit the details.

In fact all that we require of the above details is that the transfinite construction involves only connected colimits. Moreover in the context that we shall soon consider, these will be connected colimits of diagrams of V -graphs which live wholly within a single fibre of (-) 0 : GV → Set. As was explained in section(2) and in remark(2.2.5) of [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF], such colimits in GV are straight forward. Lemma 3.1. Let V be a category with coproducts, W be a cocomplete category, J be a small connected category and

F : J → [GV, GW ]
be a functor. Suppose that F sends objects and arrows of J to functors and natural transformations over Set.

(1) Then the colimit K : GV →GW of F may be chosen to be over Set. Given such a choice of K:

(2) If F j is path-like for all j ∈ J, then K is also path-like.

(3) If F j is distributive for all j ∈ J, then K is also distributive.

Proof. Colimits in [GV, GW ] are computed componentwise from colimits in GW and so for X ∈ GV we must describe a universal cocone with components κ X,j : F j(X) → KX.

By remark(2.2.5) of [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] we may demand that the κ X,j are identities on objects, and then compute the hom of the colimit between a, b ∈ X 0 by taking a colimit cocone {κ X,j } a,b : F j(X)(a, b) → KX(a, b) in W . This establishes [START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF]. Since the properties of path-likeness and distributivity involve only colimits at the level of the homs as does the construction of K just given, ( 2) and ( 3) follow immediately since colimits commute with colimits in general.

Recall the structure-semantics result of Lawvere, which says that for any category E, the canonical functor

Mnd(E) op → CAT/E T → U : E T → E
with object map indicated is fully faithful (see [START_REF] Street | The formal theory of monads[END_REF] for a proof). An important consequence of this is that for monads S and T on E, an isomorphism E T ∼ = E S over E is induced by a unique isomorphism S ∼ = T of monads. We now have all the pieces we need to implement our strategy. First, in the following lemma, we give the result we need to recognise the induced monad on G(V E1 ) as arising from a multitensor.

Lemma 3.2. Let λ be a regular cardinal. Suppose that V is a cocomplete category, R is a coproduct preserving monad on V , S is a λ-accessible monad on GV over Set, and φ : GR→S is a monad morphism over Set. Denote by T the monad on G(V R ) induced by φ ! ⊣ φ * .

(1) One may choose φ ! so that T is over Set. Given such a choice of φ ! :

(2) If S is distributive and path-like then so is T .

(3) If R is λ-accessible then so is T .

Proof. Let us denote by ρ : RU R → U R the 2-cell datum of the Eilenberg-Moore object for R, and note that since G preserves Eilenberg Moore objects, one may identify U GR = G(U R ) and Gρ as the 2-cell datum for GR's Eilenberg-Moore object. Now T is over Set iff G(U R )T is. Moreover since R preserves coproducts U R creates them, and so T is path-like and distributive iff G(U R )T is. Since G(U R )T = U S φ ! , it follows that T is over Set, path-like and distributive iff U S φ ! is. Since the monads S and GR are over Set, as are ρ and φ, it follows by a transfinite induction using lemma(3.1) that all successive stages of this construction give functors and natural transformations over Set, whence U S φ ! is itself over Set. Lemma(2.4) ensures that the functors GR and G(RU R ) are distributive and pathlike, since R preserves coproducts and U R creates them. When S is also distributive and path-like, then by the same sort of transfinite induction using lemmas(2.4) and (3.1), all successive stages of this construction give functors that are distributive and path-like, whence U S φ ! is itself distributive and path-like.

Supposing R to be λ-accessible, note that GR is also λ-accessible. One way to see this is to consider the distributive multitensor R on V whose unary part is R and non-unary parts are constant at the initial object. Thus R will be λ-accessible since R is. To give an R-category structure on X ∈ GV amounts to giving Ralgebra structures to the homs of X, and similarly on morphisms, whence one has a canonical isomorphism R-Cat ∼ = G(V R ) over GV , and thus by structure-semantics one obtains Γ R ∼ = GR. Hence by lemma(2.1), GR is indeed λ-accessible. But then it follows that U GR = G(U R ) creates λ-filtered colimits, and so T is λ-accessible iff G(U R )T = U S φ ! is. In the transfinite construction of U S φ ! , it is now clear that the functors involved at every stage are λ-accessible by yet another transfinite induction, and so U S φ ! is λ-accessible as required.

To finish the proof we must check that T 's monad structure is over Set. Since µ T is a retraction of η T T it suffices to verify that η T is over Set, which is equivalent to asking that the components of G(U R )η T are identities on objects. Returning to the more general setting of a morphism of monads φ : M → S on E and (X, x) ∈ E M discussed above, the outside of the diagram on the left

M X X U S φ ! (X, x) SX SM X SX S 2 X x / / U M η T (X,x) / / U S q (X,x) φ X Sx / / : : µ S X Sφ X η S M X η S X U S q (X,x) η S SX : : 1 G G G(RU R ) GU R U S φ ! SG(U R ) Gρ / / G(U R )η T / / q φG(U R )
clearly commutes, thus one has a commutative square as on the right in the previous display, and so the result follows.

Theorem 3.3. (Multitensor lifting theorem) Let λ be a regular cardinal and let E be a λ-accessible distributive multitensor on a cocomplete category V . Then there is, to within isomorphism, a unique functor operad

(E ′ , σ ′ ) on V E1 such that (1) (E ′ , σ ′ ) is distributive. (2) E ′ -Cat ∼ = E-Cat over GV . Moreover E ′ is also λ-accessible.
Proof. Write ψ : E 1 ֒→ E for the multitensor inclusion of the unary part of E, and then apply lemma(3.2) with S = ΓE, R = E 1 and φ = Γψ to produce a λ-accessible distributive and path-like monad T on G(V E1 ) over Set. Thus by theorem(2.5) T is a distributive multitensor on V E1 with T -Cat ∼ = E-Cat. Moreover since T ∼ = ΓT it follows by lemma(2.1) that T is λ-accessible. As for uniqueness suppose that (E ′ , σ ′ ) is given as in the statement. Then by theorem(2.5) Γ(E ′ ) is a distributive monad on G(V E1 ) and one has

G(V E1 ) Γ(E ′ ) ∼ = E-Cat over G(V E1
). By structure-semantics one has an isomorphism Γ(E ′ ) ∼ =T of monads. Since Γ is locally fully faithful, one thus has an isomorphism E ′∼ =T of multitensors as required.

From the above proofs in the explicit construction of E ′ one first obtains ΓE ′ . In particular one has a coequaliser

(2) ΓE(E 1 X 1 , ..., E 1 X n ) ΓE(X 1 , ..., X n ) ΓE ′ ((X 1 , x 1 ), ..., (X n , x n )) / / / / / /
in E-Cat, and then one takes

n E ′ i=1 (X i , x i ) = ΓE ′ ((X 1 , x 1 ), ..., (X n , x n ))(0, n).
The set of objects for each of the E-categories appearing in ( 2) is {0, ..., n}, and the morphisms are all identities on objects. The explicit construction of (2) at the level of V -graphs proceeds, as we have seen, by a transfinite construction. From this and the definition of V -graphs of the form ΓE(X 1 , ..., X n ), it is clear that for all the E-categories appearing in [START_REF] Barr | Toposes triples and theories[END_REF], the hom between a and b for a > b is initial. Thus to understand (2) completely it suffices to understand the homs between a and b for a ≤ b.

By the explicit description of the monad ΓE, the hom of each stage of the transfinite construction in GV of the coequaliser (2), depends on the homs between c and d -where a ≤ c ≤ d ≤ b -of the earlier stages of the construction. Thus the hom between a and b of ( 2) is

(3) E a<i≤b E 1 X i E a<i≤b X i E ′ a<i≤b (X i , x i ) σ / / E i xi / / / /
and moreover, by virtue of its dependence on the intermediate homs (ie between c and d as above), this will not simply be the process of taking (3) to be the coequaliser in V E1 . For instance when E ′ is the Gray tensor product as in example (3.6) below, what we have here is a description of the Gray tensor product of 2-categories in terms of certain coequalisers in Gray-Cat.

However note that when one applies E ′ to sequences of free E 1 -algebras, as in

n E ′ i=1 (E 1 X i , σ (Xi) ) = ΓE ′ ((E 1 X 1 , σ (X1) ), ..., (E 1 X n , σ (Xn) ))(0, n) = ΓE ′ GE 1 (X 1 , ..., X n )(0, n) = ΓE(X 1 , ..., X n )(0, n) = n E i=1 X i
one simply recovers E.

Gray and Crans tensor products.

In the examples that we present in this section we shall use the following notation. We denote by A the appropriate T ≤n+1 -operad over Set and by E the T × ≤n -multitensor associated to it by theorem(2.6), so that one has

A = ΓE E = A and G n+1 (Set) A ∼ = E-Cat over G n+1 (Set).
The monad E 1 on G n (Set) has as algebras the structure borne by the homs of an A-algebra. Theorem(3.3) produces the functor operad

E ′ on G n (Set) E1 such that G n+1 (Set) A ∼ = E ′ -Cat ∼ = E-Cat over G n (Set) E1
. Moreover E ′ is the unique such functor operad which is distributive. The first of our examples is the most basic.

Example 3.4. When A is the terminal T ≤n+1 -operad, E is the terminal T × ≤nmultitensor, and so E 1 = T ≤n . Since strict (n+1)-categories are categories enriched in n-Cat using cartesian products, and these commute with coproducts (in fact all colimits), it follows by the uniqueness part of theorem (3.3) that E ′ is just the cartesian product of n-categories.

The general context in which this example can be generalised is that of a distributive law of a multitensor over a monad, as described in section(5.2) of [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF]. Recall that in theorem(5.2.1) of [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] such a distributive law was identified with structure on the monad making it opmonoidal with respect to the multitensor, and that analogously to the usual theory of distributive laws between monads, one has a lifting of the multitensor to the category of algebras of the monad. As the following example explains, the two senses of the word "lifting" -coming from the theory of distributive laws, and from the lifting theorem -are in fact compatible.

Example 3.5. Let E be a multitensor on V and T be an opmonoidal monad on (V, E). Then one has by theorem(5.2.1) of [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] a lifted multitensor E ′ on V T . On the other hand if moreover V is cocomplete, E is a distributive and accessible functor operad, and T is coproduct preserving and accessible, then E ′ may also be obtained by applying theorem(3.3) to the composite multitensor EM (T ). When E is given by cartesian product EM (T ) is just another name for the multitensor T × , making E ′ the cartesian product of T -algebras by the uniqueness part of theorem(3.3) and proposition(2.8) of [START_REF] Batanin | Algebras of higher operads as enriched categories[END_REF]. Specialising further to the case T = T ≤n , we recover example(3.4).

In the above examples we used the uniqueness part of theorem(3.3) to enable us to identify the lifted multitensor E ′ as the cartesian product. In each case we had the cartesian product on the appropriate category of algebras as a candidate, and the aforementioned uniqueness told us that this candidate was indeed our E ′ because the resulting enriched categories matched up. In the absence of this uniqueness, in order to identify E ′ one would have to unpack its construction, and as we saw in the proof of lemma(3.2), this involves a transfinite colimit construction in the appropriate category of enriched graphs. The importance of this observation becomes greater as the operads we are considering become more complex. We now come to our leading example.

Example 3.6. Take A to be the T ≤3 -operad for Gray categories constructed in [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF] (example(4) after corollary(8.1.1)). Since E 1 is the monad on G 2 (Set) for 2-categories, in this case E ′ is a functor operad for 2-categories. However the Gray tensor product of 2-categories [START_REF] Gray | Formal Category Theory: Adjointness for 2-categories[END_REF] is part of a symmetric monoidal closed structure. Thus it is distributive as a functor operad, and since Gray categories are categories enriched in the Gray tensor product by definition, it follows that E ′ is the Gray tensor product. Lemma(2.5) of [START_REF] Crans | On braidings, syllepses, and symmetries[END_REF] unpacks the notion of 4-tas ("tas" being the singular form, "teisi" being the plural) in detail. This explicit description can be interpretted as an explicit description of the T ≤4 -operad for 4-teisi. On the other hand from [START_REF] Crans | A tensor product for Gray categories[END_REF], one can verify that ⊗ Crans is distributive in the following way. First we note that to say that ⊗ Crans is distributive is to say that

id ⊗ c i : A ⊗ Crans B i -→ A ⊗ Crans B
is a coproduct cocone, for all Gray categories A and coproduct cocones (B i ci -→ B : i ∈ I) of Gray categories, since ⊗ Crans is symmetric. Since the forgetful functor Gray-Cat → G(2-Cat) creates coproducts, and using the explicit description of coproducts of enriched graphs, a discrete cocone (C i ki -→ C : i ∈ I) in Gray-Cat is universal iff it is universal at the level of objects and each of the k i 's is fully faithful (in the sense that the hom maps are isomorphisms of 2-categories). From the explicit description of ⊗ Crans given in section(4) of [START_REF] Crans | A tensor product for Gray categories[END_REF], one may witness that A ⊗ Crans (-) : Gray-Cat -→ Gray-Cat preserves fully faithful Gray-functors. Thus the distributivity of ⊗ Crans follows since at the level of objects ⊗ Crans is the cartesian product.

Example 3.7. Take A to be the T ≤4 -operad for 4-teisi. The associated multitensor E has E 1 equal to the T ≤3 -operad for Gray categories. Thus theorem(3.3) constructs a functor operad E ′ of Gray categories whose enriched categories are 4-teisi. As we explained above ⊗ Crans is distributive, and so the uniqueness part of theorem (3.3) ensures that E ′ = ⊗ Crans , since teisi are categories enriched in the Crans tensor product by definition.

3.4. Day convolution. While this article is directed primarily at an improved understanding of the examples discussed above, within a framework that one could hope will lead to an understanding of the higher dimensional analogues of the Gray tensor product, it is interesting to note that Day convolution can be seen as an instance of the multitensor lifting theorem.

The set of multimaps (X 1 , ..., X n ) → Y in a given multicategory C shall be denoted as C(X 1 , ..., X n ; Y ). Recall that a linear map in C is a multimap whose domain is a sequence of length 1. The objects of C and linear maps between them form a category, which we denote as C l , and we call this the linear part of C. The set of objects of C is denoted as C 0 . Given objects

A 11 , ..., A 1n1 , ......, A k1 , ..., A kn k B 1 , ..., B k C of C, we denote by σ A,B,C : C(B 1 , ..., B k ; C) × i C(A i1 , ..., A ini ; B i ) → C(A 11 , ..., A kn k ; C)
the substitution functions of the multicategory C. One thus induces a function

σ A,C : B1,...,B k C(B 1 , ..., B k ; C) × i C(A i1 , ..., A ini ; B i ) → C(A 11 , ..., A kn k ; C)
in which for the purposes of making sense of this coend, the objects B 1 , ..., B k are regarded as objects of the category C l . A promonoidal category in the sense of Day [START_REF] Day | Closed categories of functors[END_REF], in the unenriched context, can be defined as a multicategory C such that these induced functions σ A,C are all bijective. A promonoidal structure on a category D is a promonoidal category C such that C l = D op . A lax monoidal category (V, E) is cocomplete when V is cocomplete as a category and E n : V n → V preserves colimits in each variable for all n ∈ N. In this situation the multitensor E is also said to be cocomplete. When C is small it defines a functor operad on the functor category [C l , Set] whose tensor product F is given by the coend

F i X i = C1,...,Cn C(C 1 , ..., C n ; -) × i X i C i
and substitution is defined in the evident way from that of C. By proposition(2.1) of [START_REF] Day | Abstract substitution in enriched categories[END_REF] F is a cocomplete functor operad and is called the standard convolution structure of C on [C l , Set]. By proposition(2.2) of [START_REF] Day | Abstract substitution in enriched categories[END_REF], for each fixed category D, standard convolution gives an equivalence between multicategories on C such that C l = D and cocomplete functor operads on [D, Set], which restricts to the well-known [START_REF] Day | Closed categories of functors[END_REF] equivalence between promonoidal structures on D op and closed monoidal structures on [D, Set].

We have recalled these facts in a very special case compared with the generality at which this theory is developed in [START_REF] Day | Abstract substitution in enriched categories[END_REF]. In that work all structures are considered as enriched over some nice symmetric monoidal closed base V, and moreover rather than D = C l as above, one has instead an identity on objects functor D → C l . The resulting combined setting is then what are called V-substitudes in [START_REF] Day | Abstract substitution in enriched categories[END_REF], and in the V = Set case the extra generality of the functor D → C l , corresponds at the level of multitensors, to the consideration of general closed multitensors on [D, Set] instead of mere functor operads. We shall now recover standard convolution, for the special case that we have described above, from the lifting theorem.

Given a multicategory C we define the multitensor E on [C 0 , Set] via the formula

E 1≤i≤n X i (C) = C1,...,Cn   C(C 1 , ..., C n ; C) × 1≤i≤n X i (C i )  
using the unit and compositions for C in the evident way to give the unit u and substitution σ for E. When C 0 has only one element, this is the multitensor on Set coming from the operad P described in [START_REF] Batanin | Algebras of higher operads as enriched categories[END_REF] and [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF], whose tensor product is given by the formula E 1≤i≤n

X i = P n × X 1 × ... × X n .
An E-category with one object is exactly an algebra of the coloured operad P in the usual sense. A general E-category amounts to a set X 0 , sets X(x 1 , x 2 )(C) for all x 1 , x 2 ∈ X 0 and C ∈ C 0 , and functions

(4) C(C 1 , ..., C n ; C) × i X(x i-1 , x i )(C i ) → X(x 0 , x n )(C)
compatible in the evident way with the multicategory structure of C. On the other hand an F -category amounts to a set X 0 , sets X(x 1 , x 2 )(C) natural in C, and maps as in (4) but which are natural in C 1 , ..., C n , C, and compatible with C's multicategory structure. However this added naturality enjoyed by an F -category isn't really an additional condition, because it follows from the compatibility with the linear maps of C. Thus E and F -categories coincide, and one may easily extend this to functors and so give

E-Cat ∼ = F -Cat over G[C 0 , Set].
The unary part of E is given on objects by

E 1 (X)(C) = D C l (D, C) × X(D)
which should be familiar -E 1 is the monad on [C 0 , Set] whose algebras are functors C l → Set, and may be recovered from left Kan extension and restriction along the inclusion of objects C 0 ֒→ C l . Thus the category of algebras of E 1 may be identified with the functor category [C l , Set]. Since the multitensor E is clearly cocomplete, it satisfies the hypotheses of theorem(3.3), and so one has a unique finitary distributive multitensor

E ′ on [C l , Set] such that E-Cat ∼ = E ′ -Cat over G[C 0 , Set]
. By uniqueness we have Proposition 3.8. Let C be a multicategory, F be the standard convolution structure on [C l , Set] and E be the multitensor on [C 0 , Set] defined above. Then one has an isomorphism F ∼ = E ′ of multitensors.

In particular when C is a promonoidal category proposition(3.8) expresses classical unenriched Day convolution as a lift in the sense of theorem(3.3).

3.5. The 2-functoriality of multitensor lifting. We now express the lifting theorem as a coreflection to the inclusion of functor operads within a 2-category of multitensors which are sufficiently nice that theorem(3.3) can be applied to them.

Recall [START_REF] Street | The formal theory of monads[END_REF] that when a 2-category K has Eilenberg-Moore objects, one has a 2-functor sem K : MND(K) -→ K [1] (V, T ) → U T : V T → V which on objects sends a monad T to the forgetful arrow U T which forms part of the Eilenberg-Moore object of T , and that a straight forward consequence of the universal property of Eilenberg-Moore objects is that sem K ("sem" being short for "semantics") is 2-fully-faithful. In the case K = CAT if one restricts attention to the sub-2-category of MND(CAT) consisting of the 1-cells of the form (1 E , -), then one refinds the structure-semantics result of Lawvere referred to earlier.

The 2-fully-faithfulness of sem K says that the one and 2-cells of the 2-category MND(K) admit an alternative "semantic" description. Given monads (V, T ) and (W, S) in K, to give a monad functor (H, ψ) : (V, T ) → (W, S), is to give H : V T → W S such that U S H = HU T ; and to give a monad 2-cell φ : (H 1 , ψ 1 ) → (H 2 , ψ 2 ) is to give φ : H 1 →H 2 and φ : H1 → H2 commuting with U T and U S . Note that Eilenberg-Moore objects in CAT/Set are computed as in CAT, and we shall soon apply these observations to the case K = CAT/Set.

In view of theorem(2.5) of this article and proposition(4.4.2) of [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF], the 2functor Γ restricts to a 2-equivalence [START_REF] Batanin | Centres and homotopy centres in enriched monoidal categories[END_REF] Acc-DISTMULT ≃ Acc-G-MND.

Here Acc-DISTMULT is the full sub-2-category of DISTMULT consisting of the (V, E) such that V is cocomplete and the multitensor E is accessible. The 2category Acc-G-MND is defined as follows:

• objects are pairs (V, T ), where V is a cocomplete category and T is a monad on GV which is distributive, path-like and accessible.

• an arrow (V, T ) → (W, S) is a pair (H, ψ), where H : V → W is a functor, and ψ is a natural transformation making (GH, ψ) : (GV, T ) → (GW, S) a morphism of MND(CAT/Set).

• a 2-cell (H, ψ) → (K, κ) is a monad 2-cell (GH, ψ) → (GK, κ).
Since by [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] proposition(2.1.6), the effect G 1 : CAT -→ CAT/Set of G on arrows into 1 is locally fully faithful, the data of a 2-cell of Acc-G-MND will be of the form Gφ for a unique natural transformation φ : H → K. Moreover from the recollections of the previous paragraph, the one and 2-cells of Acc-G-MND can be reinterpretted in semantic terms.

Let us denote by Acc-FOp the full sub-2-category of Acc-DISTMULT consisting of the (V, E) such that E is a functor-operad, and by

I : Acc-FOp -→ Acc-DISTMULT the inclusion.
Proposition 3.9. The assignment (V, E) → (V E1 , E ′ ), with E ′ defined by theorem(3.3), is the object map of a right adjoint

C : Acc-DISTMULT -→ Acc-FOp to the inclusion I.
Proof. We shall define the coreflection C and a 2-natural transformation ε : IC → 1 such that Cε = id and εI = id, so that ε is the counit of an adjunction I ⊣ C whose unit is an identity. Let (H, ψ) : (W, F ) → (V, E) be a lax monoidal functor. Then we have the following serially commutative diagram of forgetful functors

F -Cat G(W F1 ) GW GV G(V E1 ) E-Cat U F ′ / / G(U F 1 ) / / GH / / G(U E 1 ) / / U E ′ ψ * G(ψ * 1 ) U F % % U E 9 9
The left-most square is the semantic interpretation of a morphism of monads

(G(ψ * 1 ), ψ) : (G(W F1 ), ΓF ′ ) -→ (G(V E1 ), ΓE ′ )
and so by [START_REF] Batanin | Centres and homotopy centres in enriched monoidal categories[END_REF], there is a unique natural transformation ψ ′ giving the coherence data of a lax monoidal functor

(ψ * 1 , ψ ′ ) : (W F1 , F ′ ) -→ (V E1 , E ′ ) such that Γ(ψ * 1 , ψ ′ ) = (G(ψ * 1 ), ψ
). This enables us to define the 1-cell map of C as C(H, ψ) = (ψ * 1 , ψ ′ ), and similarly using the semantic interpretation of the 2-cells of Acc-G-MND and (5), one defines the 2-cell map of C. The 2-functoriality of C follows from that of Γ and sem CAT/Set . For (V, E) ∈ Acc-DISTMULT one has

E-Cat G(V E1 ) GV E-Cat U E ′ / / G(U E 1 ) / / U E 1 which is the semantic interpretation of (U E1 , ε E ) : (V E1 , E ′ ) -→ (V, E) ∈ Acc-DISTMULT
and we take this to be the component ε (V,E) of ε. To verify naturality with respect to (H, ψ) as above, note that sem CAT/Set (ε

(V,E) (ψ * 1 , ψ ′ )) is the composite morphism U F ′ → U E1 depicted on the left in F -Cat G(W F1 ) G(V E1 ) GV E-Cat E-Cat U F ′ / / G(ψ * 1 ) G(U E 1 ) / / U E 1 ψ * U E ′ / / F -Cat G(W F1 ) GW GV E-Cat F -Cat U F ′ / / G(U F 1 ) GH / / U E ψ * 1 U F / / whereas sem CAT/Set ((H, ψ)ε (W,F )
) is the composite depicted on the right. Since U E1 ψ * 1 = HU F1 these are equal and so ε is natural with respect to (H, ψ) by the fully faithfulness of sem CAT/Set . The 2-naturality of ε follows similarly using the 2-fully faithfulness of sem CAT/Set . When E is itself a functor operad one has that E 1 is the identity monad, and so U E1 and thus ε (V,E) are identities, whence εI = id. On the other hand for any (V, E) ∈ Acc-DISTMULT, ε E * 1 = id by definition, and so Cε (V,E) = id.

As pointed out in section(6.1) of [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF], the data φ : E → F of a morphism of multitensors on some category V can also be regarded as the coherences making the identity functor 1 V into a lax monoidal functor (1 V , φ) : (V, F ) → (V, E), or alternatively as the coherences making 1 V into an oplax monoidal functor (1 V , φ) : (V, E) → (V, F ).

Remark 3.10. Suppose that ψ : E → T × ≤n is a T × ≤n -multitensor. Then the datum ψ can also be regarded as the coherence data for a lax monoidal functor

(1 G n (Set) , ψ) : (G n (Set), T × ≤n ) -→ (G n (Set), E), applying C to it gives a lax monoidal functor (ψ * 1 , ψ ′ ) : (G n (Set) T ≤n , ) -→ (G n (Set) E1 , E ′ ) and the components of ψ ′ are morphisms ψ ′ (X1,x1),...,(Xn,xn) : E i ′ ψ * 1 (X i , x i ) -→ n i=1 ψ * 1 (X i , x i )
of E 1 -algebras defined for each sequence ((X 1 , x 1 ), ..., (X n , x n )) of strict n-categories.

The codomain of these morphisms can be written as above since ψ * 1 as a right adjoint preserves products. This gives a general comparison map between the functor operad E ′ produced by theorem(3.3) and cartesian products, defined for sequences of E 1 -algebras that underlie strict n-categories. In particular when E is as in example(3.6), then ψ * 1 is the identity, and one has the comparison maps between the Gray tensor product and the cartesian product of 2-categories.

One of the expected features of the higher dimensional analogues of the Gray tensor product are such comparisons with cartesian product, which moreover are expected to be equivalences in the appropriate higher categorical sense. We shall see in remark(6.5) below, that in the context of reduced T ≤n -operads, one always gets such comparison maps with the cartesian product, and these are defined for all E 1 -algebras.

4.

Weak n-categories via algebraic weak factorisation systems 4.1. Overview. In this section we review the operadic definition of weak ncategory (more precisely Leinster's variant [START_REF] Leinster | Higher operads, higher categories[END_REF] of Batanin's [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF] original definition) in a way that allows adaptation to the strictly unital case in section [START_REF] Batanin | Centres and homotopy centres in enriched monoidal categories[END_REF]. The overall scheme of this definition is as follows. One has the category T ≤n -Coll 0 of T ≤n -collections over Set, and this is a presheaf category. There are two finitary monads on T ≤n -Coll 0 , Opd ≤n and Cont ≤n , whose algebras are T ≤n -operads over Set and T ≤n -collections over Set with chosen contractions (in the sense to be recalled below), respectively. The coproduct of these monads Opd ≤n Cont ≤n exists and is finitary, and its algebras are T ≤n -operads over Set equipped with chosen contractions. As the category of algebras of a finitary monad on a presheaf category, the category of T ≤n -operads over Set with chosen contractions is locally finitely presentable, and so has an initial object K ≤n . A weak n-category is by definition an algebra for K ≤n .

The monad Opd ≤n can be thought about in a few ways. Most generally, one has a finite limit sketch S 1 whose Set-valued models are T ≤n -operads over Set, another such sketch S 2 (this time without any distinguished limit cones) for T ≤n -collections over Set, and an inclusion S 2 ֒→ S 1 of finite limit sketches which induces the finitary monad Opd ≤n . Another viewpoint is that T ≤n -Op 0 is the category of monoids for the substitution tensor product on T ≤n -Coll 0 , this tensor product being filtered colimit preserving in one variable and cocontinuous in the other, and so by general well-known results such as those of [START_REF] Kelly | A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on[END_REF], the monoid monad exists and is finitary. Most particularly, an explicit description of Opd ≤n is given in [START_REF] Leinster | Higher operads, higher categories[END_REF] Appendix D, from which its finitariness and many other desirable properties may be witnessed.

As for Cont ≤n , our preferred approach will be that of [START_REF] Garner | A homotopy-theoretic universal property of leinster's operad for weak ω-categories[END_REF], which is to use the theory of cofibrantly-generated algebraic weak factorisation systems from [START_REF] Garner | Understanding the small object argument[END_REF] to give a conceptual understanding of this monad. We shall spend some time reviewing the relevant aspects of [START_REF] Garner | Understanding the small object argument[END_REF] as we shall use this machinery in section(5).

Algebraic weak factorisation systems. Composition in any category

E can be regarded as a morphism comp E of spans of categories E E [2] E E [1] t t * * 4 4

t E s E j j comp E
where s E (resp. t E ) takes the source (resp. target) of a given morphism of E. A functorial factorisation is a morphism of spans that is a section of comp E . On objects a given functorial factorisation F : E [1] → E [2] takes an arrow f : X → Y of E to a composable pair

X Lf --→ Kf Rf --→ Y
of morphisms whose composite is f . With the evident morphisms one has a category FF(E) of functorial factorisations for E. For a given F the assignment f → Lf defines a copointed endofunctor ε : L → 1 on E [1] such that s E ε = id s E , where the f -component of ε is given as on the left in

X X Y Kf 1 X / / f / / Rf Lf X Kf Y Y Lf / / Rf / / 1 Y f
and similarly, the assignment f → Rf defines a pointed endofunctor η : 1 → R on E [1] such that t E η = id t E , with the f -component of η given as on the right in the previous display. Clearly these give three equivalent viewpoints on the notion, that is to say, to give a functorial factorisation F , is to give (L, ε) such that s E ε = id s E , which in turn is equivalent to giving (R, η) such that t E η = id t E . Thus (following [START_REF] Garner | Understanding the small object argument[END_REF]) we shall also denote F as the pair (L, R). The assignment f → Kf is the object map of a functor K : E [1] → E that we call the image of a given functorial factorisation.

Composition of the associated pointed endofunctors gives FF(E) a strict monoidal structure, with tensor product denoted as • r , and whose unit is initial. Composition of the associated copointed endofunctors gives FF(E) another strict monoidal structure, with terminal unit and tensor product denoted as • l . A key observation of [START_REF] Garner | Understanding the small object argument[END_REF] is that one has natural maps

λ F1,F2,F3,F4 : (F 1 • l F 2 ) • r (F 3 • l F 4 ) -→ (F 1 • r F 3 ) • l (F 2 • r F 4 )
providing the interchange maps of a duoidal structure. Recall that a duoidal structure [START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF] [5] on a category V is a pair of monoidal structures (I 1 , ⊗ 1 , α 1 , λ 1 , ρ 1 ) and (I 2 , ⊗ 2 , α 2 , λ 2 , ρ 2 ), together with morphisms η : I 1 → I 2 , µ : I 2 ⊗ I 2 → I 2 and δ : I 1 → I 1 ⊗ 2 I 1 , and natural morphisms

λ A,B,C,D : (A ⊗ 2 B) ⊗ 1 (C ⊗ 2 D) -→ (A ⊗ 1 C) ⊗ 2 (B ⊗ 1 D) called interchange maps, such that • (η, µ) makes I 2 a ⊗ 1 -monoid. • (η, δ) makes I 1 a ⊗ 2 -comonoid. • (ι, δ) are the coherences making ⊗ 2 : V × V → V lax monoidal for ⊗ 1 . • (ι, µ) are the coherences making ⊗ 1 : V × V → V oplax monoidal for ⊗ 2 .
The key observation alluded to above is precisely that one has a duoidal structure on FF(E) for which

I 1 = 0, I 2 = 1, ⊗ 1 = • r and ⊗ 2 = • l .
A duoidal category is a natural environment for a notion of bialgebra. A bialgebra structure on X in a general duoidal category V consists of morphisms i : (c,d) is a ⊗ 2 -comonoid structure, and these are compatible in the following equivalent ways:

I 1 → X, m : X ⊗ 1 X → X, c : X → I 2 and d : X → X ⊗ 2 X, such that (i, m) is a ⊗ 1 - monoid structure,
• i and m are morphisms of ⊗ 2 -comonoids.

• c and d are morphisms of ⊗ 1 -monoids.

An algebraic weak factorisation system on E (originally called a natural weak factorisation system in [START_REF] Garner | Understanding the small object argument[END_REF]) is by definition a bialgebra in the duoidal category FF(E).

In particular for an algebraic weak factorisation system F , the copointed endofunctor (L, ε) has in addition a comultiplication making it into a comonad, and the pointed endofunctor (R, η) has a multiplication making it into a monad. Thus the given factorisation of f : X → Y as

X Lf --→ Kf Rf --→ Y
is into a map Lf which has the structure of an L-coalgebra, followed by the map which has the structure of an R-algebra. In general L-coalgebras and R-algebras admit lifting conditions with respect to each other, that is to say, given a commutative square as on the left in

A C D B u / / r / / v l A C Kr D B Kl u / / Lr Rr / / v Rl Ll λ O O K(u,v) / / ρ O O
together with an L-coalgebra structure λ on l and an R-algebra structure ρ on r, one constructs the diagonal filler as on the right in the previous display. Thus everything works as with the usual theory of weak factorisation systems, except that here instead of classes of left and right maps one has the categories of L-coalgebras and R-algebras, and the liftings are constructed as shown above using the algebraic data. In fact as explained in [START_REF] Garner | Understanding the small object argument[END_REF], every algebraic weak factorisation system has an underlying weak factorisation system. For any X ∈ E, L restricts to a comonad L X on the coslice X/E whose coalgebras are L-coalgebras with domain X. Similarly R restricts to a monad R X on the slice E/X whose algebras are R-algebras with codomain X. In particular if E has an initial object 0, then L 0 is a comonad on E whose coalgebras are objects X of E together with the structure of an L-coalgebra on the unique map 0 → X. This is the algebraic analogue of cofibrant replacement, when the underlying weak factorisation system is the factorisation of morphisms of a Quillen model category into cofibrations followed by trivial fibrations. Dually when E has a terminal object 1, the monad R 1 on E is an algebraic analogue of fibrant replacement, when the underlying weak factorisation system is the factorisation of morphisms of a Quillen model category into trivial cofibrations followed by fibrations.

Given a functorial factorisation F = (L, R) with image denoted as K, since colimits in E [1] and E [2] are computed componentwise as in E, the following statements are clearly equivalent for a given category C:

• F : E [1] → E [2] preserves limits (resp. colimits) of functors from C.

• L : E [1] → E [1] preserves limits (resp. colimits) of functors from C.

• R : E [1] → E [1] preserves limits (resp. colimits) of functors from C.

• K : E [1] → E preserves limits (resp. colimits) of functors from C.

When any of these conditions is satisfied, we say that the functorial factorisation preserves the given limit or colimit. In particular given a regular cardinal λ an algebraic weak factorisation system is said to be λ-ary when its underlying functorial factorisation preserves λ-filtered colimits, and finitary in the case λ = ℵ 0 of filtered colimits. Note that for a finitary algebraic weak factorisation system (L, R), the comonad L 0 and the right monad R 1 are both finitary. Below we shall exhibit Cont ≤n as the monad R 1 for a finitary algebraic weak factorisation system (L, R) on T ≤n -Coll 0 . Since 0 ∈ FF(E) has underlying monad the identity, it preserves all limits and colimits as a functorial factorisation, and similarly for 1 ∈ FF(E) since its underlying comonad is the identity. Thus if we write FF(E) ′ for the full subcategory of FF(E) consisting of the functorial factorisations preserving some class of limits and colimits, then the duoidal structure of FF(E) restricts to FF(E) ′ . So the algebraic weak factorisation system's which preserve the limits and colimits in the given class could equally well be regarded as bialgebras in FF(E) ′ .

We conclude this section with an observation that will be of use in section(4.3).

Lemma 4.1. Let P : A → B be an opfibration, and let F = (L, R) be the functorial factorisation on A of a map into a cocartesian arrow for P followed by a vertical arrow (ie one sent to an identity by P ). Then F preserves any colimit that P preserves.

Proof. For any functor P : A → B one has the functor i P : A → P/B given on objects by P A = (A, 1 P A , P A), and the structure of an opfibration amounts to a left adjoint π : P/B → A to i P over B (see [START_REF] Street | Fibrations and Yoneda's lemma in a 2-category[END_REF] for instance). One also has the canonical functor

P ′ : A [1] → P/B A α -→ A ′ → (A, P α, P A ′ )
and the image for the cocartesian-vertical factorisation for P is the composite πP ′ . Now the forgetful functor P/B → A × B creates all colimits that are preserved by P . Thus P ′ preserves all colimits that P does since colimits in E [1] are formed componentwise as in E, and so the result follows since π as a left adjoint preserves all colimits.

4.3. Garner's small object argument. The algebraic weak factorisation system's relevant for us will all be cofibrantly generated, in the sense that they all arise from Garner's small object argument, which we now recall in a special case of interest to us (for the general theory see [START_REF] Garner | Understanding the small object argument[END_REF]). Suppose that E is locally finitely presentable and that a functor J : I → E [1] is given, where I is a small category. Then Garner's small object argument produces an algebraic weak factorisation system on E in three steps. Before we begin to recall these, we invite the reader to keep in mind the more familiar special case when I is discrete, and so J may be regarded as a set of maps

J = {s i φi -→ d i : i ∈ I}
that one might call the "generating cofibrations" of the resulting algebraic weak factorisation system.

The first step is to take the left Kan extension of J along itself to produce L 1 : E [1] → E [1] , which comes with a canonical comonad structure (comonads arising this way are commonly known as "density" comonads). The underlying copointed endofunctor (L 1 , ε 1 ) of this comonad does not satisfy the condition s E ε 1 = id s E that would make it part of a functorial factorisation, and the point of the second step is to force this condition. Observe that s E : E [1] → E is an opfibration, in which the cocartesian arrows are those whose underlying square in E is a pushout4 . Then the second step is carried out by factoring the counit components ε 1,f :

L 1 f → f into L 1 f c f -→ L 2 f ε 2,f
--→ f a cocartesian arrow followed by a vertical arrow for s E . In this way (L 2 , ε 2 ) satisfies the condition s E ε 2 = id s E and so we have a functorial factorisation. Moreover L 2 inherits a comultiplication from that of L 1 , making it into a comonad. What is still missing is the compatible monad structure on R, and the third step of the construction will supply this.

Before proceeding to describe this third step, let us note that the factorisation provided by the first two steps yields something very familiar in the case where I is discrete. For suppose that f :

X → Y is in E, then L 1 f and L 2 f are as indicated on the left in i,α,β s i X Y i,α,β d i (α) / / f L1f (β) / / P f 3 3 L2f y y R2f ) ) s i X Y d i α / / f / / β φi =
the summands are indexed over the set of triples (i, α, β) giving rise to a commutative square as indicated on the right in the previous display. So we have here what is usually regarded as the first step of Quillen's small object argument. In general, that is for I not necessarily discrete, the above coproducts will be replaced by more general colimits. On completing the first two steps we have produced a functorial factorisation (L 2 , R 2 ) in which L 2 is a comonad, in other words we have a • l -comonoid in FF(E). The third step of Garner's small object argument is to take the free bialgebra on this comonoid, and this encapsulates the algebraic analogue of the transfinite part of Quillen's small object argument.

Let us see why this free bialgebra exists in our setting with E locally finitely presentable. First we note that since I is small and every object of E has rank, the functor J factors through the inclusion E λ ֒→ E of the λ-presentable objects where λ is some regular cardinal. Thus L 1 is the left extension of its restriction to E λ , and so it preserves λ-filtered colimits. Since the opfibration s E : E [1] → E preserves all colimits and thus λ-filtered ones in particular, by lemma(4.1) L 2 preserves λ-filtered colimits. So in fact (L 2 , R 2 ) is a • l -comonoid in FF λ (E), the duoidal category of λ-ary functorial factorisations on E.

In FF λ (E) the tensor products • l and • r are cocontinuous in one variable and λ-filtered colimit preserving in the other, since in each case these are just obtained by the composition of some kind of λ-ary functors. Because of the compatibility of these tensor products within the duoidal structure, the tensor product • r lifts to a tensor product on the category • l -CoMon λ (E) of λ-ary • l -comonoids, and since the forgetful functor U l : • l -CoMon λ (E) → FF λ (E) is strict monoidal and creates colimits, • r as a tensor product on • l -CoMon λ (E) is also cocontinuous in one variable and λ-filtered colimit preserving in the other. Since FF λ (E) and thus • l -CoMon λ (E) is evidently cocomplete, one can apply the construction of the free monoid on a pointed object from [START_REF] Kelly | A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on[END_REF] to (L 2 , R 2 ) ∈ • l -CoMon λ (E), to obtain the free bialgebra.

One reason we have discussed these details is to make the following observation.

Lemma 4.2. Suppose that J : I → E [1] where E is locally finitely presentable, I is small and for all i ∈ I, the domain and codomain of J(i) is finitely presentable. Then the algebraic weak factorisation system obtained from J via Garner's small object argument is finitary.

Proof. In this case the λ of the above discussion is ℵ 0 and so the third part of the construction stays within the category of finitary functorial factorisations.

Note that in the general construction of the free bialgebra, one can think of it as taking place just within FF λ (E), ie one can forget about the • l -comonoid structures, since U l is strict monoidal and creates colimits, so this extra structure is automatically compatible with everything that is going on. It is also worth noting that the passage from (L, R) ∈ FF(E) to R X , for all X ∈ E, preserves colimits and sends • r to composition of pointed endofunctors of E/X, and so for the (L, R) obtained from Garner's small object argument, R X is the free monad on the pointed endofunctor (R 2 ) X .

The algebraic weak factorisation system obtained from J : I → E [1] via Garner's small object argument is said to be cofibrantly generated by J. For such algebraic weak factorisation systems one has a direct description of what an Ralgebra structure on a given f : X → Y amounts to. In order to describe this let us denote by i → s(i) φi -→ d(i) the object map of J. Then to give an R-algebra structure on f is to give a choice of diagonal fill

si X Y di α / / f / / β φi γ(i,α ,β) 
: :

for every (i, α, β) such that f α = βφ i ; and these are compatible in the sense that given δ : j → i in I and α and β as above, one has

sj si X Y di dj sδ / / α / / f / / β / / dδ φj φi γ(i,α,β) 7 7 
γ(j,αs(δ),βd(δ))

3 3

γ(i, α, β)d(δ) = γ(j, αs(δ), βd(δ)). This compatibility condition is one of the novel features of the theory of algebraic weak factorisation systems, which owes its existence to the fact that one has a category of "generating cofibrations" as opposed to a mere set. We shall use this feature below in section [START_REF] Batanin | Centres and homotopy centres in enriched monoidal categories[END_REF] to express what it means for unital operations to be "strict" in our operadic definition of "weak n-category with strict units".

4.4.

T ≤n -collections. Up to this point in this article we have been using exclusively the general definitions of T ≤n -collections (resp. operads) as cartesian natural transformations (resp. cartesian monad morphisms) into T ≤n . The advantage of this is that all the combinatorial aspects of pasting diagrams are neatly packaged into a single very well-behaved object -the monad T ≤n on G n (Set) for strict ncategories. We now, for both the convenience of the reader and to set our notation and terminology, recall some of these combinatorial aspects.

We denote also by Tr ≤n the n-globular set T ≤n [START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF]. This is the free strict ncategory on the terminal n-globular set, the set of k-cells of which are denoted as Tr k , whose elements can be regarded as k-stage trees in the sense of [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF], a k-stage tree p being a sequence

p (k) p (k-1) ... p (1) p (0) ξ k / / / / / / ξ1 / /
in ∆ + such that p (0) = 1. An element x ∈ p (r) is a node of p whose height is r, the element y = ξ r ...ξ s+1 (x) is x's ancestor of height s, x is said to be a descendant of y, and a node x is said to be a leaf when it doesn't have any descendants. The leaves of a given tree p have a linear order determined by the order on the p (r) 's and the ξ r 's. For k > 0 the source and target functions s, t : Tr k+1 → Tr k are equal, they correspond to forgetting the nodes at height (k + 1), that is to say "truncation to height k", and so we write s = tr = t. For k < n any k-stage tree p can be regarded as a (k+1)-stage tree zp such that tr(zp) = p and (zp) (k+1) = 0, and one has an inclusion z : Tr k ֒→ Tr k+1 . The k-stage tree with exactly one leaf at height k is denoted as U k , and so the k-stage trees with exactly one leaf are those of the form z s U k-s . Such trees are said to be linear.

Trees in the sense just described define the n-globular sets to be regarded as globular pasting schemes. In [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF] the notation p * was used for the globular set determined by the tree p. From a general perspective the assignation of a globular set from a tree is the object map of a functor el(Tr ≤n ) → G n (Set) (el(Tr ≤n ) is the category of elements of the n-globular set Tr ≤n ) which comes from the fact that T ≤n is a local right adjoint monad on a presheaf category -so the trees/globular pasting diagrams are the canonical arities for T ≤n , see [START_REF] Weber | Familial 2-functors and parametric right adjoints[END_REF] [START_REF] Berger | Monads with arities and their associated theories[END_REF]. For an explicit description of this operation, see [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF] or [START_REF] Weber | Generic morphisms, parametric representations, and weakly cartesian monads[END_REF]. We shall omit the (-) * and just refer to the n-globular set p. In particular the n-globular sets p and zp coincide.

The category T ≤n -Coll of T ≤n -collections admits two useful reformulations because of the equivalences of categories

T ≤n -Coll ≃ G n (Set)/Tr ≤n ≃ [el(Tr ≤n ) op , Set]
the first of which is given by evaluating at 1, and the second is the standard description of a slice of a presheaf category as a presheaf category. Given p ∈ Tr k where k ≤ n, the set A p is just the fibre over p ∈ Tr k of (α 1 ) k : A(1) k → Tr k . When A underlies an operad, a ∈ A p is an operation which in any A-algebra composes such a pasting diagram to a k-cell. By the Yoneda lemma a k-stage tree p may also be regarded as a morphism p : k → Tr ≤n of n-globular sets, and these are exactly the representables when regarding T ≤n -Coll as a presheaf category. For k > 0 one has cosource and cotarget morphisms σ, τ : (k-1) → k of representable globular sets, giving cosource and cotarget maps σ p , τ p : tr(p) → p in T ≤n -Coll, since in G n (Set)/Tr ≤n one has tr(p) = pσ = pτ .

To say that a T ≤n -collection is over Set is to say that for the corresponding α : A → Tr ≤n , the fibre over U 0 is singleton, that is that A U0 is singleton. The category T ≤n -Coll 0 is also a presheaf category

T ≤n -Coll 0 ≃ [N op ≤n , Set]
where N ≤n is the full subcategory of el(Tr ≤n ) consisting of those trees p = U 0 . Right Kan extension along the inclusion i : N ≤n ֒→ el(Tr ≤n ) corresponds to the inclusion T ≤n -Coll 0 ֒→ T ≤n -Coll, and restriction along i applied to A amounts to replacing A U0 with a singleton. So the trees p = U 0 are also representables in T ≤n -Coll 0 , but viewed in G n (Set)/Tr ≤n this will be different from p : k → Tr ≤n in that the two 0-cells of the n-globular set k will have been identified. Despite this difference we shall, when there is no risk of confusion, denote by p this representable object of T ≤n -Coll 0 . Thus for a T ≤n -operad A over Set, one may may regard an element of a ∈ A p , that is to say an operation a of A of arity p, as a morphism a : p → A in T ≤n -Coll 0 by the Yoneda lemma. Similarly, for k-stage trees p where k > 1, one has σ p , τ p : tr(p) → p in T ≤n -Coll 0 .

4.5.

T ≤n -operads with chosen contractions. The (Leinster-)contractibility of a T ≤n -operad is a condition on the underlying collection. A T ≤n -collection is contractible iff the corresponding morphism α : A → Tr ≤n of n-globular sets satisfies the right lifting property (right lifting property) with respect to the set

I ≤n = {∂(k) φ k -→ k : 0 ≤ k ≤ n} ∪ {∂(n+1) φ ′ n --→ n}.
To equip the T ≤n -collection with chosen contractions is by definition to give choices of liftings that witness α's right lifting property.

As such, possessing chosen contractions is exactly the structure of an R-algebra on α, where (L, R) is the algebraic weak factorisation system on G n (Set) cofibrantly generated by I ≤n . As observed in [START_REF] Garner | A homotopy-theoretic universal property of leinster's operad for weak ω-categories[END_REF], possessing chosen contractions may be similarly identified from a cofibrantly generated algebraic weak factorisation system on T ≤n -Coll 0 . One has

T ≤n -Coll 0 T ≤n -Coll G n (Set), rani / / dom / / o o resi ⊥ one defines I ′
≤n to be the set of morphisms φ of T ≤n -Coll such that dom(φ) ∈ I ≤n , and then I ′′ ≤n is the set of morphisms res i (φ) of T ≤n -Coll 0 such that φ ∈ I ′ ≤n . Denote by (L ′ , R ′ ) and (L ′′ , R ′′ ) the algebraic weak factorisation systems cofibrantly generated by I ≤n and I ′′ ≤n respectively. Let B ∈ T ≤n -Coll 0 such that ran i (B) corresponds to α. Then by the definition of I ′ ≤n , an R-algebra structure on α amounts to an R ′ -algebra structure on the unique map ran i (B) → 1, which in turn amounts to an R ′′ -algebra structure on B → 1 by the definition of I ′′ ≤n . Moreover note that the boundaries ∂k of representables are clearly finite colimits of representables and so are finitely presentable objects of G n (Set). Thus (L, R) is a finitary algebraic weak factorisation system. The objects of a slice E/X whose domains are finitely presentable are finitely presentable in E/X, thus the domains and codomains of φ ∈ I ′ ≤n are finitely presentable, whence (L ′ , R ′ ) is also finitary. The functor ran i is clearly finitary -this is most easily seen by regarding it as the inclusion, thus its left adjoint preserves finitely presentable objects, whence (L ′′ , R ′′ ) is also a finitary algebraic weak factorisation system. We denote by Cont ≤n the monad R ′′ 1 , and we have proved Proposition 4.3. The monad Cont ≤n on T ≤n -Coll 0 just described is finitary and its algebras are T ≤n -collections over Set equipped with chosen contractions.

In view of section(4.1), this concludes our recollection of the definition of weak n-category.

Remark 4.4. We have in this work used the definition of Leinster [START_REF] Leinster | Higher operads, higher categories[END_REF] for ease of exposition, and because its compatibility with the technology of algebraic weak factorisation systems has been well discussed in the literature [START_REF] Garner | A homotopy-theoretic universal property of leinster's operad for weak ω-categories[END_REF]. However one can, in a similar way, recast the original definition of [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF] in similar terms, though working with strictly rather than weakly initial T ≤n -operads of the appropriate type. In this variant instead of T ≤n -Coll 0 one works with pointed collections, that is, with the coslice 1 G n (Set) /T ≤n -Coll 0 . On this coslice there are three finitary monads whose algebras are T ≤n -operads, pointed T ≤n -collections equipped with a system of compositions, and pointed T ≤n -collections that are contractible in the sense of [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF], with the last of these obtained via a finitary algebraic weak factorisation system. The algebras of the coproduct of these monads are, in the language of [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF], exactly "contractible normalised n-operads equipped with a system of compositions", and the algebras of the initial such are weak n-categories in the sense of [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF].

4.6. Further remarks on generating cofibrations. We analyse the sets I ≤n , I ′ ≤n and I ′′ ≤n of generating cofibrations a little more, and develop some further notation and terminology for the sake of section [START_REF] Batanin | Centres and homotopy centres in enriched monoidal categories[END_REF]. The role of the "extra" arrow φ ′ n in the definition of I ≤n is that it ensures that for the resulting algebraic weak factorisation system (L, R), the structure of R-algebra involves unique lifting against the map φ n : ∂(n) → n. This is part of a general phenomenon first observed by Bousfield in section(4) of [START_REF] Bousfield | Constructions of factorization systems in categories[END_REF]. We are grateful to Richard Garner for pointing us to this reference. Lemma 4.5. (Bousfield [START_REF] Bousfield | Constructions of factorization systems in categories[END_REF]) Let E be a category with pushouts, φ : S → D in E, and form φ ′ as follows:

S D S ′ D φ / / τ / / σ φ po D 1 D 0 0 1 D φ ′ ' '
Then f : X → Y satisfies the right lifting property with respect to φ and φ ′ iff it satisfies the unique right lifting property with respect to φ.

Given a cocomplete category E satisfying either ( * ) or ( †) of [START_REF] Garner | Understanding the small object argument[END_REF] section(4) 5 , and that J : I → E [1] with I small, and denote by (L, R) the algebraic weak 5 These are general conditions under which Garner's small object argument works, and in particular are satisfied when E is locally finitely presentable.

factorisation system cofibrantly generated by J. Suppose that a subset S of the objects of I are given, and regard S as a discrete subcategory of I. Define I S = I S and J S : I S → E [1] for the functor which agrees with J on I, and for s ∈ S is given by J S (s) = J(s) ′ defined as in lemma(4.5). Denote by (L S , R S ) the algebraic weak factorisation system cofibrantly generated by J S .

Corollary 4.6. For E, J : I → E [1] and S as just defined, an R S -algebra structure on f : X → Y in E is exactly an R-algebra structure together with the property that f has the unique right lifting property with respect to the morphisms of S.

Remark 4.7. In corollary(4.6) S was just a subset of I regarded as a discrete subcategory. There is an evident way to extend (-) ′ of lemma(4.5) to morphisms of generating cofibrations, and then one could take S to be a full subcategory of I. However this gives nothing different, because the uniqueness of the lifting conditions would imply that the compatibilities expressed by these extra morphisms of generating cofibrations would be automatically satisfied by any R S -algebra. In fact, if one wished to be completely minimalistic, one could also remove any morphisms of I ⊆ I S whose domains are in S, because for the same reason the resulting cofibrantly generated algebraic weak factorisation system would be the same.

Returning to I ≤n , the above discussion shows that instead of defining I ≤n one can instead define Ĩ≤n = {∂(k)

φ k -→ k : 0 ≤ k ≤ n}
and distinguish S = {φ n } so that ( Ĩ≤n ) S = I ≤n . Thus we introduce Terminology 4.8. Let J : I → E [1] and S be as in corollary (4.6). Then the elements of S are said to be strict, and the morphisms J(s) for s ∈ S are said to be generating strict cofibrations. The algebraic weak factorisation system cofibrantly generated by (S, J) is defined to be the algebraic weak factorisation system cofibrantly generated by J S .

So as an alternative to defining I ≤n , we define instead Ĩ≤n in which φ n is distinguished as being strict, and consider the algebraic weak factorisation system cofibrantly generated therefrom.

Similarly instead of considering I ′ ≤n , we define instead the set

Ĩ′ ≤n = {∂(p) φp -→ p : p ∈ Tr k , 0 ≤ k ≤ n}
of morphisms of T ≤n -Coll, where p is regarded as a morphism p : k → Tr ≤n of nglobular sets by Yoneda, and thus as a collection, in fact the collections of this form are exactly the representables -remembering that T ≤n -Coll is a presheaf category. The T ≤n -collection ∂(p) is by definition the composite

∂(k) φ k -→ k p -→ Tr ≤n
and so φ k underlies the morphism φ p : ∂(p) → p of collections. Then we distinguish the φ p for p ∈ Tr n as being strict. In the same way, as an alternative to I ′′ ≤n we define Ĩ′′ ≤n = {∂(p) φp -→ p : p ∈ Tr k , 0 < k ≤ n} of morphisms of T ≤n -Coll 0 , again distinguishing φ p for p ∈ Tr n as strict. As before the p here are representables in the presheaf category T ≤n -Coll 0 , noting that res i sends U 0 to the initial object and all the other representables to the representables of the same name in T ≤n -Coll 0 , and so we define φ p in T ≤n -Coll 0 for p = U 0 to be res i (φ p ). There is no harm in excluding the case res i (φ U0 ) since this is the identity on the initial object, against which every map satisfies the unique right lifting property, and so its inclusion or exclusion has no effect on the resulting algebraic weak factorisation system.

Finally we note that Ĩ≤n , Ĩ′ ≤n and Ĩ′′ ≤n admit alternative inductive descriptions, intrinsic to G n (Set), T ≤n -Coll and T ≤n -Coll 0 , an analogue of which will be important for section (5.4). For Ĩ≤n the initial step is that ∂(0) is initial and φ 0 is the unique map ∂(0) → 0. For 0 ≤ k < n, ∂(k + 1) and φ k+1 are defined by the pushout

∂k k ∂(k + 1) k φ k / / / / φ k po k + 1 σ / / τ φ k+1 ' '
where σ and τ are the cosource and cotarget maps from G ≤n regarded as morphisms between representable n-globular sets. For Ĩ′ ≤n one defines φ p : ∂(p) → p for p ∈ Tr k (regarded as a representable) by induction on k. The base case is that ∂(U 0 ) is initial and φ U0 is determined uniquely and the inductive step is indicated in where the cosource and target maps σ p and τ p are obtained in the evident way from those for G n (Set) (ie using T ≤n -Coll ≃ G n (Set)/Tr ≤n and Yoneda). The inductive definition of Ĩ′′ ≤n within T ≤n -Coll 0 is described identically, except that the base case is that ∂(p) is initial for all p ∈ Tr 1 .

5.

Weak n-categories with strict units 5.1. Overview. It is natural to ask whether the lifting theorem gives us an inductive formulation of the notion weak n-category, as recalled above in section(4), via iterated enrichment. That is, one can ask whether there is a functor operad L ≤n on the category G n (Set) K ≤n of K ≤n -algebras, such that

(6) L ≤n -Cat ∼ = G n+1 (Set) K ≤n+1
over G n+1 (Set). Note that given a T ≤n+1 -operad B over Set, we can consider the unary part of its corresponding T × ≤n -multitensor, which is a T ≤n -operad, and denote this by h(B). This is the object map of a functor

h : T ≤n+1 -Op 0 -→ T ≤n -Op.
The operad h(B) describes the structure that the homs of a B-algebra have. So what the lifting theorem does give us, when applied to K ≤n+1 , is a functor operad L ≤n on G n (Set) h(K ≤n+1 ) satisfying equation [START_REF] Batanin | The universal property of the multitude of trees[END_REF]. Thus our desired inductive formulation of the notion weak n-category would follow if [START_REF] Batanin | Algebras of higher operads as enriched categories[END_REF] h(K ≤n+1 ) ∼ = K ≤n which from the point of view of algebras says that the structure that the homs of a weak (n + 1)-category have is exactly that of a weak n-category. In this section we shall see that the presence of weak units causes [START_REF] Batanin | Algebras of higher operads as enriched categories[END_REF] to be false. However we shall give a notion of "weak n-category with strict units" by producing the operads

K (su)
≤n which describe such structures, which do verify the appropriate analogue of [START_REF] Batanin | Algebras of higher operads as enriched categories[END_REF]. Thus the lifting theorem produces the functor operads giving a formulation of weak n-categories with strict units via iterated enrichment. 5.2. Weak units. Equation( 7) isn't true even in the case n = 1. Let B be a bicategory. Then by definition any hom B(x, y) of B is a category, whose objects are arrows x → y, an arrow f → g of B(x, y) is a 2-cell f ⇒ g in B, and composition is given by vertical composition of 2-cells. However, this is not the only structure that B(x, y) has in general. For instance one can consider composition by the identities 1 x and 1 y giving endofunctors

(-) • 1 x : B(x, y) → B(x, y) 1 y • (-) : B(x, y) → B(x, y),
and more complicated processes involving just composing with identities such as

1 y • ((1 y • 1 y ) • (((-) • 1 x ) • 1 x )) : B(x, y) → B(x, y).
Thus one has a non-trivial monoid M whose elements are such formal expressions and multiplication is given by substitution. In addition to all this the coherence isomorphisms of B give isomorphisms between all these endofunctors, and from the coherence theorem for bicategories, any diagram of such isomorphisms commutes. Let us write ch : Set → Cat for the right adjoint to the functor ob : Cat → Set which sends a category to its set of objects. Given a set X, ch(X) is known as the indiscrete category on X, it has object set X and exactly one arrow between any 2 objects. From the previous paragraph and the coherence theorem for bicategories, the hom of a bicategory is a category equipped with a strict action by the strict monoidal category ch(M ). Thus in the case n = 1, K ≤2 is an operad whose algebras are bicategories, K ≤1 -algebras are categories, but h(K ≤2 )-algebras are categories strictly acted on by ch(M ). In particular note that the free h(K ≤2 )-algebra on a graph Z has underlying object set given by Z 0 × M , and so h(K ≤2 ) is not even over Set. 5.3. Reduced T ≤n -operads. Let α : A → T ≤n be a T ≤n -collection. When A underlies a T ≤n -operad and p is a linear tree, then the elements of A p are unital operations of some type. For example an operation of arity zU 0 distinguishes a one cell u x : x → x in any A-algebra X for all x ∈ X 0 . As another example, an operation of arity z 2 U 0 will have source and target operations of arity zU 0 , and so such an operation will distinguish one cells u x and v x : x → x and 2-cells u x → v x in any A-algebra X for all x ∈ X 0 . In general an operation of arity z r U s distinguishes for each s-cell x in an A-algebra X, a single (r+s)-cell u x whose s-dimensional source and target is x, and so the sources and targets of u x in dimensions between s and r+s will also be part of the data determined such an operation, and in any of these intermediate dimensions, these need not be the same cell. Definition 5.1. Let α : A → T ≤n be a T ≤n -collection. Then α is reduced when for all linear trees p ∈ Tr k where k ≤ n, the set A p is singleton. A reduced T ≤n -operad is one whose underlying T ≤n -collection is reduced in this sense. We denote by Rd-T ≤n -Coll the full subcategory of T ≤n -Coll consisting of the reduced T ≤n -collections, and by Rd-T ≤n -Op the full subcategory of T ≤n -Op consisting of the reduced T ≤n -operads.

Thus for a reduced T ≤n -operad one has a unique operation of each "unit type" (i.e., of each arity p where p is a linear tree). Examples include the terminal operad T ≤n , the T ≤2 -operad for sesqui-categories, and the T ≤3 -operad for Gray categories, and one would expect that the (yet to be defined) operads describing the higher analogues of Gray categories to be of this form. To say that a T ≤n -collection A is over Set is to say that A U0 is singleton, and so reduced T ≤n -collections and reduced T ≤n -operads are in particular over Set.

The category Rd-T ≤n -Coll is a presheaf category, one has

Rd-T ≤n -Coll ≃ [R op ≤n , Set]
where R ≤n is the full subcategory of el(Tr ≤n ) consisting of those trees p which are not linear. The inclusion I : Rd-T ≤n -Coll ֒→ T ≤n -Coll can also be seen as the process of right Kan extending along the inclusion i : R ≤n ֒→ el(Tr ≤n ), so its left adjoint L is given by restriction along i. One has

Rd-T ≤n -Op T ≤n -Op

T ≤n -Coll Rd-T ≤n -Coll J / / U / / I U (rd)
pb a pullback square in CAT, where I and J are the inclusions, and U and U (rd) are the forgetful functors. Each of the categories in [START_REF] Bénabou | Introduction to bicategories, part I[END_REF] are the categories of models of finite limit sketches and so are locally finitely presentable, and the square itself is induced by a square of morphisms of limit sketches. Thus each of the functors in (8) are finitary and monadic.

While not essential for this article, it is of interest that one has explicit descriptions of the left adjoints to each of the functors participating in [START_REF] Bénabou | Introduction to bicategories, part I[END_REF]. We already gave the explicit description of the left adjoint L of I, and the construction of free operads as described in Appendix D of [START_REF] Leinster | Higher operads, higher categories[END_REF] gives an explicit description of the left adjoint F of U . Given an explicit description L ′ of J, F (rd) = L ′ F I is then an explicit description of the left adjoint to U (rd) as witnessed by the natural isomorphisms

Rd-T ≤n -Op(L ′ F IA, B) ∼ = T ≤n -Coll(IA, U JB) = T ≤n -Coll(IA, IU (rd) B) ∼ = Rd-T ≤n -Coll(A, U (rd) B).
An explicit description of L ′ follows from the work of Harvey Wolff [START_REF] Wolff | Free monads and the orthogonal subcategory problem[END_REF]. Theorem(2.1) of [START_REF] Wolff | Free monads and the orthogonal subcategory problem[END_REF] deals with the following situation. One has a bipullback square in CAT as on the left in (9)

C A B D J / / U / / I V bipb F U 1 A P F ILU ε / / π / / F ηL po
where A has pushouts, I and J are fully faithful and regarded as inclusions, I has left adjoint L with unit η, and U has left adjoint F with counit ε. The conclusion of Wolff's theorem is that the pointed endofunctor (P, π), constructed via the pushout as on the right in the previous display, is well-pointed (i.e., P π = πP ) and its algebras are exactly the objects of C (i.e., those in the image of J). Thus in particular when A is locally finitely presentable and U and I are finitary, the left adjoint L ′ of J is constructed as the free monad on (P, π) and is finitary. Then by virtue of well-pointedness, L ′ is constructed as the colimit of the sequence

1 P P 2 ... π / / P π / / P 2 π / /
-see [START_REF] Kelly | A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on[END_REF].

One can apply Wolff's theorem in the case (8) since U being monadic is an isofibration, and so the pullback of ( 8) is also a bipullback. However we shall obtain a more basic description of L ′ . Denote by LinTr ≤n ֒→ Tr ≤n subobject of Tr ≤n consisting of the linear trees. Clearly these trees are closed under substitution of trees, and so LinTr ≤n underlies a T ≤n -operad which we denote as RGr ≤n . To give an n-globular set X an RGr ≤n -algebra structure, is to give common sections z k : X k → X k+1 for its source and target maps s, t : X k+1 → X k for 0 ≤ k < n. That is, RGr ≤n -algebras are exactly reflexive n-globular sets. Both as a T ≤ncollection and as a T ≤n -operad, RGr ≤n is subterminal, that is to say, the unique map ρ : RGr ≤n → T ≤n into the terminal collection/operad is a monomorphism. For any T ≤n -operad A, the operations of the T ≤n -operad A × RGr ≤n are exactly the operations of A whose arities are linear trees, and the projection p A : A × RGr ≤n → RGr ≤n assigns these operations to their arities. Thus to say that A is reduced is to say that p A is an isomorphism, which amounts to saying that one has a bipullback square as on the left in Rd-T ≤n -Op T ≤n -Op

T ≤n -Op/RGr ≤n 1 J / / ∆RGr ≤n / / 1RGr ≤n bipb A × RGr ≤n A P A RGr ≤n q A / / π A / / p A po
where ∆ RGr ≤n is given by pulling back along ρ. Applying Wolff's theorem to this situation, the left adjoint L ′ to J is the free monad on the pointed endofunctor (P, π) constructed as on the right in the previous display, where p A and q A are the product projections. We are indebted to Steve Lack for pointing out that our explicit construction of L ′ is an instance of Wolff's theorem, thereby enabling us to describe this construction here more efficiently.

5.4. Defining weak n-categories with strict units. While a reduced T ≤noperad has unique operations of each unit type, there is no guarantee that these really act as units with respect to the other operations. In this section we formalise this aspect, and then by mimicking the approach to defining weak n-categories in section(4.1), we shall define weak n-categories with strict units. The main idea is to work with a richer notion of collection, namely one that remembers the unit operations of a T ≤n -operad, and then define a stronger notion of contractibility for such collections, by isolating an appropriate algebraic weak factorisation system.

Let us first recall, for the convenience of the reader and to fix notation, substitution for T ≤n -operads. For a T ≤n -operad α : A → T ≤n , the substitution is encoded by the multiplication of the monad A. The object A • A of T ≤n -Coll is the composite

A 2 α 2 -→ T 2 ≤n µ -→ T ≤n
where µ here is the multiplication of the monad T ≤n , and then A's multiplication underlies a morphism A • A → A in T ≤n -Coll. To book-keep what is going on at the level of the sets of operations of A, it is convenient to use the notion of morphism of k-stage trees. Given k-stage trees p and q, a morphism f : p → q consists of functions f (i) as shown

p (k) p (k-1) ... p (1) p (0) 
q (k) q (k-1) ... q (1) q (0)

∂ k / / / / / / ∂1 / / ∂ k / / / / / / ∂1 / / f (k) f (k-1)
f (1) f (0)

making the above diagram commute serially (in Set), and such that for 0 < i ≤ k, f (i) is order preserving on the fibres of ∂ i . In this way one has a category Ω k , whose set of objects is Tr k , and an n-globular category Ω ≤n whose underlying n-globular set (i.e its object of objects when one views globular categories as category objects in G n (Set)) is Tr ≤n . Recall from [START_REF] Batanin | The universal property of the multitude of trees[END_REF] that Ω ≤n has a universal property -it is the free categorical T ≤n -algebra containing an internal T ≤n -algebra. For any given node x of q of height r one can consider a morphism x : z k-r U r → q which picks out x and all its ancestors. Pulling the components of x back along those of f produces a tree f -1 (x) ∈ Tr r , and one has an inclusion z k-r f -1 (x) ֒→ p of k-stage trees. When x is the i-th leaf of q we denote f -1 (x) as p i , and all the p i 's together are called the fibres of f . Now the trees p i provide a labelling of q in the sense that truncating p i and p i+1 to the height of the highest common ancestor of the i-th and (i+1)-th leaves of q gives the same tree for 1 ≤ i < a, where a is the number of leaves of q. From the explicit description of T ≤n then, f : p → q may be identified with an element of T 2 ≤n (1) k , the effect of T ≤n (!) (where ! : T ≤n (1) → 1 is the unique map) on this element is q, and of µ 1 on this element is p. In other words the result of substituting the p i into q is p. Now for a T ≤n -operad A, the data defining the operad substitution of A amounts to sets and functions

σ f : A q × A p1 × A p ′ 1 ... × A p ′ a-1 A pa -→ A p
for all morphisms f : p → q of k-stage trees, where p ′ i is the result of truncating p i to the height of the highest common ancestor of the i-th and (i+1)-th leaves of q. Definition 5.2. A morphism f : p → q of k-stage trees is an inclusion when its components -the f (i) -are injective functions. We denote by Ω (incl) ≤n the sub-nglobular category consisting of all the trees and the inclusions between them.

It is also worth noting that the categories Ω ≤n and Ω (incl) ≤n sit naturally within Joyal's category Θ n . In the language of [START_REF] Berger | A cellular nerve for higher categories[END_REF], Ω ≤n (resp. Ω (incl) ≤n ) is dual to the subcategory of Θ n consisting of all the objects and the covers (resp. degeneracies) between them.

Clearly a morphism of k-stage trees is an inclusion iff its fibres are linear. Thus σ f for f an inclusion encodes the substitution of operations of unit type into operations of (an arbitrary) arity q. In this case when A is reduced, the sets A pi and A p ′ i are all singletons, and so σ f may be regarded simply as a function σ f : A q → A p . It is these substitutions that we wish to include in our richer notion of collection. Denote by Ψ ≤n the full subcategory of el(Ω Thus a pointed reduced collection A contains a set of operations of arity p for any tree p that is not linear, just as with a reduced collection, and in addition one has extra functions between those sets that codify the substitution of unique operations of unit type into arbitrary operations. Recall that Rd-T ≤n -Coll ≃ [R op ≤n , Set] where R ≤n is the full subcategory of el(Tr ≤n ) consisting of the trees which are not linear, and so there is by definition an identity on objects functor i : R ≤n → Ψ ≤n , with the morphisms of Ψ ≤n not in the image of i coming from inclusions of trees. Denoting given by left Kan extension and restriction along i, and right Kan extension and restriction along j. Note in particular the effect of res j and lan i on representables. One has res j (p) = 0 if p is a linear tree, otherwise one can take res j (p) = p, and one has lan i (p) = p for all representables. Moreover from the description of boundaries of representables as pushouts in T ≤n -Coll, it is clear that res j (∂p) = 0 if tr(p) is linear.

Let us now describe the appropriate cofibrantly generated algebraic weak factorisation system on PtRd-T ≤n -Coll. We shall define the functor J : V ≤n -→ (PtRd-T ≤n -Coll) [1] where V ≤n is the subcategory of Ψ ≤n consisting of all the non-linear trees, and just the inclusions between them. Note that the category el(Ω (incl) ≤n ), as the domain of a split fibration into G ≤n , comes with a strict factorisation system in which the left class are the vertical arrows, and the right class are the chosen cartesian arrows (i.e., chosen by the given split cleavage). Thus Ψ ≤n inherits such a factorisation system, R ≤n is the subcategory of morphisms in the right class -consisting of the cosource and cotarget morphisms, and V ≤n is the subcategory of morphisms in the left class -the vertical morphisms, which in this case are the inclusions of trees. We shall define the object and arrow maps of J in an inductive manner.

Recall that sources and targets for Tr ≤n agree and are given by truncation. For 0 ≤ r ≤ k ≤ n let us denote by tr k-r : Tr k → Tr r the function which sends p ∈ Tr k to its height-r truncation, that is to say, to the tree p (r) → ... → p (0) . When kr = 1 this was denoted above simply as tr. The non-linear height ht(p) of p ∈ Tr k is greatest h ∈ N such that tr k-h (p) is a linear tree. Since tr k (p) = U 0 is linear, ht(p) is well-defined for all p ∈ Tr k , and by definition a tree p is linear iff ht(p) = 0.

For a non-linear tree p we write J(p) = φ p : ∂(p) → p in PtRd-T ≤n -Coll, and these maps are defined by induction on ht(p). For the base case ht(p) = 1, we take though now in the category PtRd-T ≤n -Coll. Note that the image of the object map of J just described agrees with applying lan i res j to I ′ ≤n , except for the presence of copies of 1 0 (coming from φ p and φ ′ p in T ≤n -Coll with p linear). Given an inclusion f : p → q of non-linear k-stage trees we shall define ∂(f ) as on the left in

∂(f ) : ∂(p) → ∂(q) J(f ) = (∂(f ), f ) : φ p → φ q
such that φ q ∂(f ) = f φ p , which thus gives a morphism J(f ) in (PtRd-T ≤n -Coll) [1] as on the right in the previous display. We define ∂(f ∂tr(q) tr(q) ∂(q) tr(q)

)
φ tr(q) / / τ ′ q / / σ ′ q φ tr(q) ∂(tr(f )) a a tr(f ) = = tr(f ) } } ∂(f ) ! !
in which the existence of ∂(tr(f )) and φ tr(q) ∂(tr(f )) = tr(f )φ tr(p) follow by induction, and so ∂(f ) is defined uniquely so that ∂(f )σ ′ p = σ ′ q tr(f ) and ∂(f )τ ′ p = τ ′ q tr(f ). In order that this induction goes through we must verify φ q ∂(f ) = f φ p . Since (σ ′ p , τ ′ p ) are jointly epic, it suffices to show φ q ∂(f )σ ′ p = f φ p σ ′ p and φ q ∂(f )τ ′ p = f φ p τ ′ p . One has

φ q ∂(f )σ ′ p = φ q σ ′ q tr(f ) = σ q tr(f ) = f σ p = f φ p σ ′ p , φ q ∂(f )τ ′ p = f φ p τ ′ p follows similarly.
The functoriality of J is clear by construction. Finally we define the set S of strict objects of V ≤n to be the non-linear n-stage trees.

Proposition 5.4. The algebraic weak factorisation system (L, R) on PtRd-T ≤n -Coll cofibrantly generated by (S, J) defined above is finitary.

Proof. By lemma(4.2) it suffices to show that the domains and codomains of arrows of PtRd-T ≤n -Coll in the image of J S are all finitely presentable. The domains are non-linear trees viewed as objects of PtRd-T ≤n -Coll, are representables, and so are finitely presentable objects. The codomains are clearly finite colimits of representables, and so are also finitely presentable.

Definition 5.5. A choice of unital contractions for a pointed reduced T ≤ncollection A is an R 1 -algebra structure on A for the algebraic weak factorisation system (L, R) of proposition (5.4). A choice of unital contractions for a reduced T ≤n -operad is one for its underlying pointed reduced collection.

Explicitly a choice of unital contractions for A amounts to

• choice of contractions in the usual sense for the underlying collection, and • a compatibility condition on these choices with respect to the process of substituting the unique unit operations to general operations. For p an object of Ψ ≤n , a morphism p → A in PtRd-T ≤n -Coll is by Yoneda an operation of A of arity p, and a morphism ∂(p) → A is, by the definition of ∂(p), a pair of operations (a, b) of (the underlying T ≤n -collection of) A both of arity tr(p), whose sources and targets agree (called "parallel operations" in [START_REF] Leinster | Higher operads, higher categories[END_REF]). So within PtRd-T ≤n -Coll a choice of contractions γ amounts to choices of fillers as in We remind the reader that as pointed out in [START_REF] Leinster | Higher operads, higher categories[END_REF], the choice γ encodes two aspects of higher category theory in one go -compositions and coherences. For example taking p to be the 1-stage tree on the left

• • • z   • • • •  
then an operation of arity p is a binary composition of 1-cells, and in (10) (a, b) are determined uniquely (i.e., a and b are both the operadic unit in dimension 0), and so the contraction in this instance gives a distinguished binary composition of 1-cells as part of the resulting algebraic structure. On the other hand taking p to be the 2-stage tree on the right in the previous display, then (a, b) of (10) will be a pair of operations that compose chains of 1-cells of length 3, and then the filler will give distinguished coherence 2-cells between these. So in general γ distinguishes a higher categorical operation of each arity.

The compatibility for a choice of unital contractions for A says that if one substitutes some unique unit operations into a given distinguished operation -either one that gives some kind of composition, or one that gives some kind of coherence -then the result is another distinguished operation. For example part of the data of a choice of contractions for a reduced operad A will be a choice of operation that composes chains of one-cells of length n for all n ≥ 2. Compatibility says in particular that, if one starts with a chain

w f -→ x g -→ y h -→ z
of one-cells in a given A-algebra, and then regards it as a longer chain by adding in some identity arrows

w f -→ x 1x -→ x 1x -→ x g -→ y h -→ z 1z -→ z
which are part of the structure by virtue of the reducedness of A (i.e., what we denote here as identity one-cells are provided by the unique operation of A of arity z(U 0 )), then applying the chosen method of composition to this longer chain should agree with applying the chosen method of composition to the original chain.

As the foregoing discussion indicates, the existence of a choice of unital contractions for a given reduced T ≤n -operad A amounts to saying that one can distinguish operations of A of each arity, in such a way that this choice is compatible with the process of substituting in unit operations. While this may seem like a strong condition at first glance, we shall see now that such choices can be exhibited in lowdimensional cases of interest, and moreover one has universal such T ≤n -operads that we will use to define weak n-categories with strict units. In section [START_REF] Batanin | The universal property of the multitude of trees[END_REF] we shall see that this choice of unital contractions is exactly what we need to get an alternative iterative formulation.

Example 5.6. Let A be the T ≤2 -operad whose algebras are bicategories in the sense of Bénabou [START_REF] Bénabou | Introduction to bicategories, part I[END_REF] for which the unit coherence 2-cells are identities, and we write "•" for the given binary horizontal composition of 1-cells. The strictness of the units ensures that A is reduced. The coherence theorem for bicategories ensures that one has unique choices of contractions γ(p, a, b) when p is a 2-stage tree. So to give a chosen contraction for A we must choose a distinguished composite of chains of 1-cells of length n, for n ≥ 2. The set of all such compositions may be identified with the set of binary brackettings of n symbols, so for each n we must choose one of these. There are two obvious choices, to bracket completely to the left or completely to the right, as illustrated in

x 0 f1 -→ x 1 f2 -→ x 2 f3 -→ x 3 f4 -→ x 4 ((f 4 • f 3 ) • f 2 ) • f 1 f 4 • (f 3 • (f 2 • f 1 ))
in the case n = 4. Clearly each of these schemes is compatible with units, for example

(((((1 x4 • f 4 ) • f 3 ) • 1 x2 ) • 1 x2 ) • f 2 ) • f 1 = ((f 4 • f 3 ) • f 2 ) • f 1 ,
and so in two ways, one can exhibit a choice of unital contractions for A.

Example 5.7. Let A be the T ≤3 -operad for Gray categories. The underlying 1-operad is terminal, A's contractibility ensures that one has unique choices of contractions γ(p, a, b) when p is a 2-stage tree, and so the only choices that aren't forced concern what one takes to be the distinguished composites of non-degenerate 2-dimensional pasting diagrams in a Gray category. The set of all ways to compose a given such pasting diagram, say

• • • • • / / A A / / & & 8 8 / / A A I I α11 α21 α13 α14 α24 α34 α44
to a 2-cell, that one has in a Gray category, can be identified with linear orders ≤ on the set of α ij such that i 1 ≤ i 2 implies α i1j ≤ α i2j , or in other words, with (2, 1, 4)shuffles. There are two evident unit-compatible choices. In terms of linear orders one can define α i1j1 < α i2j2 iff j 1 < j 2 or (j 1 = j 2 and i 1 < i 2 ); or alternatively α i1j1 < α i2j2 iff j 1 > j 2 or (j 1 = j 2 and i 1 < i 2 ), which for the above example correspond to the linear orders (α 11 , α 21 , α 13 , α 14 , α 24 , α 34 , α 44 ) (α 14 , α 24 , α 34 , α 44 , α 13 , α 11 , α 21 ) which correspond to "moving" down each column completely, and from left-to-right or right-to-left respectively.

Not every "systematic looking" choice of compositions need give a unit-compatible choice of contractions. For instance in this last example another choice of contractions could be to move from left to right and row by row, just as one reads text in European languages, so that in the case of the above pasting diagram one would choose the order (α 11 , α 13 , α 14 , α 21 , α 24 , α 34 , α 44 ).

The choice of contractions so determined is not unit-compatible, because the distinguished composite for the pasting diagram on the left

• • • & & 8 8 & & 8 8 f g • • • / / A A / / A A 1 f g 1
corresponds to the order (f, g), whereas substituting in identities to the distinguished composite as indicated on the right in the previous display, gives the operation that corresponds to the other order (g, f ). We now proceed to give the definition of weak n-category with strict units, following the approach of section(4). Proposition 5.8. There is a finitary monad on PtRd-T ≤n -Coll whose algebras are reduced operads equipped with a choice of unital contractions.

Proof. It suffices to give two finitary monads on PtRd-T ≤n -Coll, one whose algebras are reduced collections equipped with chosen unital contractions, and the other whose algebras are reduced operads, because then the required monad will just be the coproduct of these. In the first case one has the monad R 1 for the finitary algebraic weak factorisation system (L, R) of proposition (5.4). In the second case one can use a general finite limit sketch argument to establish the existence of the required finitary monad. Alternatively for a construction, one has forgetful functors

Rd-T ≤n -Op PtRd-T ≤n -Coll Rd-T ≤n -Coll, U / / resi / /
res i is cocontinuous and monadic by a standard application of the Beck Theorem (using that i is a bijective on objects functor), we noted the finitariness of U (rd) = res i U and constructed explicitly its left adjoint in section(5.3), and so Dubuc's adjoint triangle theorem [START_REF] Dubuc | Kan extensions in enriched category theory[END_REF] gives an explicit construction of the left adjoint of U . Moreover U is finitary since both res i and U (rd) create filtered colimits, and monadic by another standard application of the Beck theorem.

Thus the category of reduced operads equipped with a choice of unital contractions is locally finitely presentable, and we denote its initial object as K (su) ≤n .

Definition 5.9. A weak n-category with strict units is a K (su) ≤n -algebra. Since as we noted above chosen unital contractions are in particular chosen contractions, there is an operad morphism K ≤n → K (su) ≤n by the universal property of K ≤n , and thus every weak n-category with strict units has an underlying weak n-category.

Strictly unital weak n-categories via iterated enrichment

The bulk of this section will be occupied with the proof of Lemma 6.1. For all n ∈ N one has an isomorphism of T ≤n -operads

h(K (su) ≤n+1 ) ∼ = K (su) ≤n .
As explained in section(5.1), from lemma(6.1) and the lifting theorem one obtains the following result. Theorem 6.2. For all n ∈ N there is a distributive functor operad L ≤n on the category G n (Set) K (su) ≤n of algebras of K (su)

≤n and an isomorphism of categories

(11) L ≤n -Cat ∼ = G n+1 (Set) K (su) ≤n+1 over G n+1 (Set).
Thus the lifting theorem has produced the tensor products -the L ≤n 's -enabling us to recover the notion of weak n-category with strict units of definition(5.9) inductively by successive enrichment -as expressed by [START_REF] Bousfield | Constructions of factorization systems in categories[END_REF] at the level of objects.

In general we have functors

h : T ≤n+1 -Op 0 -→ T ≤n -Op r : T ≤n -Op -→ T ≤n+1 -Op 0 .
Recall from section(5.1) that for a T ≤n+1 -operad B over Set, the operad h(B) describes the structure that the homs of a B-algebra have, and is constructed formally by taking the unary part of the T × ≤n -multitensor associated to B by [34] theorem(6.1.1). On the other hand given a T ≤n -operad A, r(A) is the T ≤n+1 -operad Γ(A × ), whose algebras are categories enriched in G n (Set) A using the cartesian product by proposition(3.2.1) of [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] and proposition(2.8) of [START_REF] Batanin | Algebras of higher operads as enriched categories[END_REF]. Since (Γ(A × )) 1 = A one has that rh = 1.

We shall prove lemma(6.1) by first proving between categories of reduced operads with chosen unital contractions.

Since lemma(6.1) is then just the statement that this lifted h preserves the initial object, it follows immediately from lemma(6.4). We now describe the object maps of h and r in more elementary terms. Recall from [START_REF] Weber | Multitensors and monads on categories of enriched graphs[END_REF] section [START_REF] Batanin | Monoidal globular categories as a natural environment for the theory of weak n-categories[END_REF], that given a category V with an initial object, a finite sequence (X 1 , ..., X m ) of objects of V can be regarded as a V -graph whose set of objects is {0, ..., m}, (X 1 , ..., X m )(i, i+1) = X i and the other homs are initial. This simple construction enables an inductive definition of "k-dimensional globular pasting diagram":

• base case k = 0: the representable globular set 0, with one vertex and no edges, is the unique 0-dimensional pasting diagram. • inductive step: a (k+1)-dimensional pasting diagram p is a sequence (p 1 , ..., p m ) of k-dimensional pasting diagrams. which makes the connection with trees very transparent. So a (k+1)-stage tree p can be regarded as a sequence of maps in ∆ + as on the left p (k+1) → ... → p (1) 

→ p (0) =1 m i=1 p (k) i → ... → m i=1 p (0) i → 1
or as a sequence of k-stage trees (p 1 , ..., p m ) as indicated on the right in the previous display where p (1) = m. In particular, the tree (p) is obtained from the tree p by adding a new root and an edge from the new root to the old root. With these preliminaries in hand one has, by unpacking the definitions, the formulae For a given morphism of (k+1)-stage trees f : q → p with fibres (r 1 , ..., r s ) we shall need, for the proof of lemma(6. for rh(B) in terms of substitution functions for B. To do so, we must describe the morphism f : q → p of (k+1)-trees in the same inductive terms as we did trees in the previous paragraph. So we let q (1) = l and denote by (l 1 , ..., l m ) the cardinality of the fibres of f (1) : l → m which is order preserving by definition. Now let us reindex the sequence of fibres (r 1 , ..., r s ) of f to keep track of over which p i a given fibre of f lives, so we write (r 1 , ..., r s ) = (r 11 , ..., r msm ) that is to say, r ij for 1 ≤ i ≤ m and 1 ≤ j ≤ s i , is the j-th fibre of f that lives over p i . Moreover we shall describe each of the r ij as sequences of trees one dimension lower as in r ij = (r ij1 , ..., r ijli ).

Thus the inductive description of the components of f is as 

f (δ+1) = (f ( 
mlm ) where f iα : q iα → p i for 1 ≤ i ≤ m and 1 ≤ α ≤ l m , is the morphism of k-stage trees whose fibres are (r i1α , ..., r isiα ). By this notation the number of leaves of p is s, and the number of leaves of p i is s i . Let us denote by t ijα the number of leaves of r ijα . Thus r ij has α t ijα leaves, and q has i,j,α t ijα leaves. With these details in hand, one may readily verify that σ rh(B) f may be rewritten as a product, varying over i and α, of the functions

σ B fiα : B (pi) × B (ri1α) × B (r ′ ilα ) ... × B (r ′ is i-1 α
) B (ris i α ) -→ B (qiα) .

Proof. (of lemma(6.3)): by the above explicit formulae, h and r send reduced operads to reduced operads. Given a reduced T ≤n+1 -operad B, we shall describe a morphism as on the left in of T ≤n+1 -operads, naturally in B, such that hν B = id and ν B r = id, so that ν is the unit of the desired adjunction in which the counit is the identity. To give the morphism of underlying T ≤n+1 -collections, it suffices by the explicit descriptions of r and h spelled out above, to give functions ν B,p,i as indicated on the right in the previous display, where 0 < k ≤ n, p = (p 1 , ..., p m ) ∈ Tr k+1 and 1 ≤ i ≤ m, satisfying appropriate naturality conditions. Denoting by π i : (p i ) → p the canonical inclusion of trees, we define ν B,p,i from the base change function in the underlying pointed reduced collection, namely as ν B,p,i = B(π i ). This clearly defines a morphism of T ≤n -collections. Intuitively, ν B is compatible with the operad structures since it was defined by substitution of unit operations. Formally, for any morphism f : q → p of trees whose fibres are are denoted as (r 1 , ..., r s ), we must show that commutes. It suffices to verify this commutativity after composition with each projection proj iα : rh(B) q → B (qiα) . We do this now using the notation established above for f : q → p. For and by applying operad associativity and one of the operad unit laws to [START_REF] Crans | A tensor product for Gray categories[END_REF], one obtains (14)= [START_REF] Crans | On braidings, syllepses, and symmetries[END_REF].

Proof. (of lemma(6.4)): we must explain how the functors r and h of lemma(6.3) lift to the level of reduced operads with chosen unital contractions, and then show that the operad map ν B is compatible with the chosen unital contractions.

Recall that the data of a choice γ of contractions for B ∈ Rd-T ≤n -Op amounts to morphisms γ(p, a, b) : p -→ B in PtRd-T ≤n -Coll, for all 0 ≤ k ≤ n, non-linear p ∈ Tr k+1 and a, b ∈ B tr(p) such that s(a) = s(b) and t(a) = t(b), and that this choice is unital when it satisfies γ(q, atr(f ), btr(f )) = γ(p, a, b)f for all p, a, b as above and tree inclusions f : q → p. Given γ and recalling the explicit description of h(B) given above, γ ′ (p, a, b) = γ((p), a, b) defines a choice γ ′ of contractions for h(B). The unitality of γ ′ with respect to an inclusion f : q → p follows from that of γ with respect to the evident inclusion (f ) : (q) → (p). Clearly if F : B → B ′ preserves chosen contractions, then so does h(F ). Thus h lifts to the level of operads with chosen unital contractions.

Suppose that a choice ψ of unital contractions for A ∈ Rd-T ≤n -Op is given. Recalling the explicit description of r(A) given above, where p = (p 1 , ..., p m ), defines a choice of contractions for r(A). Note that the inductive description of a tree morphism f : q → p given above simplifies in the case where f is an inclusion, because f (1) is injective and so l i = 0 or 1, and so one may write f as a composite (q 1 , ..., q l ) (f1,...,f l ) ------→ (p f (1) (1) , ..., p f (1) (l) )

ss f (1)
---→ (p 1 , ..., p m ) where ss f (1) is the subsequence inclusion corresponding to the injection f (1) interpretted as an inclusion of trees in the evident way, and the f i are themselves inclusions of trees. By definition ψ ′ is compatible with such subsequence inclusions. Since ψ is unital, ψ ′ is compatible with tree inclusions of the form (f 1 , ..., f l ) as above, and so ψ ′ is itself unital. Clearly if G : A → A ′ preserves chosen contractions, then so does r(G). Thus r lifts to the level of operads with chosen unital contractions.

Let us now verify that ν B is compatible with chosen contractions. Z i defined for all finite sequences (Z 1 , ..., Z n ) of E 1 -algebras. In particular one has comparison maps between the functor operads L ≤n of theorem(6.2) and the cartesian product of weak n-categories with strict units.

  of the non-linear trees. Definition 5.3. A pointed reduced T ≤n -collection is a presheaf A : Ψ op ≤n → Set. We denote by PtRd-T ≤n -Coll = [Ψ op ≤n , Set] the category of pointed reduced T ≤ncollections.

  by j : R ≤n → el(Tr ≤n ) the fully faithful inclusion, we have adjunctions PtRd-T ≤n -Coll Rd-T ≤n -Coll T ≤n -Coll resi

  ∂(p) to be initial giving us a unique map φ p : ∂(p) → p. Similarly as in section(4.5) ∂(p) and φ p , for p of non-linear height > 1, are defined by ∂tr

  by induction on the nonlinear height of p. For the base case where ht(p) = 1, ∂(p) = 0 and so ∂(f ) is uniquely defined and one has φ q ∂(f ) = f φ p by initiality. When ht(p) > 1, ∂(f ) is constructed in

7

 7 for all 0 < k ≤ n, non-linear k-stage trees p, and parallel operations (a, b) as shown.
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 6364 The functors h and r defined above restrict to an adjunction Rd-T ≤n+1 -Op Rd-T ≤n -Op h between categories of reduced operads.and then denoting by CtRd-T ≤n -Op the category of reduced T ≤n -operads with chosen unital contractions, we shall prove Lemma The adjunction of lemma(6.3) lifts to an adjunction CtRd-T ≤n+1 -Op CtRd-T ≤n -Op h

  h(B) p = B (p) r(A) p = k i=1A pi for p = (p 1 , ..., p m ) ∈ Tr k+1 , expressing the effect of h and r at the level of sets of operations.

1 .

 1 3) below, to unpack a description of corresponding substitution functionσ rh(B) f : rh(B) p × rh(B) r1 × rh(B) r ′ .. × rh(B) r ′ s-1 rh(B) rs -→ rh(B) q

ν

  B : B -→ rh(B) ν B,p,i : B p -→ B (pi)

( 12 ) 1 . 1 rh

 1211 B p × B r1 × B r ′ .. × B r ′ s-1 B rs B q rh(B) q rh(B) p × rh(B) r1 × rh(B) r ′ 1 ... × rh(B) r ′ s-

(b, b 11 1 ... × B r ′ s- 1 B

 1111 , ..., b msm ) ∈ B p × B r1 × B r ′ rs the effect of proj iα composed with the top path of[START_REF] Burroni | T-categories (catégories dans un triple)[END_REF] on this element is(13) (b[b 11 , ..., b msm ])    v, ..., v, X t i ′ jα ′ u, ..., u, j tijα v, ..., v Y t i ′ jα ′    where X = {(i ′ , α ′ ) : i ′ < i or (i ′ = i and α ′ < α)} Y = {(i ′ , α ′ ) : i ′ > i or (i ′ = i and α ′ > α)}.On the other hand the effect on (b, b 11 , ..., b msm ) of proj iα composed with the bottom path of (12) is  b[ v, ..., v, i ′ <i,j s i ′ j u, ..., u, j sij v, ..., v i ′ >i,j s i ′ j ] v, ..., v, α ′ <α t i1α ′ u, ..., u, ti1α v, ..., v α ′ >α t i1α ′ ], ... ..., b isi [ v, ..., v, α ′ <α t is i α ′ u, ..., u, tis i α v, ..., v α ′ >α t is i α ′] of substitution, and that for all operations x of B one has x[v, ..., v] = v by reducedness,[START_REF] Cheng | Iterated distributive laws[END_REF] equals b    v, ..., v, i ′ <i,j s i ′ j b i1 [ v, ..., v, α ′ <α t i1α ′ u, ..., u, ti1α v, ..., v α ′ >α t i1α ′ ], ... ..., b isi [ v, ..., v, α ′ <α t is i α ′ u, ..., u, tis i α v, ..., v α ′ >α t is i α ′ ], v, ..., v i ′ >i,j s i ′ j

ψ

  ′ (p, (a 1 , ..., a m ), (b 1 , ..., b m )) = (ψ(p 1 , a 1 , b 1 ), ..., ψ(p m , a m , b m ))

Remark 6 . 5 .

 65 So given 0 ≤ k ≤ n, p = (p 1 , ..., p m ) ∈ Tr k+1 and a, b ∈ B tr(p) such that s(a) = s(b) and t(a) = t(b), we must verify ν B (γ(p, a, b)) = γ ′′ (p, ν B (a), ν B (b))and it suffices to verify this equation for all 1 ≤ i ≤ m after applying the projection proj i : rh(B) p → B (pi) . Recalling the inclusion π : (p i ) → p of trees, by the definition of ν B we haveproj i ν B (γ(p, a, b)) = γ(p, a, b)π i whereas proj i γ ′′ (p, ν B (a), ν B (b)) = γ ′ (p i , atr(π i ), btr(π i )) = γ((p i ), atr(π i ), btr(π i )) = γ(p, a, b)π iin which the first two equalities follow from the definitions, and the last follows from the unitality of γ with respect to π i . For a reduced T ≤n+1 -operad B we have the component ν B : B → rh(B) of the unit of the above adjunctions. If we denote by E the T × ≤n -multitensor such that ΓE = B, then E × 1 is the T × ≤n -multitensor such that ΓE × 1 = rh(B), and then ν B is the effect of Γ on a T × ≤n -multitensor map κ E : E → E × 1 , whose unary part is the identity. The natural transformation κ E can be regarded as the coherence data for a lax monoidal functor(1, κ E ) : (G n (Set), E × 1 ) -→ (G n (Set), E), applying C from proposition(3.9) to this gives (1, κ ′ E ) : (G n (Set) E1 , ) -→ (G n (Set) E1 , E ′ )and the components of κ ′ E are of the form (κ ′ E ) Z1,...,Zn :

In[START_REF] Berger | Monads with arities and their associated theories[END_REF] the terminology strongly cartesian monad is used.

Note that for any E, s E is a fibration, but what is important for us is that pushouts in E make s E into an opfibration.
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